Skip to main content Accessibility help
×
Home
  • Print publication year: 2010
  • Online publication date: July 2010

Section 7: - Risk factors, predictors, and future management

References

1. BassoO, RasmussenS, WeinbergC Ret al. Trends in fetal and infant survival following preeclampsia. Jama 2006; 296(11): 1357–62.
2. BartonJ R, SibaiB M. Prediction and prevention of recurrent preeclampsia. Obstet Gynecol 2008; 112(2 Pt 1): 359–72.
3. SkjaervenR, WilcoxA J, LieR T, IrgensL M. Selective fertility and the distortion of perinatal mortality. Am J Epidemiol 1988; 128(6): 1352–63.
4. SkjaervenR, MelveK K. Selective fertility: the examples of perinatal death and preeclampsia. Norsk Epidemiologi 2007; 17(2): 175–80.
5. NeedJ A. Pre-eclampsia in pregnancies by different fathers: immunological studies. BMJ 1975; 1(5957): 548–9.
6. RobillardP Y, DekkerG A, HulseyT C. Revisiting the epidemiological standard of preeclampsia: primigravidity or primipaternity? Eur J Obstet Gynecol Reprod Biol 1999; 84(1): 37–41.
7. RobillardP Y, HulseyT C, AlexanderG Ret al. Paternity patterns and risk of preeclampsia in the last pregnancy in multiparae. J Reprod Immunol 1993; 24(1): 1–12.
8. TrupinL S, SimonL P, EskenaziB. Change in paternity: a risk factor for preeclampsia in multiparas. Epidemiology 1996; 7(3): 240–4.
9. DekkerG A, SibaiB M. Etiology and pathogenesis of preeclampsia: current concepts [see comments]. Am J Obstet Gynecol 1998; 179(5): 1359–75.
10. DekkerG A, RobillardP Y, HulseyT C. Immune maladaptation in the etiology of preeclampsia: a review of corroborative epidemiologic studies. Obstet Gynecol Surv 1998; 53(6): 377–82.
11. BassoO, ChristensenK, OlsenJ. Higher risk of pre-eclampsia after change of partner: an effect of longer interpregnancy intervals? Epidemiology 2001; 12(6): 624–9.
12. SkjaervenR, WilcoxA J, LieR T. The interval between pregnancies and the risk of preeclampsia. N Engl J Med 2002; 346(1): 33–8.
13. TrogstadL I, EskildA, MagnusP, SamuelsenS O, NesheimB I. Changing paternity and time since last pregnancy; the impact on pre-eclampsia risk. A study of 547 238 women with and without previous pre-eclampsia. Int J Epidemiol 2001; 30(6): 1317–22.
14. DeenM E, RuurdaL G, WangJ, DekkerG A. Risk factors for preeclampsia in multiparous women: primipaternity versus the birth interval hypothesis. J Matern Fetal Neonatal Med 2006; 19(2): 79–84.
15. DekkerG, RobillardP Y. The birth interval hypothesis: does it really indicate the end of the primipaternity hypothesis? J Reprod Immunol 2003; 59(2): 245–51.
16. HjartardottirS, LeifssonB G, GeirssonR T, SteinthorsdottirV. Paternity change and the recurrence risk in familial hypertensive disorder in pregnancy. Hypertens Pregnancy 2004; 23(2): 219–25.
17. ZhangJ, PatelG. Partner change and perinatal outcomes: a systematic review. Paediatr Perinat Epidemiol 2007; 21(Suppl 1): 46–57.
18. CnattingiusS, MillsJ L, YuenJ, ErikssonO, SalonenH. The paradoxical effect of smoking in preeclamptic pregnancies: smoking reduces the incidence but increases the rates of perinatal mortality, abruptio placentae, and intrauterine growth restriction. Am J Obstet Gynecol 1997; 177(1): 156–61.
19. VattenL J, SkjaervenR. Effects on pregnancy outcome of changing partner between first two births: prospective population study. BMJ 2003; 327(7424): 1138.
20. DekkerG, RobillardP Y. Pre-eclampsia: is the immune maladaptation hypothesis still standing? An epidemiological update. J Reprod Immunol 2007; 76(1–2): 8–16.
21. LiD K, WiS. Changing paternity and the risk of preeclampsia/eclampsia in the subsequent pregnancy. Am J Epidemiol 2000; 151(1): 57–62.
22. LieR T, RasmussenS, BrunborgHet al. Fetal and maternal contributions to risk of pre-eclampsia: population based study. BMJ 1998; 316(7141): 1343–7.
23. GuelinckxI, DevliegerR, BeckersK, VansantG. Maternal obesity: pregnancy complications, gestational weight gain and nutrition. Obes Rev 2008; 9(2): 140–50.
24. CatalanoP M. Increasing maternal obesity and weight gain during pregnancy: the obstetric problems of plentitude. Obstet Gynecol 2007; 110(4): 743–4.
25. CatalanoP M. Management of obesity in pregnancy. Obstet Gynecol 2007; 109(2 Pt 1): 419–33.
26. VillamorE, CnattingiusS. Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. Lancet 2006; 368(9542): 1164–70.
27. EsplinM S, FausettM B, FraserAet al. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med 2001; 344(12): 867–72.
28. Salonen RosH, LichtensteinP, LipworthL, CnattingiusS. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet 2000; 91(4): 256–60.
29. CnattingiusS, ReillyM, PawitanY, LichtensteinP. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet A 2004; 130A(4): 365–71.
30. SkjaervenR, VattenL J, WilcoxA Jet al. Recurrence of pre-eclampsia across generations: exploring fetal and maternal genetic components in a population based cohort. BMJ 2005; 331(7521): 877.
31. EskenaziB, FensterL, SidneyS, ElkinE P. Fetal growth retardation in infants of multiparous and nulliparous women with preeclampsia. Am J Obstet Gynecol 1993; 169(5): 1112–8.
32. XiongX, MayesD, DemianczukNet al. Impact of pregnancy-induced hypertension on fetal growth. Am J Obstet Gynecol 1999; 180(1 Pt 1): 207–13.
33. VattenL J, SkjaervenR. Is pre-eclampsia more than one disease? BJOG 2004; 111(4): 298–302.
34. SkjaervenR, GjessingH K, BakketeigL S. Birthweight by gestational age in Norway. Acta Obstet Gynecol Scand 2000; 79(6): 440–9.
35. XiongX, DemianczukN N, BuekensP, SaundersL D. Association of preeclampsia with high birth weight for age. Am J Obstet Gynecol 2000; 183(1): 148–55.
36. RasmussenS, IrgensL M, AlbrechtsenS, DalakerK. Predicting preeclampsia in the second pregnancy from low birth weight in the first pregnancy. Obstet Gynecol 2000; 96(5 Pt 1): 696–700.
37. ZhangJ, TroendleJ F, LevineR J. Risks of hypertensive disorders in the second pregnancy. Paediatr Perinat Epidemiol 2001; 15(3): 226–31.
38. ZetterstromK, LindebergS, HaglundB, MagnusonA, HansonU. Being born small for gestational age increases the risk of severe pre-eclampsia. BJOG 2007; 114(3): 319–24.
39. RasmussenS, IrgensL M. Pregnancy-induced hypertension in women who were born small. Hypertension 2007; 49(4): 806–12.
40. NessR B, RobertsJ M. Heterogeneous causes constituting the single syndrome of preeclampsia: a hypothesis and its implications. Am J Obstet Gynecol 1996; 175(5): 1365–70.
41. RobertsJ M, RedmanC W. Pre-eclampsia: more than pregnancy-induced hypertension. Lancet 1993; 341(8858): 1447–51.
42. RobertsJ M, CatovJ M. Preeclampsia more than 1 disease: or is it? Hypertension 2008; 51(4): 989–90.
43. HaigD. Genetic conflicts in human pregnancy. Q Rev Biol 1993; 68(4): 495–532.
44. IrgensH U, ReisaeterL, IrgensL M, LieR T. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ 2001; 323(7323): 1213–7.
45. FunaiE F, FriedlanderY, PaltielOet al. Long-term mortality after preeclampsia. Epidemiology 2005; 16(2): 206–15.
46. VikseB E, IrgensL M, LeivestadT, SkjaervenR, IversenB M. Preeclampsia and the risk of end-stage renal disease. N Engl J Med 2008; 359(8): 800–9.
47. TrogstadL, SkrondalA, StoltenbergCet al. Recurrence risk of preeclampsia in twin and singleton pregnancies. Am J Med Genet A 2004; 126(1): 41–5.
48. SmithG C, ShahI, WhiteI R, PellJ P, DobbieR. Previous preeclampsia, preterm delivery, and delivery of a small for gestational age infant and the risk of unexplained stillbirth in the second pregnancy: a retrospective cohort study, Scotland, 1992–2001. Am J Epidemiol 2007; 165(2): 194–202.

References

1. KällénB. Maternal morbidity and mortality in in-vitro fertilization. Best Pract Res Clin Obstet Gynaecol 2008; 22: 549–58.
2. WHO. Standards and reporting requirements related to fetal, perinatal, neonatal and infant mortality. In: International statistical classification of diseases and related health problems: instruction manual, 10th revision, Vol 2. Geneva: World Health Organization; 1993.
3. KeirseM J N C. International variations in intrauterine growth. Eur J Obstet Gynecol Reprod Biol 2000; 92: 21–8.
4. RobertsC L, LancasterP A L. Australian national birthweight percentiles by gestational age. Med J Aust 1999; 170: 114–18.
5. GraafmansW C, RichardusJ H, MacfarlaneAet al. Comparability of published perinatal mortality rates in Western Europe: the quantitative impact of differences in gestational age and birthweight criteria. BJOG 2001; 108: 1237–45.
6. BlicksteinI. Does assisted reproduction technology, per se, increase the risk of preterm birth?BJOG 2006; 113(Suppl 3): 68–71
7. ESHRE. Good clinical treatment in assisted reproduction: An ESHRE position paper. http://www.eshre.com/binarydata.aspx?type=doc/Good_Clinical_treatment_in_Assisted_Reproduction_ENGLISH.pdf(accessed December 2008).
8. ASRM. Assisted reproductive technologies. http://www.asrm.org/Patients/patientbooklets/ART.pdf(accessed December 2008).
9. SchieveL A, FerreC, PetersonH Bet al. Perinatal outcome among singleton infants conceived through assisted reproductive technology in the United States. Obstet Gynecol 2004; 103: 1144–53.
10. McIntireD D, LevenoK J. Neonatal mortality and morbidity rates in late preterm births compared with births at term. Obstet Gynecol 2008; 111: 35–41.
11. McLaurinK K, HallC B, JacksonA Jet al. Persistence of morbidity and cost differences between late-preterm and term infants during the first year of life. Pediatrics 2009; 123: 653–9.
12. JacksonR A, GibsonK A, WuY Wet al. Perinatal outcomes in singletons following in vitro fertilization: a meta-analysis. Obstet Gynecol 2004; 103: 551–63.
13. HansenM, BowerC, MilneEet al. Assisted reproductive technologies and the risk of birth defects: a systematic review. Hum Reprod 2005; 20: 328–38.
14. EURO-PERISTAT project with SCPE, EUROCAT and EURONEONET. European Perinatal Health Report 2008. http://www.europeristat.com/bm.doc/european-perinatal-health-report-2.pdf(accessed January 2009).
15. HelmerhorstF M, PerquinD A M, DonkerD, KeirseM J N C. Perinatal outcome of singletons and twins after assisted conception: a systematic review of controlled studies. BMJ 2004; 328: 261–5.
16. McDonaldS D, MurphyK, BeyeneJet al. Perinatal outcomes of singleton pregnancies achieved by in vitro fertilization: a systematic review and meta-analysis. J Obstet Gynaecol Can 2005; 27: 449–59.
17. MontanS. Increased risk in the elderly parturient. Curr Opin Obstet Gynecol 2007; 19: 110–2.
18. LukeB, BrownM B. Elevated risks of pregnancy complications and adverse outcomes with increasing maternal age. Hum Reprod 2007; 22: 1264–72.
19. DraperE S, KurinczukJ J, AbramsK Ret al. Assessment of separate contributions to perinatal mortality of infertility history and treatment: a case-control analysis. Lancet 1999; 353: 1746–9.
20. RomundstadL B, RomundstadP R, SundeAet al. Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study. Lancet 2008; 372: 737–43.
21. KapiteijnK, de BruijnC S, de BoerEet al. Does subfertility explain the risk of poor perinatal outcome after IVF and ovarian hyperstimulation? Hum Reprod 2006; 21: 3228–34.
22. KeirseM J N C, HelmerhorstF M. The impact of assisted reproduction on perinatal health care. Soc Prev Med 1995; 40: 343–51.
23. KeirseM J N C, HelmerhorstF M. Too many eggs? Ideally one egg and one offspring. BMJ 2004; 328: 302–3.
24. GerrisJ, Van RoyenE. Avoiding multiple pregnancies in ART. A plea for single embryo transfer. Hum Reprod 2000; 15: 1884–8.
25. McKeownT, RecordR G. Observations on foetal growth in multiple pregnancy in man. J Endocrinol 1952; 8: 386–401.
26. ChowJ S, BensonC B, RacowskyCet al. Frequency of a monochorionic pair in multiple gestations: relationship to mode of conception. J Ultrasound Med 2001; 20: 757–60.
27. AstonK I, PetersonC M, CarrellD T. Monozygotic twinning associated with assisted reproductive technologies: a review. Reproduction 2008; 136: 377–86.
28. ShererD M. Adverse perinatal outcome of twin pregnancies according to chorionicity: review of the literature. Am J Perinatol 2001; 18: 23–37.
29. DhontM, De NeubourgF, Van der ElstJet al. Perinatal outcome of pregnancies after assisted reproduction: a case-control study. J Assist Reprod Genet 1997; 14: 575–80.
30. DhontM, De SutterP, RuyssinckGet al. Perinatal outcome of pregnancies after assisted reproduction: a case-control study. Am J Obstet Gynecol 1999; 181: 688–95.
31. IsakssonR, GisslerM, TiitinenA. Obstetric outcome among women with unexplained infertility after IVF: a matched case-control study. Hum Reprod 2002; 17: 1755–61.
32. KeirseM J N C. Perinatal mortality rates do not contain what they purport to contain. Lancet 1984; 1: 1166–9.
33. AnthonyS, van der Pal-de BruinK M, GraafmansW Cet al. The reliability of perinatal and neonatal mortality rates: differential under-reporting in linked professional registers vs. Dutch civil registers. Paediatr Perinat Epidemiol 2001; 15: 306–14.
34. GisslerM, SilverioM M, HemminkiE. In-vitro fertilisation pregnancies and perinatal health in Finland 1991–1993. Hum Reprod 1995; 10: 1856–61.
35. AndersenA N, GianaroliL, FelberbaumRet al. Assisted reproductive technology in Europe, 2002: results generated from European registers by ESHRE. Hum Reprod 2006; 21: 1680–97.
36. KremerJ A M, BotsR S G M, CohlenBet al. Tien jaar resultaten van in-vitrofertilisatie in Nederland. Ned Tijdschr Geneeskd 2008; 152: 146–52.
37. WildmanK, BlondelB, NijhuisJet al. European indicators of health care during pregnancy, delivery and the postpartum period. Eur J Obstet Gynecol Reprod Biol 2003; 111: S53–65.
38. KeirseM J N C, HanssensM, DevliegerH. Trends in preterm birth in Flanders, Belgium, from 1991 to 2002. Paediatr Perinat Epidemiol 2009; 23: 522–32.
39. Buck LouisG M, SchistermanE F, DukicV Met al. Research hurdles complicating the analysis of infertility treatment and child health. Hum Reprod 2005; 20: 12–8.
40. LancasterP A L, JohnstonW I H, WoodCet al. Australian in vitro fertilisation collaborative group. High incidence of preterm births and early losses in pregnancy after in vitro fertilisation. BMJ 1985; 291: 1160–3.
41. TanS L, DoyleP, CampbellSet al. Obstetric outcome of in vitro fertilization pregnancies compared with normally conceived pregnancies. Am J Obstet Gynecol 1992; 167: 778–84.
42. VerlaenenH, CammuH, DerdeM Pet al. Singleton pregnancy after in vitro fertilization: expectations and outcome. Obstet Gynecol 1995; 86: 906–10.
43. TanboT, DaleP O, LundeO, MoeN, AbyholmT. Obstetric outcome in singleton pregnancies after assisted reproduction. Obstet Gynecol 1995; 86: 188–92.
44. ReubinoffB E, SamueloffA, Ben HaimMet al. Is the obstetric outcome of in vitro fertilized singleton gestations different from natural ones? A controlled study. Fertil Steril 1997; 67: 1077–83.
45. KoudstaalJ, BraatD D, BruinseH Wet al. Obstetric outcome of singleton pregnancies after IVF: a matched control study in four Dutch university hospitals. Hum Reprod 2000; 15: 1819–25.
46. OlivennesF, RufatP, AndreBet al. The increased risk of complication observed in singleton pregnancies resulting from in-vitro fertilization (IVF) does not seem to be related to the IVF method itself. Hum Reprod 1993; 8: 1297–300.
47. YudkinP L, WoodL, RedmanC W. Risk of unexplained stillbirth at different gestational ages. Lancet 1987; 1: 1192–4.
48. YangH, KramerM S, PlattR Wet al. How does early ultrasound scan estimation of gestational age lead to higher rates of preterm birth? Am J Obstet Gynecol 2002; 186: 433–37.
49. JosephK S, KramerM S, MarcouxSet al. Determinants of preterm birth rates in Canada from 1981 through 1983 and from 1992 through 1994. New Engl J Med 1998; 339: 1434–9.
50. CraigE D, ThompsonJ M D, MitchellE A. Socioeconomic status and preterm birth: New Zealand trends, 1980 to 1999. Arch Dis Child 2002; 86: F42–6.
51. CnattingiusS, FormanM R, BerendesH Wet al. Effect of age, parity, and smoking on pregnancy outcome: a population-based study. Am J Obstet Gynecol 1993; 168: 16–21.
52. Langhoff-RoosJ, KesmodelU, JacobssonBet al. Spontaneous preterm delivery in primiparous women at low risk in Denmark: population based study. BMJ 2006; 332: 937–9.
53. TracyS K, TracyM B, DeanJet al. Spontaneous preterm birth of liveborn infants in women at low risk in Australia over 10 years: a population-based study. BJOG 2007; 114: 731–5.
54. AncelP Y, Saurel-CubizollesM J, Di RenzoG Cet al. Very and moderate preterm births: are the risk factors different? BJOG 1999; 106: 1162–70.
55. SchempfA H, BranumA M, LukacsS Let al. The contribution of preterm birth to the Black-White infant mortality gap, 1990 and 2000. Am J Public Health 2007; 97: 1255–60.
56. De SutterP, DelbaereI, GerrisJet al. Birthweight of singletons after assisted reproduction is higher after single- than after double-embryo transfer. Hum Reprod 2006; 21: 2633–7.
57. PandianZ, TempletonA, SerourGet al. Number of embryos for transfer after IVF and ICSI: a Cochrane review. Hum Reprod 2005; 20: 2681–7.
58. GerrisJ. IVF and ICSI reimbursed in Belgium. J Assist Reprod Genetics 2004; 21: 135.
59. GerrisJ M R. Single embryo transfer and IVF/ICSI outcome: a balanced appraisal. Hum Reprod Update 2005; 2: 105–121.
60. OmbeletW, De SutterP, Van der ElstJet al. Multiple gestation and infertility treatment: registration, reflection and reaction: the Belgian project. Hum Reprod Update 2005; 11: 3–14.
61. PelinckM J, KeizerM H, HoekAet al. Eur J Obstet Gynecol Reprod Med, in press.
62. OlivennesF, RufatP, AndréBet al. The increased risk of complication observed in singleton pregnancies resulting from in-vitro fertilization (IVF) does not seem to be related to the IVF method itself. Hum Reprod 1993; 8: 1297–300.
63. KällénB, OlaussonP O, NygrenK G. Neonatal outcome in pregnancies from ovarian stimulation. Obstet Gynecol 2002; 100: 414–9.
64. OmbeletW, MartensG, De SutterPet al. Perinatal outcome of 12,021 singleton and 3108 twin births after non-IVF-assisted reproduction: a cohort study. Hum Reprod 2006; 21: 1025–32.
65. Nuojua-HuttunenS, GisslerM, MartikainenHet al. Obstetric and perinatal outcome of pregnancies after intrauterine insemination. Hum Reprod 1999; 14: 2110–5.
66. GaudoinM, DobbieR, FinlaysonAet al. Ovulation induction/intrauterine insemination in infertile couples is associated with low-birth-weight infants. Am J Obstet Gynecol 2003; 188: 611–6.
67. De SutterP, VeldemanL, KokPet al. Comparison of outcome of pregnancy after intra-uterine insemination (IUI) and IVF. Hum Reprod 2005; 20: 1642–6.
68. de GeyterC, de GeyterM, SteimannSet al. Comparative birth weights of singletons born after assisted reproduction and natural conception in previously infertile women. Hum Reprod 2006; 21: 705–12.
69. WangJ X, NormanR J, KristianssonP. The effect of various infertility treatments on the risk of preterm birth. Hum Reprod 2002; 17: 945–9.
70. SutcliffeA G, TaylorB, SaundersKet al. Outcome in the second year of life after in-vitro fertilisation by intracytoplasmic sperm injection: a UK case-control study. Lancet 2001; 357: 2080–4.
71. KnoesterM, HelmerhorstF M, VandenbrouckeJ Pet al. Perinatal outcome, health, growth, and medical care utilization of 5- to 8-year-old intracytoplasmic sperm injection singletons. Fertil Steril 2008; 89: 1133–46.
72. OmbeletW, PeeraerK, De SutterPet al. Perinatal outcome of ICSI pregnancies compared with a matched group of natural conception pregnancies in Flanders (Belgium): a cohort study. Reprod Biomed Online 2005; 11: 244–53.
73. KatalinicA, RöschC, LudwigMet al. Pregnancy course and outcome after intracytoplasmic sperm injection: a controlled, prospective cohort study. Fertil Steril 2004; 81: 1604–16.
74. OmbeletW, CadronI, GerrisJet al. Obstetric and perinatal outcome of 1655 ICSI and 3974 IVF singleton and 1102 ICSI and 2901 IVF twin births: a comparative analysis. Reprod Biomed Online 2005; 11: 76–85.
75. BonduelleM, LiebaersI, DeketelaereVet al. Neonatal data on a cohort of 2889 infants born after ICSI (1991–1999) and of 2995 infants born after IVF (1983–1999). Hum Reprod 2002; 17: 671–94.
76. GovaertsI, DevrekerF, KoenigIet al. Comparison of pregnancy outcome after intracytoplasmic sperm injection and in-vitro fertilization. Hum Reprod 1998; 13: 1514–8.
77. KällénB, FinnströmO, NygrenK Get al. In vitro fertilization (IVF) in Sweden: infant outcome after different IVF fertilization methods. Fertil Steril 2005; 84: 611–7.
78. HoyJ, VennA, HallidayJet al. Perinatal and obstetric outcomes of donor insemination using cryopreserved semen in Victoria, Australia. Hum Reprod 1999; 14: 1760–4.
79. LansacJ, ThepotF, MayauxM Jet al. Pregnancy outcome after artificial insemination or IVF with frozen semen donor: a collaborative study of the French CECOS Federation on 21,597 pregnancies. Eur J Obstet Gynecol Reprod Biol 1997; 74: 223–8.
80. WadaI, MacnameeM C, WickKet al. Birth characteristics and perinatal outcome of babies conceived from cryopreserved embryos. Hum Reprod 1994; 9: 543–6.
81. WennerholmU B, HambergerL, NilssonLet al. Obstetric and perinatal outcome of children conceived from cryopreserved embryos. Hum Reprod 1997; 12: 1819–25.
82. BelvaF, HenrietS, Van den AbbeelEet al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod 2008; 23: 2227–38.
83. WangY A, SullivanE A, BlackDet al. Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril 2005; 83: 1650–8.
84. ShihW, RushfordD D, BourneHet al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod 2008; 23: 1644–53.
85. De NeubourgD, GerrisJ, MangelschotsKet al. The obstetrical and neonatal outcome of babies born after single-embryo transfer in IVF/ICSI compares favourably to spontaneously conceived babies. Hum Reprod 2006; 21: 1041–6.
86. PoikkeusP, GisslerM, Unkila-KallioLet al. Obstetric and neonatal outcome after single embryo transfer. Hum Reprod 2007; 22: 1073–9.
87. JohnsonC D, ZhangJ. Survival of other fetuses after a fetal death in twin or triplet pregnancies. Obstet Gynecol 2002; 99: 698–703.
88. DickeyR P, TaylorS N, LuP Yet al. Spontaneous reduction of multiple pregnancy: incidence and effect on outcome. Am J Obstet Gynecol 2002; 186: 77–83.
89. PinborgA, LidegaardO, la Cour FreieslebenNet al. Consequences of vanishing twins in IVF/ICSI pregnancies. Hum Reprod 2005; 20: 2821–9.
90. La SalaG B, VillaniM T, NicoliAet al. Effect of the mode of assisted reproductive technology conception on obstetric outcomes for survivors of the vanishing twin syndrome. Fertil Steril 2006; 86: 247–9.
91. PinborgA, LidegaardO, La Cour FreieslebenNet al. Vanishing twins: a predictor of small-for-gestational age in IVF singletons. Hum Reprod 2007; 22: 2702–14.
92. SheblO, EbnerT, SommergruberMet al. Birth weight is lower for survivors of the vanishing twin syndrome: a case-control study. Fertil Steril 2008; 90: 310–4.
93. ManghamL J, PetrouS, DoyleL Wet al. The cost of preterm birth throughout childhood in England and Wales. Pediatrics 2009; 123: e312–27.
94. HorcajadasJ A, RiesewijkA, PolmanJet al. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod 2005; 11; 195–205.
95. TavaniotouA, AlbanoC, SmitzJet al. Impact of ovarian stimulation on corpus luteum function and embryonic implantation. J Reprod Immunol 2002; 55: 123–30.
96. HorcajadasJ A, MínguezP, DopazoJet al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J Clin Endocrinol Metab 2008; 93: 4500–10.
97. SibugR M, DatsonN, TijssenA Met al. Effects of urinary and recombinant gonadotrophins on gene expression profiles during the murine peri-implantation period. Hum Reprod 2007; 22: 75–82.

References

1. RedmanC W, SargentI L. Latest advances in understanding preeclampsia. Science 2005; 308: 1592–4.
2. WHO. World Health Report: Make every mother and child count. Geneva: World Health Organization; 2005.
3. PageE W. The relation between hydatid moles, relative ischemia of the gravid uterus and the placental origin of eclampsia. Am J Obstet Gynecol 1939; 37: 291–3.
4. NorwitzE R, RepkeJ T. Preeclampsia prevention and management. J Soc Gynecol Investig 2000; 7: 21–36.
5. SibaiB, DekkerG, KupfermincM. Pre-eclampsia. Lancet 2005; 365: 785–99.
6. SibaiB. Diagnosis, prevention, and management of eclampsia. Obstet Gynecol 2005; 105: 402–10.
7. AldermanB W, SperlingR S, DalingJ R. An epidemiological study of the immunogenetic aetiology of pre-eclampsia. Br Med J (Clin Res Ed) 1986; 292: 372–4.
8. BhattacharyaS, CampbellD M, ListonW A, BhattacharyaS. Effect of body mass index on pregnancy outcomes in nulliparous women delivering singleton babies. BMC Public Health 2007; 7: 168.
9. RomanH, RobillardP Y, HulseyT C, et al. Obstetrical and neonatal outcomes in obese women. West Indian Med J 2007; 56: 421–6.
10. ChesleyL C, AnnittoJ E, CosgroveR A. The familial factor in toxemia of pregnancy. Obstet Gynecol 1968; 32: 303–11.
11. CarrD B, EppleinM, JohnsonC O, EasterlingT R, CritchlowC W. A sister’s risk: family history as a predictor of preeclampsia. Am J Obstet Gynecol 2005; 193: 965–72.
12. EsplinM S, FausettM B, FraserAet al. Paternal and maternal components of the predisposition to preeclampsia. N Engl J Med 2001; 344: 867–72.
13. RobillardP Y, HulseyT C, PerianinJet al. Association of pregnancy-induced hypertension with duration of sexual cohabitation before conception. Lancet 1994; 344: 973–5.
14. SkjaervenR, WilcoxA J, LieR T. The interval between pregnancies and the risk of preeclampsia. New Engl J Med 2002; 346: 33–8.
15. TrogstadL I, EskildA, MagnusP, SamuelsenS O, NesheimB I. Changing paternity and time since last pregnancy; the impact on pre-eclampsia risk. A study of 547 238 women with and without previous pre-eclampsia. Int J Epidemiol 2001; 30: 1317–22.
16. WangJ X, KnottnerusA M, SchuitGet al. Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet 2002; 359: 673–4.
17. DemirR, KaufmannP, CastellucciM, ErbengiT, KotowskiA. Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat (Basel) 1989; 136: 190–203.
18. SevalY, KorgunE T, DemirR. Hofbauer cells in early human placenta: possible implications in vasculogenesis and angiogenesis. Placenta 2007; 28: 841–5.
19. KhanS, KatabuchiH, ArakiM, NishimuraR, OkamuraH. Human villous macrophage-conditioned media enhance human trophoblast growth and differentiation in vitro. Biol Reprod 2000; 62: 1075–83.
20. ZhouY, FisherS J, JanatpourMet al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate: a strategy for successful endovascular invasion? J Clin Invest 1997; 99: 2139–51.
21. BrosensI A, RobertsonW B, DixonH G. The role of spiral arteries in the pathogenesis of pre-eclampsia. Obstet Gynecol Annu 1972; 1: 177–91.
22. GerretsenG, HuisjesH J, ElemaJ D. Morphological changes of the spiral arteries in the placental bed in relation to pre-eclampsia and fetal growth retardation. Br J Obstet Gynaecol 1981; 88: 876–81.
23. MeekinsJ W, PijnenborgR, HanssensM, McFadyenI R, van AssheA. A study of placental bed spiral arteries and trophoblast invasion in normal and severe pre-eclamptic pregnancies. Br J Obstet Gynaecol 1994; 101: 669–74.
24. ZhouY, DamskyC H, FisherS J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype: one cause of defective endovascular invasion in this syndrome? J Clin Invest 1997; 99: 2152–64.
25. BallE, RobsonS C, AyisS, LyallF, BulmerJ N. Early embryonic demise: no evidence of abnormal spiral artery transformation or trophoblast invasion. J Pathol 2006; 208: 528–34.
26. BallE, BulmerJ N, AyisS, LyallF, RobsonS C. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J Pathol 2006; 208: 535–42.
27. ManyA, HubelC A, FisherS J, RobertsJ M, ZhouY. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol 2000; 156: 321–31.
28. VaughanJ E, WalshS W. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens Preg 2002; 21: 205–23.
29. WalshS W. Maternal-placental interactions of oxidative stress and antioxidants in preeclampsia. Semin Reprod Endocrinol 1998; 16: 93–104.
30. RedmanC W, SacksG P, SargentI L. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999; 180: 499–506.
31. SacksG P, StudenaK, SargentK, RedmanC W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 1998; 179: 80–6.
32. AlaY, PalluyO, FaveroJet al. Hypoxia/reoxygenation stimulates endothelial cells to promote interleukin-1 and interleukin-6 production: effects of free radical scavengers. Agents Actions 1992; 37: 134–9.
33. KupfermincM J, PeacemanA M, AderkaD, WallachD, SocolM L. Soluble tumor necrosis factor receptors and interleukin-6 levels in patients with severe preeclampsia. Obstet Gynecol 1996; 88: 420–7.
34. KupfermincM J, PeacemanA M, WigtonT R, RehnbergK A, SocolM L. Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol 1994; 170: 1752–7; discussion 1757–9.
35. SharmaA, SatyamA, SharmaJ B. Leptin, IL-10 and inflammatory markers (TNF-alpha, IL-6 and IL-8) in pre-eclamptic, normotensive pregnant and healthy non-pregnant women. Am J Reprod Immunol 2007; 58: 21–30.
36. SoleymanlouN, JurisicaI, NevoOet al. Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab 2005; 90: 4299–308.
37. ZamudioS, WuY, IettaFet al. Human placental hypoxia-inducible factor-1alpha expression correlates with clinical outcomes in chronic hypoxia in vivo. Am J Pathol 2007; 170: 2171–9.
38. NevoO, SoleymanlouN, WuYet al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1085–93.
39. RajakumarA, BrandonH M, DaftaryA, NessR, ConradK P. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta 2004; 25: 763–9.
40. CaniggiaI, WinterJ L. Adriana and Luisa Castellucci Award lecture 2001. Hypoxia inducible factor-1: oxygen regulation of trophoblast differentiation in normal and pre-eclamptic pregnancies – a review. Placenta 2002; 23(Suppl A): S47–57.
41. NishiH, NakadaT, HokamuraMet al. Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology 2004; 145: 4113–8.
42. ShibuyaM, Claesson-WelshL. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312: 549–60.
43. CarmelietP, FerreiraV, BreierGet al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 1996; 380: 435–9.
44. FerraraN, Carver-MooreK, ChenHet al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 1996; 380: 439–42.
45. KandaM, NomotoS, NishikawaYet al. Correlations of the expression of vascular endothelial growth factor B and its isoforms in hepatocellular carcinoma with clinico-pathological parameters. J Surg Oncol 2008; 98: 190–6.
46. McCollB K, PaavonenK, KarnezisTet al. Proprotein convertases promote processing of VEGF-D, a critical step for binding the angiogenic receptor VEGFR-2. Faseb J 2007; 21: 1088–98.
47. LyttleD J, FraserK M, FlemingS B, MercerA A, RobinsonA J. Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 1994; 68: 84–92.
48. KibaA, SagaraH, HaraT, ShibuyaM. VEGFR-2-specific ligand VEGF-E induces non-edematous hyper-vascularization in mice. Biochem Biophys Res Comm 2003; 301: 371–7.
49. MaglioneD, GuerrieroV, VigliettoG, Delli-BoviP, PersicoM G. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci U S A 1991; 88: 9267–71.
50. AutieroM, WaltenbergerJ, CommuniDet al. Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 2003; 9: 936–43.
51. CarmelietP, MoonsL, LuttunAet al. Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 2001; 7: 575–83.
52. AhmedA, DunkC, AhmadS, KhaliqA. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen – a review. Placenta 2000; 21(Suppl A): S16–24.
53. VuorelaP, HatvaE, LymboussakiAet al. Expression of vascular endothelial growth factor and placenta growth factor in human placenta. Biol Reprod 1997; 56: 489–94.
54. HannaJ, Goldman-WohlD, HamaniYet al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006; 12: 1065–74.
55. TayadeC, HilchieD, HeHet al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol 2007; 178: 4267–75.
56. AlitaloK, CarmelietP. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002; 1: 219–27.
57. VeikkolaT, JussilaL, MakinenTet al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. Embo J 2001; 20: 1223–31.
58. BarleonB, SozzaniS, ZhouDet al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87: 3336–43.
59. ClaussM, WeichH, BreierGet al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities: implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996; 271: 17629–34.
60. SawanoA, IwaiS, SakuraiYet al. Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood 2001; 97: 785–91.
61. FongG, RassantJ, GertensteinM M B. Role of Flt-1 receptor tyrosine kinase in regulation of assembly of vascular endothelium. Nature 1995; 376: 66–7.
62. ShalabyF, RossantJ, YamaguchiT Pet al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 1995; 376: 62–6.
63. HelskeS, VuorelaP, CarpenOet al. Expression of vascular endothelial growth factor receptors 1, 2 and 3 in placentae from normal and complicated pregnancies. Mol Hum Reprod 2001; 7: 205–10.
64. VenkateshaS, ToporsianM, LamCet al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 2006; 12: 642–9.
65. BarbaraN P, WranaJ L, LetarteM. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem 1999; 274: 584–94.
66. CaniggiaI, Grisaru-GravnoskyS, KuliszewskyM, PostM, LyeS J. Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J Clin Invest 1999; 103: 1641–50.
67. JonesR L, StoikosC, FindlayJ K, SalamonsenL A. TGF-beta superfamily expression and actions in the endometrium and placenta. Reproduction 2006; 132: 217–32.
68. McAllisterK A, GroggK M, JohnsonD Wet al. Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 1994; 8: 345–51.
69. BourdeauA, DumontD J, LetarteM. A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest 1999; 104: 1343–51.
70. JerkicM, Rivas-ElenaJ V, PrietoMet al. Endoglin regulates nitric oxide-dependent vasodilatation. Faseb J 2004; 18: 609–11.
71. St-JacquesS, ForteM, LyeS J, LetarteM. Localization of endoglin, a transforming growth factor-beta binding protein, and of CD44 and integrins in placenta during the first trimester of pregnancy. Biol Reprod 1994; 51: 405–13.
72. MaynardS, EpsteinF H, KarumanchiS A.Preeclampsia and angiogenic imbalance. Ann Rev Med 2008; 59: 61–78.
73. ClarkD E, SmithS K, HeYet al. A vascular endothelial growth factor antagonist is produced by the human placenta and released into the maternal circulation. Biol Reprod 1998; 59: 1540–8.
74. EsserS, WolburgK, WolburgHet al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J Cell Biol 1998; 140: 947–59.
75. LevineR J, KarumanchiS A. Circulating angiogenic factors in preeclampsia. Clin Obst Gynecol 2005; 48: 372–86.
76. MaynardS E, MinJ Y, MerchanJet al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–58.
77. SugimotoH, HamanoY, CharytanDet al. Neutralization of circulating vascular endothelial growth factor (VEGF) by anti-VEGF antibodies and soluble VEGF receptor 1 (sFlt-1) induces proteinuria. J Biol Chem 2003; 278: 12605–8.
78. EreminaV, SoodM, HaighJet al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111: 707–716.
79. EreminaV, JeffersonJ A, KowalewskaJet al. VEGF inhibition and renal thrombotic microangiopathy. New Engl J Med 2008; 358: 1129–36.
80. ZhuX, WuS, DahutW L, ParikhC R. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am J Kidney Dis 2007; 49: 186–93.
81. PolliottiB M, FryA G, SallerD Net al. Second-trimester maternal serum placental growth factor and vascular endothelial growth factor for predicting severe, early-onset preeclampsia. Obstet Gynecol 2003; 101: 1266–74.
82. ThomasC P, AndrewsJ I, LiuK Z. Intronic polyadenylation signal sequences and alternate splicing generate human soluble Flt1 variants and regulate the abundance of soluble Flt1 in the placenta. Faseb J 2007; 21: 3885–95.
83. SelaS, ItinA, Natanson-YaronSet al. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ Res 2008; 102: 1566–74.
84. MaharajA S, WalsheT E, Saint-GeniezMet al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med 2008; 205: 491–501.
85. ShoreV H, WangT H, WangC Let al. Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta 1997; 18: 657–65.
86. NagamatsuT, FujiiT, KusumiMet al. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology 2004; 145: 4838–45.
87. GuY, LewisD F, WangY. Placental productions and expressions of soluble endoglin, soluble fms-like tyrosine kinase receptor-1, and placental growth factor in normal and preeclamptic pregnancies. J Clin Endocrinol Metab 2008; 93: 260–6.
88. MakrisA, ThorntonC, ThompsonJet al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int 2007; 71: 977–84.
89. GilbertJ S, BabcockS A, GrangerJ P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension 2007; 50: 1142–7.
90. ParikhS M, KarumanchiS A. Putting pressure on pre-eclampsia. Nat Med 2008; 14: 810–12.
91. YinonY, NevoO, XuJet al. Severe intrauterine growth restriction pregnancies have increased placental endoglin levels: hypoxic regulation via transforming growth factor-beta 3. Am J Pathol 2008; 172: 77–85.
92. JeyabalanA, McGonigalS, GilmourC, HubelC A, RajakumarA. Circulating and placental endoglin concentrations in pregnancies complicated by intrauterine growth restriction and preeclampsia. Placenta 2008; 29: 555–63.
93. NevoO, ManyA, XuJet al. Placental expression of soluble fms-like tyrosine kinase 1 is increased in singletons and twin pregnancies with intrauterine growth restriction. J Clin Endocrinol Metab 2008; 93: 285–92.
94. RajakumarA, JeyabalanA, MarkovicNet al. Placental HIF-1 alpha, HIF-2 alpha, membrane and soluble VEGF receptor-1 proteins are not increased in normotensive pregnancies complicated by late-onset intrauterine growth restriction. Am J Physiol Regul Integr Comp Physiol 2007; 293: R766–74.
95. LevineR J, MaynardS E, QianCet al. Circulating angiogenic factors and the risk of preeclampsia. New Engl J Med 2004; 350: 672–83.
96. KogaK, OsugaY, YoshinoOet al. Elevated serum soluble vascular endothelial growth factor receptor 1 (sVEGFR-1) levels in women with preeclampsia. J Clin Endocrinol Metab 2003; 88: 2348–51.
97. RanaS, KarumanchiS A, LevineR Jet al. Sequential changes in antiangiogenic factors in early pregnancy and risk of developing preeclampsia. Hypertension 2007; 50: 137–42.
98. VattenL J, EskildA, NilsenT Iet al. Changes in circulating level of angiogenic factors from the first to second trimester as predictors of preeclampsia. Am J Obstet Gynecol 2007; 196:239. e231–236.
99. StepanH, UnversuchtA, WesselN, FaberR. Predictive value of maternal angiogenic factors in second trimester pregnancies with abnormal uterine perfusion. Hypertension 2007; 49: 818–24.
100. RomeroR, NienJ K, EspinozaJet al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med 2008; 21: 9–23.
101. Moore SimasT A, CrawfordS L, SolitroM Jet al. Angiogenic factors for the prediction of preeclampsia in high-risk women. Am J Obstet Gynecol 2007; 197: e241–8.
102. StepanH, GeipelA, SchwarzFet al. Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol 2008; 198: e171–6.
103. WikstromA K, LarssonA, ErikssonU Jet al. Placental growth factor and soluble FMS-like tyrosine kinase-1 in early-onset and late-onset preeclampsia. Obstet Gynecol 2007; 109: 1368–74.
104. LevineR J, ThadhaniR, QianCet al. Urinary placental growth factor and risk of preeclampsia. Jama 2005; 293: 77–85.
105. PurwosunuY, SekizawaA, FarinaAet al. Evaluation of physiological alterations of the placenta through analysis of cell-free messenger ribonucleic acid concentrations of angiogenic factors. Am J Obstet Gynecol 2008; 198: e121–7.
106. SmithG C, PellJ P, WalshD. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129 290 births. Lancet 2001; 357: 2002–6.
107. WilsonB J, WatsonM S, PrescottG Jet al. Hypertensive diseases of pregnancy and risk of hypertension and stroke in later life: results from cohort study. BMJ 2003; 326: 845.
108. VikseB E, IrgensL M, BostadL, IversenB M. Adverse perinatal outcome and later kidney biopsy in the mother. J Am Soc Nephrol 2006; 17: 837–45.
109. VikseB E, IrgensL M, LeivestadT, SkjaervenR, IversenB M. Preeclampsia and the risk of end-stage renal disease. New Engl J Med 2008; 359: 800–9.
110. BarJ, KaplanB, WittenbergCet al. Microalbuminuria after pregnancy complicated by pre-eclampsia. Nephrol Dial Transplant 1999; 14: 1129–32.
111. PoutaA, HartikainenA L, SovioUet al. Manifestations of metabolic syndrome after hypertensive pregnancy. Hypertension 2004; 43: 825–31.
112. ForestJ C, GirouardJ, MasseJet al. Early occurrence of metabolic syndrome after hypertension in pregnancy. Obstet Gynecol 2005; 105: 1373–80.
113. WolfM, HubelC A, LamCet al. Preeclampsia and future cardiovascular disease: potential role of altered angiogenesis and insulin resistance. J Clin Endocrinol Metab 2004; 89: 6239–43.
114. BarkerD J, GluckmanP D, GodfreyK Met al. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993; 341: 938–41.
115. HalesC N, BarkerD J, ClarkP Met al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 1991; 303: 1019–22.
116. KlebanoffM A, SecherN J, MednickB R, SchulsingerC. Maternal size at birth and the development of hypertension during pregnancy: a test of the Barker hypothesis. Arch Intern Med 1999; 159: 1607–12.
117. LiZ, ZhangY, Ying MaJet al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension 2007; 50: 686–92.
118. KarumanchiS A, EpsteinF H. Placental ischemia and soluble fms-like tyrosine kinase 1: cause or consequence of preeclampsia? Kidney Int 2007; 71: 959–61.
119. ChaiworapongsaT, RomeroR, KimY Met al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J Matern Fetal Neonatal Med 2005; 17: 3–18.