Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Print publication year: 2010
  • Online publication date: July 2010

Section 6: - Genetics

References

1. GräfenbergE. Beiträge zur Physiologie der Eieinbettung. Z Geburtsh Gynäk 1910; 65: 1–35.
2. GrosserO. Frühentwicklung Eihautbildung und Placentation des Menschen und der Säugetiere. München: JF Bergmann; 1927.
3. SmithW T. The decidua, chorion, placenta, and umbilical cord. Lancet 1856; 1: 171–5.
4. HunterJ. Observations on certain parts of the animal oeconomy. London; 1786.
5. MadgeH M. On the anatomical relations between the mother and fœtus. Trans Obstet Soc London 1867; 8: 348–60.
6. HicksJ B. The anatomy of the human placenta. Trans Obstet Soc London 1873; 14: 149–207.
7. ReidJ. On the anatomical relations of the blood-vessels of the mother to those of the fœtus in the human species. Edinburgh Med Surg J 1841; 55: 1–12.
8. MarchandF. Ueber die sogenannten “decidualen” Geschwülste im Anschluss an normale Geburt, Abort, Blasenmole und Extrauterinschwangerschaft. Monatsschr Gerburtsh Gynäk 1895; 1: 419–438, 513–561.
9. MarchandF. Ueber das maligne Chorion-Epitheliom, nebst Mittheilung von 2 neuen Fällen. Z Geburtsh Gynäk 1898; 49: 173–258.
10. PetersH. Ueber die Einbettung des menschlichen Eies und das früheste bisher bekannte menschliche Placentationsstadium. Leipzig: F Deutike; 1899.
11. TeacherJ H. On chorionepithelioma and the occurrence of chorionepitheliomatous and hydatidiform mole-like structures in teratomata. J Obstet Gynæcol Brit Emp 1903; 4: 1–64, 145–199.
12. FothergillW E. The function of the decidual cell. Edinburgh Med J 1899; 5: 265–73.
13. FrassiL. Ueber ein junges menschliches Ei in situ. Arch mikroskop Anat Entwicklungsg 1907; 70: 492–505.
14. PolanoO. Ueber Verschwinden einer Schwangerschaft. Ein Beitrag zur Lehre von der Blasenmole. Z Geburtsh Gynäk 1907; 59: 453–66.
15. BryceT H, TeacherJ H, KerrJ M M. Contributions to the study of the early development and imbedding of the human ovum. II. An early ovarian pregnancy. Glasgow: J MacLehose; 1908.
16. Ulezko-StroganovaK. Zur Frage von dem feinsten Bau des Deciduagewebes, seiner Histogenese, Bedeutung und dem Orte seiner Entwickelung im Genitalapparat der Frau. Arch Gynaek 1908; 86: 542–63.
17. GrosserO. The development of the egg membranes and the placenta; menstruation. In: KeibelF, MallF P, eds. Manual of human embryology, Volume 1. Philadelphia: JB Lippincott; 1910; pp. 91–179.
18. LinzenmeierG. Ein junges menschliches Ei in situ. Arch Gynäk 1914; 102: 1–17.
19. JohnstoneR W. Contribution to the study of the early human ovum. J Obstet Gynaecol Brit Emp 1914; 25: 231–76.
20. CaffierP. Die proteolytische Fähigkeit von Ei und Eibett. (Experimentelle Studien mit Chorion und Decidua). Zentralb Gynäk 1929; 53: 2410–25.
21. CaffierP. Zur Biologie von Ei und Eibett. Klin Wochenschr 1932; 11: 1089–92.
22. KleineH O. Zur Systematik der Pathologie der sog. Durchdringungszone. Arch Gynäk 1931; 145: 459–73.
23. AreyL B. Placentation, fetal membranes and deciduae. In: CurtisA H, ed. Obstetrics and gynecology. Philadelphia: WB Saunders; 1933: pp. 442–76.
24. MossmanH W. Comparative morphogenesis of the fetal membranes and accessory uterine structures. Contrib Embryol 1937; 26: 129–246.
25. BonnetM. Ueber Syncytien, Plasmodien und Symplasma in der Placenta der Säugetiere und des Menschen. Monatsschr Gerburtsh Gynäk 1903; 18: 1–51.
26. RitterF. Ueber Deciduazellen und ihre Bedeutung. Beitr Geburtsh Gynäk 1910; 15: 226–41.
27. McLarenA. Maternal factors in nidation. In: ParkW W, ed. The early conceptus, normal and abnormal. St. Andrews: University of St. Andrews; 1965: pp. 27–33.
28. RobertsonW B, WarnerB. The ultrastructure of the human placental bed. J Pathol 1974; 112: 203–11.
29. TriversR L.Parental investment and sexual selection. In: CampbellB, ed. Sexual selection and the descent of man, 1871–1971. Chicago: Aldine Publishing; 1972: pp. 136–79.
30. TriversR L. Parent-offspring conflict. Amer Zool 1974; 14: 249–64.
31. HaigD. Genetic conflicts in human pregnancy. Q Rev Biol 1993; 68: 495–532.
32. HaigD. Gestational drive and the green-bearded placenta. Proc Natl Acad Sci USA 1996; 93: 6547–51.
33. HaigD. Placental hormones, genomic imprinting, and maternal-fetal communication. J Evol Biol 1996; 9: 357–80.
34. HaigD. Altercation of generations: genetic conflicts of pregnancy. Amer J Reprod Immunol 1996; 35: 226–32.
35. HaigD. Genetic conflicts of pregnancy and childhood. In: StearnsS C, ed. Evolution in health and disease. Oxford: Oxford University Press; 1999: pp. 77–90.
36. HaigD. Evolutionary conflicts in pregnancy and calcium metabolism: a review. Placenta 2004; 25(Suppl A): S10-S15.
37. HaigD. Putting up resistance: maternal-fetal conflict over the control of uteroplacental blood flow. In: AirdW C, ed. Endothelial biomedicine. Cambridge: Cambridge University Press; 2007: pp. 135–41.
38. WilcoxA J, WeinbergC R, O’ConnorJ Fet al. Incidence of early loss of pregnancy. New Engl J Med 1988; 319: 189–94.
39. SmallM F. Reproductive failure in macaques. Amer J Primatol 1982; 2: 137–47.
40. KuehlT J, KangI S, Siler-KhodrT M. Pregnancy and early reproductive failure in the baboon. Amer J Primatol 1992; 28: 41–8.
41. HobsonW C, GrahamC E, RowellT J. National Chimpanzee Breeding Program: Primate Research Institute. Amer J Primatol 1991; 24: 257–63.
42. KozlowskiJ, StearnsS C. Hypotheses for the production of excess zygotes: models of bet-hedging and selective abortion. Evolution 1989; 43: 1369–77.
43. HaigD. Brood reduction and optimal parental investment when offspring differ in quality. Amer Nat 1990; 136: 550–6.
44. HamiltonW D. The moulding of senescence by natural selection. J Theor Biol 1966; 12: 12–45.
45. HastingsI M. Models of human genetic disease: how biased are the standard formulae?Genet Res 2000; 75: 107–114.
46. RidleyM. Mendel’s demon. London: Weidenfeld & Nicolson; 2000.
47. LichtP, FluhrH, NeuwingerJet al. Is human chorionic gonadotropin directly involved in the regulation of human implantation? Mol Cell Endocrinol 2007; 269: 85–92.
48. HenkeA, GromollJ. New insights into the evolution of chorionic gonadotropin. Mol Cell Endocrinol 2008; 291: 11–19.
49. WislockiG B. On the placentation of primates, with a consideration of the phylogeny of the placenta. Contrib Embryol 1929; 20: 51–80.
50. MossmanH W. Vertebrate fetal membranes. New Brunswick: Rutgers University Press; 1987.
51. StrassmannB I. The evolution of endometrial cycles and menstruation. Q Rev Biol 1996; 71: 181–220.
52. HrdyS B. Mother nature. New York: Pantheon; 1999.

References

1. WardK, ArgyleV, MeadeM, NelsonL. The heritability of preterm delivery. Obstet Gynecol 2005; 106: 1235–9.
2. ChappellS, MorganL. Searching for genetic clues to the causes of pre-eclampsia. Clin Sci 2006; 110: 443–58.
3. ClaussonB, LichtensteinP, CnattingiusS. Genetic influence on birthweight and gestational length determined by studies in offspring of twins. Br J Obstet Gynaecol 2000; 107: 375–81.
4. LieR T, RasmussenS, BrunborgHet al. Fetal and maternal contributions to risk of pre-eclampsia: population based study. Brit Med J 1998; 316: 1343–7.
5. ChesleyL C, AnnittoJ E, CosgroveR A. The familial factor in toxemia of pregnancy. Obstet Gynecol 1968; 32: 303–11.
6. CincottaR B, BrenneckeS P. Family history of pre-eclampsia as a predictor for pre-eclampsia in primigravidas. Int J Gynaecol Obstet 1998; 60: 23–7.
7. ThorntonJ G, MacdonaldA M. Twin mothers, pregnancy hypertension and pre-eclampsia. Br J Obstet Gynaecol 1999; 106: 570–5.
8. SalonenRos H, LichtensteinP, LipworthL, CnattingiusS. Genetic effects on the liability of developing pre-eclampsia and gestational hypertension. Am J Med Genet 2000; 91: 256–60.
9. CnattingiusS, ReillyM, PawitanY, LichtensteinP. Maternal and fetal genetic factors account for most of familial aggregation of preeclampsia: a population-based Swedish cohort study. Am J Med Genet 2004; A130: 365–71.
10. LachmeijerA M A, DekkerG A, PalsGet al. Searching for preeclampsia genes: the current position. Eur J Obstet Gyn R B 2002; 105: 94–113.
11. WilsonM L, GoodwinT M, PanV L, InglesS A. Molecular epidemiology of preeclampsia. Obstet Gynecol Surv 2003; 58: 39–66.
12. LinJ, AugustP. Genetic thrombophilias and preeclampsia: a meta-analysis. Obstet Gynecol 2005; 105: 182–92.
13. DuddingT E, AttiaJ. The association between adverse pregnancy outcomes and maternal factor V Leiden genotype: a meta-analysis. Thromb Haemost 2004; 91: 700–11.
14. KosmasI P, TatsioniA, IoannidisJ P A. Association of Leiden mutation in Factor V gene with hypertension in pregnancy and pre-eclampsia: a meta-analysis. J Hypertens 2003; 21: 1221–8.
15. DuddingT, HeronJ, ThakkinstianAet al. Factor V Leiden is associated with pre-eclampsia but not with fetal growth restriction: a genetic association study and meta-analysis. J Thromb Haemost 2008; 6: 1868–75.
16. CudworthA G, WoodrowJ C. Evidence for HL-A-linked genes in “juvenile” diabetes mellitus. Br Med J 1975; 3(5976): 133–5.
17. YuC-E, PayamiH, OlsonJ Met al. The apolipoprotein E/CI/CII gene cluster and late-onset Alzheimer disease. Am J Hum Genet 1994; 54: 631–42.
18. ArngrimssonR, SigurardottirS, FriggeM Let al. A genome-wide scan reveals a maternal susceptibility locus for pre-eclampsia on chromosome 2p13. Hum Mol Genet 1999; 8: 1799–805.
19. MosesE K, LadeJ A, GuoGet al. A genome scan in families from Australia and New Zealand confirms the presence of a maternal susceptibility locus for pre-eclampsia, on chromosome 2. Am J Hum Genet 2000; 67: 1581–5.
20. LachmeijerA M A, ArngrimssonR, BastiaansE Jet al. A genome-wide scan for preeclampsia in the Netherlands. Eur J Hum Genet 2001; 9: 758–64.
21. LaivuoriH, LahermoP, OllikainenVet al. Susceptibility loci for preeclampsia on chromosomes 2p25 and 9p13 in Finnish families. Am J Hum Gene 2003; 72: 168–77.
22. MaleckiM T. Genetics of type 2 diabetes mellitus. Diabetes Res Clin Pract 2005; 68(Suppl 1): S10–21.
23. BirdT D. Genetic aspects of Alzheimer disease. Genet Med 2008; 10: 231–9.
24. MosesE K, FitzpatrickE, FreedK Aet al. Objective prioritization of positional candidate genes at a quantitative trait locus for pre-eclampsia on 2q22. Mol Hum Reprod 2006; 12: 505–12.
25. RotenL T, JohnsonM, ForsmoSet al. Association between the candidate susceptibility gene ACVR2A on chromosome 2q22 and pre-eclampsia in a large Norwegian population-based study (the HUNT study). Eur J Hum Genet 2009; 17(2): 250–7.
26. OudejansC B, MuldersJ, LachmeijerA Met al. The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod 2004; 10: 589–98.
27. GravesJ A M. Genomic imprinting, development and disease – is pre-eclampsia caused by a maternally imprinted gene? Reprod Fert Develop 1998; 10: 23–9.
28. van DijkM, MuldersJ, PoutsmaAet al. Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 2005; 37: 514–9.
29. Iglesias-PlatasI, MonkD, JebbinkJet al. STOX1 is not imprinted and is not likely to be involved in pre-eclampsia. Nat Genet 2007; 39: 279–80.
30. The Wellcome Trust Case Control Consortium. Genome-wide association study of seven common diseases and 3000 shared controls. Nature 2007; 447: 661–78.
31. ZegginiE, WeedonM N, LindgrenC Met al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316: 1336–41.
32. RischN, MerikangasK. The future of genetic studies of complex human diseases. Science 1996; 273: 1516–7.
34. The International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437: 1299–319.
35. The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449: 851–62.
37. ZegginiE, ScottL J, SaxenaR, VoightB F. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 2008; 40: 638–45.
38. SpielmanR S, McGinnisR E, EwensW J.Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993; 52: 506–16.
39. The GOPEC Consortium. Disentangling fetal and maternal susceptibility for pre-eclampsia: a British multicenter candidate-gene study. Am J Hum Genet 2005; 77: 127–31.
40. MagnusP, IrgensL, HaugKet al. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol 2006; 35: 1146–50.
41. HibyS, WalkerJ, O’ShaughnessyKet al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 2004; 200: 957–65.
42. MaynardS E, MinJ Y, MerchanJet al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 2003; 111: 649–58.
43. BoydP A, LindenbaumR H, RedmanC. Pre-eclampsia and trisomy 13: a possible association. Lancet 1987; 2(8556): 425–7.
44. BdolahY, PalomakiG E, YaronYet al. Circulating angiogenic proteins in trisomy 13. Am J Obstet Gynecol 2006; 194: 239–45.
45. LyssenkoV, JonssonA, AlmgrenPet al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med 2008; 359: 2220–32.

References

1. BartonS C, SuraniM A, NorrisM L. Role of paternal and maternal genomes in mouse development. Nature 1984; 311: 374–6.
2. McGrathJ, SolterD. Completion of mouse embryogenesis requires both maternal and paternal genomes. Cell 1984; 37: 179–83.
3. CattanachB M, KirkM. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985; 315: 496–8.
4. MooreT, HaigD. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet 1991; 7(2): 45–9.
5. Abu-AmeroS, MonkD, FrostJet al. The genetic aetiology of Silver-Russell syndrome. J Med Genet 2008; 45(4): 193–9.
6. WeksbergR, ShumanC, SmithA C. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet 2005; 137C(1): 12–23.
7. IderaabdullahF Y, VigneauS, BartolomeiM S. Genomic imprinting mechanisms in mammals. Mutat Res 2008; 647(1–2): 77–85.
8. DeChiaraT M, RobertsonE J, Efstratiadis A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 1991; 64: 849–59.
9. MonkD, SanchesR, ArnaudPet al. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet 2006; 15(8): 1259–69.
10. ArimaT, MatsudaT, TakagiNet al. Association of IGF2 and H19 imprinting with choriocarcinoma development. Cancer Genet Cytogenet 1997; 93(1): 39–47.
11. BrunkowM E, TilghmanS M. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev 1991; 5(6): 1092–101.
12. AdriaenssensE, LottinS, DugimontTet al. Steroid hormones modulate H19 gene expression in both mammary gland and uterus. Oncogene 1999; 18(31): 4460–73.
13. JinnoY, IkedaY, YunKet al. Establishment of functional imprinting of the H19 gene in human developing placentae. Nat Genet 1995; 10(3): 318–24.
14. GuoL, ChoufaniS, FerreiraJet al. Altered gene expression and methylation of the human chromosome 11 imprinted region in small for gestational age (SGA) placentae. Dev Biol 2008; 320(1): 79–91.
15. GaoZ H, SuppolaS, LiuJet al. Association of H19 promoter methylation with the expression of H19 and IGF-II genes in adrenocortical tumors. J Clin Endocrinol Metab 2002; 87(3): 1170–6.
16. LeightonP A, IngramR S, EggenschwilerJet al. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 1995; 375(6526): 34–9.
17. ConstânciaM, HembergerM, HughesJet al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002; 417(6892): 945–8.
18. CoanP M, FowdenA L, ConstanciaMet al. Disproportional effects of Igf2 knockout on placental morphology and diffusional exchange characteristics in the mouse. J Physiol 2008; 586(Pt 20): 5023–32.
19. McMinnJ, WeiM, SchupfNet al. Unbalanced placental expression of imprinted genes in human intrauterine growth restriction. Placenta 2006; 27(6–7): 540–9.
20. Abu-AmeroS, WakelingE L, PreeceMet al. Commentary: epigenetic signatures of Silver-Russell syndrome. J Med Genet, in press.
21. ApostolidouS, Abu-AmeroS, O’DonoghueKet al. Elevated maternal expression of the imprinted PHLDA2 gene is associated with low birth weight. J Mol Med 2007; 85(4): 379–87.
22. GicquelC, RossignolS, CabrolSet al. Epimutations of the telomeric imprinting control region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet 2005; 37(9): 1003–7.
23. YamazawaK, KagamiM, NagaiT. Molecular and clinical findings and their correlations in Silver-Russell syndrome: implications for a positive role of IGF2 in growth determination and differential imprinting regulation of the IGF2-H19 domain in bodies and placentas. J Mol Med 2008; 86(10): 1171–81.
24. DuM, ZhouW, BeattyL Get al. The KCNQ1OT1 promoter, a key regulator of genomic imprinting in human chromosome 11p15.5. Genomics 2004; 84(2): 288–300.
25. MonkD, ArnaudP, ApostolidouSet al. Limited evolutionary conservation of imprinting in the human placenta. PNAS USA 2006; 103(17): 6623–8.
26. KnoxK S, BakerJ C. Genome-wide expression profiling of placentas in the p57/Kip2 model of preeclampsia. Mol Hum Reprod 2007; 13(4): 251–63.
27. LeeM P, FeinbergA P. Genomic imprinting of a human apoptosis gene homologue, TSSC3. Cancer Res 1998; 58(5): 1052–6.
28. McMinnJ, WeiM, SadovskyYet al. Imprinting of PEG1/MEST isoform 2 in human placenta. Placenta 2006; 27(2–3): 119–26.
29. FrankD, MendelsohnC L, CicconeEet al. A novel pleckstrin homology-related gene family defined by Ipl/Tssc3, TDAG51, and Tih1: tissue-specific expression, chromosomal location, and parental imprinting. Mamm Genome 1999; 10(12): 1150–9.
30. ClearyM A, van RaamsdonkC D, LevorseJet al. Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice. Nat Genet 2001; 29(1): 78–82.
31. FrankD, FortinoW, ClarkLet al. Placental overgrowth in mice lacking the imprinted gene Ipl. PNAS USA 2002; 99(11): 7490–5.
32. SalasM, JohnR, SaxenaAet al. Placental growth retardation due to loss of imprinting of Phlda2. Mech Dev 2004; 121(10): 1199–210.
33. KimH S, RohC R, ChenBet al. Hypoxia regulates the expression of PHLDA2 in primary term human trophoblasts. Placenta 2007; 28(2–3): 77–84.
34. CassidyS B, LaiL-W, EricksonR Pet al. Trisomy 15 with loss of the paternal 15 as a cause of Prader-Willi syndrome due to maternal disomy. Am J Hum Genet 1992; 51: 701–8.
35. Purvis-SmithS G, SavilleT, ManassSet al. Uniparental disomy 15 resulting from ‘correction’ of an initial trisomy 15 (Letter). Am J Hum Genet 1992; 50: 1348–50.
36. KobayashiS, KohdaT, MiyoshiNet al. Human PEG1/MEST, an imprinted gene on chromosome 7. Hum Molec Genet 1997; 6(5): 781–6.
37. KosakiK, KosakiR, CraigenW Jet al. Isoform-specific imprinting of the human PEG1/MEST gene. Am J Hum Genet 2000; 66(1): 309–12.
38. NakabayashiK, BentleyL, HitchinsM Pet al. Identification and characterization of an imprinted antisense RNA (MESTIT1) in the human MEST locus on chromosome 7q32. Hum Molec Genet 2002; 11: 1743–56.
39. Kaneko-IshinoT, KuroiwaY, MiyoshiNet al. Peg1/Mest imprinted gene on chromosome 6 identified by cDNA subtraction hybridization. Nat Genet 1995; 11: 52–9.
40. LefebvreL, VivilleS, BartonS Cet al. Genomic structure and parent-of-origin-specific methylation of Peg1. Hum Molec Genet 1997; 6: 1907–15.
41. LefebvreL, VivilleS, BartonS Cet al. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted geneMest. Nat Genet 1998; 20: 163–9.
42. KeverneE B. Genomic imprinting and the maternal brain. Prog Brain Res 2001; 133: 279–85.
43. BlagitkoN, MergenthalerS, SchulzUet al. Human GRB10 is imprinted and expressed from the paternal and maternal allele in a highly tissue- and isoform-specific fashion. Hum Molec Genet 2000; 9: 1587–95.
44. ArnaudP, MonkD, HitchinsMet al. Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum Mol Genet 2003; 12(9): 1005–19.
45. HikichiT, KohdaT, Kaneko-IshinoTet al. Imprinting regulation of the murine Meg1/Grb10 and human GRB10 genes; roles of brain-specific promoters and mouse-specific CTCF-binding sites. Nucleic Acids Res 2003; 31: 1398–406.
46. HitchinsM P, MonkD, BellG Met al. Maternal repression of the human GRB10 gene in the developing central nervous system; evaluation of the role for GRB10 in Silver-Russell syndrome. Eur J Hum Genet 2001; 9: 82–90.
47. MonkD, ArnaudP, FrostJet al. Reciprocal imprinting of human GRB10 in placental trophoblast and brain: evolutionary conservation of reversed allelic expression. Hum Mol Genet 2009; 18: 3066–74.
48. MergenthalerS, HitchinsM P, Blagitko-DorfsNet al. Conflicting reports of imprinting status of human GRB10 in developing brain: how reliable are somatic cell hybrids for predicting allelic origin of expression? Am J Hum Genet 2001; 68(2): 543–5.
49. MonkD, WakelingE L, ProudVet al. Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. Am J Hum Genet 2000; 66(1): 36–46.
50. MonkD, SmithR, ArnaudPet al. Imprinted methylation profiles for proximal mouse chromosomes 11 and 7 as revealed by methylation-sensitive representational difference analysis. Mamm Genome 2003; 14(12): 805–16.
51. CharalambousM, SmithF M, BennettW Ret al. Disruption of the imprinted Grb10 gene leads to disproportionate overgrowth by an Igf2-independent mechanism. PNAS USA 2003; 100(14): 8292–7.
52. CoanP M, AngioliniE, SandoviciIet al. Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J Physiol 2008; 586(Pt 18): 4567–76.
53. HoglundP, HolmbergC, de la ChapelleAet al. Paternal isodisomy for chromosome 7 is compatible with normal growth and development in a patient with congenital chloride diarrhea. Am J Hum Genet 1994; 55: 747–52.
54. PanY, McCaskillC D, HarrisomG Met al. Paternal uniparental disomy of chromosome 7 associated with complete situs inversus and immotile cilia. Am J Hum Genet 1998; 62(6): 1551–5.
55. TempleI K, ShieldJ P. Transient neonatal diabetes, a disorder of imprinting. J Med Genet 2002; 39(12): 872–5.
56. TempleI K, JamesR S, CrollaJ Aet al. An imprinted gene(s) for diabetes? Nat Genet 1995; 9(2): 110–2.
57. TempleI K, GardnerR J, RobinsonD Oet al. Further evidence for an imprinted gene for neonatal diabetes localized to chromosome 6q22-q23. Hum Mol Genet 1996; 5(8): 1117–21.
58. KamiyaM, JudsonH, OkazakiYet al. The cell cycle control gene ZAC/PLAGL1 is imprinted: a strong candidate gene for transient neonatal diabetes. Hum Molec Genet 2000; 9: 453–60.
59. SmithR J, ArnaudP, KonfortovaGet al. The mouse Zac1 locus: basis for imprinting and comparison with human ZAC. Gene 2002; 292(1–2): 101–12.
60. VarraultA, GueydanC, DelalbreAet al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 2006; 11(5): 711–22.
61. MaD, ShieldJ P, DeanWet al. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest 2004; 114(3): 339–48.
62. ArimaT, KamikiharaT, HayashidaTet al. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith-Wiedemann syndrome. Nucleic Acids Res 2005; 33(8): 2650–60.
63. HirasawaR, FeilR. A KRAB domain zinc finger protein in imprinting and disease. Dev Cell 2008; 15(4): 487–8.
64. MackayD J, CallawayJ L, MarksS Met al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations inZFP57. Nat Genet 2008; 40(8): 949–51.
65. LiX, ItoM, ZhouFet al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints. Dev Cell 2008; 15(4): 547–57.
66. SuttonV R, ShafferL G. Search for imprinted regions on chromosome 14: comparison of maternal and paternal UPD cases with cases of chromosome 14 deletion. Am J Med Genet 2000; 93(5): 381–7.
67. KotzotD. Maternal uniparental disomy 14 dissection of the phenotype with respect to rare autosomal recessively inherited traits, trisomy mosaicism, and genomic imprinting. Ann Genet 2004; 47(3): 251–60.
68. RuggeriA, DulcettiF, MiozzoMet al. Prenatal search for UPD 14 and UPD 15 in 83 cases of familial and de novo heterologous Robertsonian translocations. Prenat Diagn 2004; 24(12): 997–1000.
69. CotterP D, KaffeS, McCurdyL Det al. Paternal uniparental disomy for chromosome 14: a case report and review. Am J Med Genet 1997; 70(1): 74–9.
70. KurosawaK, SasakiH, SatoYet al. Paternal UPD14 is responsible for a distinctive malformation complex. Am J Med Genet 2002; 110(3): 268–72.
71. OgataT, KagamiM, Ferguson-SmithA C. Molecular mechanisms regulating phenotypic outcome in paternal and maternal uniparental disomy for chromosome 14. Epigenetics 2008; 3(4): 181–7.
72. GeorgiadesP, WatkinsM, SuraniM Aet al. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development 2000; 127(21): 4719–28.
73. SekitaY, WagatsumaH, NakamuraKet al. Role of retrotransposon-derived imprinted gene, Rtl1, in the feto-maternal interface of mouse placenta. Nat Genet 2008; 40(2): 243–8.
74. SuttonV R, McAlisterW H, BertinT Ket al. Skeletal defects in paternal uniparental disomy for chromosome 14 are re-capitulated in the mouse model (paternal uniparental disomy 12). Hum Genet 2003; 113(5): 447–51.
75. SchmidtJ V, MattesonP G, JonesB Ket al. The Dlk1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev 2000; 14(16): 1997–2002.
76. LuiJ C, FinkielstainG P, BarnesK Met al. An imprinted gene network that controls mammalian somatic growth is down-regulated during postnatal growth deceleration in multiple organs. Am J Physiol Regul Integr Comp Physiol 2008; 295(1): R189–96.