Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T22:00:02.608Z Has data issue: false hasContentIssue false

7 - Polarized Target Materials

Published online by Cambridge University Press:  03 February 2020

Get access

Summary

We discuss here the choice of solid compounds and materials which best suit various types of applications, focusing mainly on the polarized targets. These materials include hydrogen-rich glassy hydrocarbons and simple cubic crystalline ammonia and lithium hydrides. The glassy hydrocarbons can doped by dissolved stable free radicals, while crystalline materials are doped by radiolytic paramagnetic radicals. The leading application of DNP up till now has been the scattering experiments in high-energy and nuclear physics. Other applications include measurements of slow neutron cross-sections, molecular physics using slow neutrons, nuclear magnetism and other solid-state physics experiments, and spin filters. The use of polarized solids in fusion and in magnetic resonance imaging has also been discussed. The material choice evidently depends strongly not only on the application but also on the goal of the experiment or process which is considered. More recently DNP has been used for the signal enhancement in NMR studies of complex chemical and biochemical molecules. In this context DNP and other enhancement techniques are called by the term “hyperpolarization”.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Tsai, Y.-S., Pair production and bremsstrahlung of charged leptons, Rev. Mod. Phys. 46 (1974) 815851.Google Scholar
Particle Data Group, Tanabashi, M., Hagiwara, K., et al., Review of particle physics, Phys. Rev. D 98 (2018).CrossRefGoogle Scholar
Krumpolc, M., Ammonium Borohydride – A novel, hydrogen-rich material for polarized targets, in: Bunce, G.M. (ed.) High Energy Spin Physics – 1982, American Institute of Physics, New York, 1983, 502504.Google Scholar
Hill, D., Hill, J., Krumpolc, M., Polarization in chemically doped hydrogen-rich glasses, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, 8493.Google Scholar
Kulsrud, R. M., Furth, H. P., Valeo, E. J., Goldhaber, M., Fusion reactor plasmas with polarized nuclei, Phys. Rev. Letters 49 (1983) 12481251.Google Scholar
van der Grinten, M. G. D., Glättli, H., Fermon, C., Eisenkremer, M., Pinot, M., Dynamic proton polarization on polymers in solution: creating contrast in neutron scattering, Nucl. Instr. and Meth. in Phys. Res. A356 (1995) 422431.CrossRefGoogle Scholar
Borghini, M., Mango, S., Runolfsson, O., Vermeulen, J., Sizeable proton polarizations in frozen alcohol mixtures, Polarized Targets and Ion Sources, La Direction de la Physique, CEN Saclay, Saclay, France, 1966, 387391.Google Scholar
Mango, S., Runolfsson, Ö., Borghini, M., A butanol polarized proton target, Nucl. Instr. and Meth. 72 (1969) 4550.CrossRefGoogle Scholar
Glättli, H., Odehnal, M., Ezratty, J., Malinovski, A., Abragam, A., Polarisation dynamique des protons dans le glycol ethylique, Phys. Letters 29A (1969) 250251.Google Scholar
Hill, D. A., Ketterson, J. B., Miller, R. C., et al., Dynamic proton polarization in butanol water below 1 K, Phys. Rev. Letters 23 (1969) 460462.CrossRefGoogle Scholar
Masaike, A., Glättli, H., Ezratty, J., Malinovski, A., High proton polarization at 0.5 °K, Phys. Letters 30A (1969) 6364.CrossRefGoogle Scholar
Gorn, W., Robrish, P., Polarization in assorted hydrocarbons, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, 305.Google Scholar
de Boer, W., High proton polarization in 1,2-propanediol at 3He temperatures, Nucl. Instr. and Meth. 107 (1973) 99104.CrossRefGoogle Scholar
de Boer, W., Niinikoski, T. O., Dynamic proton polarization in propanediol below 0.5 K, Nucl. Instrum. and Meth. 114 (1974) 495498.Google Scholar
Glättli, H., Organic materials for polarized proton targets, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, 281287.Google Scholar
Niinikoski, T. O., Viscometric study of binary mixtures of butanol and pentanol with water and pinacol, in: Court, G. R., et al. (eds.) Proc. of the 2nd Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 6971.Google Scholar
Symons, M., Nature and preparation of glasses, in: Court, G. R., et al. (eds.) Proc. of the 2nd Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, p. 68.Google Scholar
Niinikoski, T. O., Dynamic nuclear polarization with the new complexes, in: Court, G. R., et al. (eds.) Proc. of the 2nd Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 6065.Google Scholar
Hill, D. A., Hill, J. J., An Investigation of Polarized Proton Target Materials by Differential Calorimetry – Preliminary Results, Argonne National Laboratory Report ANL-HEP-PR-81–05, 1980.CrossRefGoogle Scholar
Grest, G. S., Cohen, M. H., Liquids, glasses and the glass transition: a free-volume approach, in: Rice, S. A., Prigogine, E. (eds.) Advances in Chemical Physics, Wiley, New York, 1981, 455525.Google Scholar
Adam, G., Gibbs, J. H., On the temperature dependence of cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43 (1965) 139146.CrossRefGoogle Scholar
Vogel, H., The law of the relation between the viscosity of liquids and the temperature, Phys. Z. 22 (1921) 645646.Google Scholar
Fulcher, G. S., Analysis of recent measurements of the viscosity of glasses, J. Am. Ceram. Soc. 8 (1925) 339355.CrossRefGoogle Scholar
Agnell, C. A., Sare, J. M., Sare, E. J., Glass transition temperatures for simple molecular liquids and their binary solutions, J. Phys. Chem. 82 (1978) 26222629.Google Scholar
Gordon, J. M., Rouse, G. B., Gibbs, J. H., Risen, W. M., The composition dependence of glass transition properties, J. Chem. Phys. 66 (1977) 49714976.Google Scholar
Rasmussen, D. H., MacKenzie, A. P., The glass transition in amorphous water, J. Phys. Chem. 75 (1971) 967973.Google Scholar
Lesikar, A. V., Comment on ‘The composition dependence of glass transition properties’, J. Chem. Phys. 68 (1978) 33233325.Google Scholar
Lesikar, A. V., On the glass transition in mixtures between the normal alcohols and various Lewis bases, J. Chem. Phys. 66 (1977) 42634276.CrossRefGoogle Scholar
Krumpolc, M., Hill, D., Stuhrmann, H. B., Progress in the chemistry of chromium(V) doping agents used in polarized target materials, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Heidelberg, 1991, 340343.Google Scholar
Takala, S., Niinikoski, T. O., Measurements of glass properties and density of hydrocarbon mixtures of interest in polarized targets, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Heidelberg, 1991, 347352.Google Scholar
Sahling, S., Low temperature thermal properties of pentanol-2 – a perspective polarized target material, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Heidelberg, 1991, pp. 356357.Google Scholar
Sahling, S., Sahling, A., Kolác, M., Low temperature long-time relaxation in glasses, Solid State Comm. 65 (1988) 10311033.Google Scholar
Fernow, R. C., Dynamic polarization in radiation resistant materials, Nucl. Instr. and Meth. 159 (1979) 557560.Google Scholar
Symons, M., Radiation induced paramagnetic centres in organic and inorganic materials, in: Court, G. R., et al. (eds.) Proc. of the 2nd Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 2528.Google Scholar
Borghini, M., de Boer, W., Morimoto, K., Nuclear dynamic polarization by resolved solid-state effect and thermal mixing with an electron spin-spin interaction reservoir, Phys. Lett. 48A (1974) 244246.Google Scholar
Garif’yanov, N. S., Kozyrev, B. M., Fedotov, V. N., Width of the EPR line of liquid solutions of ethylene glycol complexes for even and odd chromium isotopes, Sov. Phys. Dokl. 13 (1968) 107110.Google Scholar
Bontchev, P. R., Malinovski, A., Mitewa, M., Kabassanov, K., Intermediate chromium(V) complex species and their role in the process of chromium(VI) reduction by ethylene glycol, Inorg. Chim. Acta 6 (1972) 499503.Google Scholar
Hill, D., Preparation of ethanediol-Cr(V), in: Court, G. R., et al. (eds.) Proc. Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 7273.Google Scholar
Svoboda, J., Dynamic polarization and relaxation of protons in Cr(V) complexes in dimethylformamide, Czech. J. Phys. B28 (1978) 473475.Google Scholar
Bunyatova, E. I., Investigation of organic substances for development of targets with polarized hydrogen and deuterium nuclei, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Heidelberg, 1991, 333339.Google Scholar
Niinikoski, T. O., Polarized targets at CERN, in: Marshak, M. L. (ed.) Int. Symp. on High Energy Physics with Polarized Beams and Targets, American Institute of Physics, Argonne, 1976, 458484.Google Scholar
Krumpolc, M., Rocek, J., Stable chromium(V) compounds, J. Am. Chem. Soc. 98 (1976) 872873.Google Scholar
Krumpolc, M., Rocek, J., Three-electron oxidations. 12. Chromium(V) formation in the chromic acid oxidation of 2-hydroxy-2-methylbutyric acid, J. Am. Chem. Soc. 99 (1977) 137143.CrossRefGoogle Scholar
Krumpolc, M., DeBoer, B. G., Rocek, J., A stable Cr(V) compound. Synthesis, properties, and crystal structure of potassium bis(2-hydroxy-2-methylbutyrato)-oxochromate(V) monohydrate, J. Am. Chem. Soc. 100 (1978) 145153.CrossRefGoogle Scholar
Krumpolc, M., Rocek, J., Synthesis of stable chromium(V) complexes of tertiary hydroxy acids, Journal of the American Chemical Society 101 (1979) 32063209.Google Scholar
Hill, D., Miller, R. C., Krumpolc, M., Rocek, J., A new CrV doping agent for polarized targets, Nuclear Instruments and Methods 150 (1978) 331332.Google Scholar
Mahapatro, S. N., Krumpolc, M., Rocek, J., Three-electron oxidations. 17. The chromium(VI) and chromium(V) steps in the chromic acid cooxidation of 2-hydroxy-2-methylbutyric acid and 2-propanol, Journal of the American Chemical Society 102 (1980) 37993806.Google Scholar
Spin Muon Collaboration (SMC), Adams, D., Adeva, B., et al., The polarized double-cell target of the SMC, Nucl. Instr. and Meth. in Phys. Res. A437 (1999) 2367.Google Scholar
Bültmann, S., Baum, G., Hautle, P., et al., Properties of the deuterated target material used by the SMC, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1994, 102105.Google Scholar
Stuhrmann, H. B., Burkhardt, N., Dietrich, G., et al., Proton and deuteron targets in biological structure research, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1994, 124132.Google Scholar
Bunyatova, E. I., Free radicals and polarized targets, Nuclear Instruments and Methods in Physics Research A 526 (2004) 2227.Google Scholar
van den Brandt, B., Hautle, P., Konter, J. A., Bunyatova, E., Progress in scintillating polarized targets for spin physics, in: Anginolfi, M., et al. (eds.) Second International Symposium on the Gerasimov-Drell Hearn Sum Rule and the Spin Structure of the Nucleon, World Scientific, Singapore, 2002, 183187.Google Scholar
Lilly Thankamony, A. S., Wittmann, J. J., Kaushik, M., Corzilius, B., Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR, Progress in Nuclear Magnetic Resonance Spectroscopy 102103 (2017) 120195.Google Scholar
Haze, O., Corzilius, B., Smith, A. A., Griffin, R. G., Swager, T. M., Water-soluble narrow-line radicals for dynamic nuclear polarization, Journal of the American Chemical Society 134 (2012) 1428714290.Google Scholar
Ardenkjær-Larsen, J. H., Laursen, I., Leunbach, I., et al., EPR and DNP properties of certain novel single electron contrast agents intended for oximetric imaging, J. Magn. Res. 133 (1998) 112.CrossRefGoogle ScholarPubMed
Jannin, S., Comment, A., Kurdzesau, F., et al., A 140 GHz prepolarizer for dissolution dynamic nuclear polarization, J. Chem. Phys. 128 (2008) 241102.CrossRefGoogle ScholarPubMed
Ardenkjaer-Larsen, J. H., On the present and future of dissolution-DNP, J. Magn. Res. 264 (2016) 312.Google Scholar
Ardenkjaer-Larsen, J., Bowen, S., Raagaard Petersen, J., et al., Cryogen-free dissolution dynamic nuclear polarization polarizer operating at 3.35 T, 6.70 T, and 10.1 T, Magnetic Resonance in Medicine 81 (2018) 21842194.Google Scholar
Pshetzhetskii, S. Y., Kotov, A. G., Milinchuk, V. K., Roginskii, V. A., Tupikov, V. I., EPR of Free Radicals in Radiation Chemistry, John Wiley & Sons, New York, 1974.Google Scholar
Kumada, T., Noda, Y., Hashimoto, T., Koizumi, S., Dynamic nuclear polarization study of UV-irradiated butanol for hyperpolarized liquid NMR, J. Magn. Res. 201 (2009) 115120.CrossRefGoogle ScholarPubMed
Niinikoski, T. O., Rieubland, J.-M., Dynamic nuclear polarization in irradiated ammonia below 0.5 K, Phys. Lett. 72A (1979) 141144.CrossRefGoogle Scholar
Brown, S., Court, G., Hayes, G., et al., The production of large quantities of irradiated ammonia for use as a polarized target material, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 6678.Google Scholar
Cameron, P. R., Preparation and irradiation of ammonia target beads, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, 7980.Google Scholar
Spin Muon Collaboration (SMC), Adeva, B., Arik, E., et al., Measurement of proton and nitrogen polarization in ammonia and a test of equal spin temperatures, Nucl. Instr. and Meth. in Phys. Res. A 419 (1998) 6082.Google Scholar
Niinikoski, T. O., Proton irradiated ammonia, in: Court, G. R., et al. (eds.) Proc. of the 2nd Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 3637.Google Scholar
Court, G., Reactor irradiated ammonia, in: Court, G. R., et al. (eds.) Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, Cosener’s House, Abingdon, Chilton, Didcot, UK, 1979, 3839.Google Scholar
Krisch, A. D., Electron irradiated ammonia and Butanol, in: Court, G. R., et al. (eds.) Proc. Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 3943.Google Scholar
Crabb, D. G., Cameron, P. R., Lin, A. M. T., Raymond, R. S., Operational characteristics of radiation doped ammonia in a high intensity proton beam, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, 712.Google Scholar
Dostert, R., Havenith, W., Kaul, O., et al., First use of ND3 in a high energy photon beam, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, 1322.Google Scholar
Dostert, R., Havenith, W., Kaul, O., et al., Dynamic nuclear polarization studies in irradiated ammonia at 1 K, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, pp. 3352.Google Scholar
Seely, M. L., Bergström, M. R., Dhawan, S. K., et al., Dynamic nuclear polarization of irradiated targets, in: Joseph, C., Soffer, J. (eds.) Proc. 1980 Int. Symp. on High-Energy Physics with Polarized Beams and Polarized Targets, Birkhäuser Verlag, Basel, Boston and Stuttgart, 1981, 453453.Google Scholar
Härtel, U., Kaul, O., Meyer, W., Rennings, K., Schilling, E., Experience with NH3 as target material for polarized proton targets at the bonn 2.5 GeV electron synchrotron, in: Joseph, C., Soffer, J. (eds.) Proc. 1980 Int. Symp. on High-Energy Physics with Polarized Beams and Polarized Targets, Birkhäuser Verlag, Basel, Boston and Stuttgart, 1981, 447450.Google Scholar
Seely, M. L., Amittay, A., Bergström, M. R., et al., Dynamic nuclear polarization of irradiated targets, Nuclear Instruments and Methods in Physics Research 201 (1982) 303308.Google Scholar
Seely, M. L., Amittay, A., Bergstrom, M. R., et al., Dynamic nuclear polarization of irradiated targets, in: Bunce, G. M. (ed.) High Energy Spin Physics – 1982, American Institute of Physics, New York, 1983, 526533.Google Scholar
Raymond, R. S., Cameron, P. R., Crabb, D. G., Roser, T., Dynamic polarization in a 3He/4He evaporation cryostat, in: Jaccard, S., Mango, S. (eds.) International Workshop on Polarized Sources and Targets, Birkhäuser, Montana, Switzerland, 1986, 777780.Google Scholar
Crabb, D. G., Polarization studies with radiation doped ammonia at 0.5 T and 1 K, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Heidelberg, 1991, 289300.Google Scholar
Crabb, D. G., Higley, C. B., Krisch, A. D., et al., Observation of a 96% proton polarization in irradiated ammonia, Phys. Rev. Letters 64 (1990) 26272629.Google Scholar
Boden, B., Burkert, V., Knop, G., et al., Elastic electron deuteron scattering on a tensor polarized solid ND3 target, Zeitschrift für Physik C Particles and Fields 49 (1991) 175185.CrossRefGoogle Scholar
Crabb, D. G., Day, D. B., The Virginia/Basel/SLAC polarized target: operation and performance during experiment E143 at SLAC, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1994, 1119.Google Scholar
Borghini, M., Choice of Substances for Polarized Proton Targets, CERN Yellow Report CERN 66–3, 1966.Google Scholar
Pretzel, F. E., Gritton, G. V., Rushing, C. C., et al., Properties of lithium hydride-IV: F-center formation at low temperatures, Journal of Physics and Chemistry of Solids 23 (1962) 325337.Google Scholar
Henderson, B., Inorganic materials, in: Court, G. R., et al. (eds.) Proc. Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 2932.Google Scholar
Roinel, Y., Bouffard, V., Polarisation dynamique nucléaire dans l’hydrure de lithium, J. Phys. France 38 (1977) 817824.Google Scholar
Abragam, A., Polarized targets in high energy and elsewhere, in: Thomas, G. H. (ed.) High Energy Physics with Polarized Beams and Polarized Targets, American Institute of Physics, New York, 1979, 114.Google Scholar
Bouffard, V., Roinel, Y., Roubeau, P., Abragam, A., Dynamic nuclear polarization in 6LiD, J. Phys. France 41 (1980) 14471451.Google Scholar
Roinel, Y., Electron irradiated lithium fluoride (7LiF) lithium hydride (7LiH) and lithium deuteride (6LiD), in: Court, G. R., et al. (eds.) Proc. Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 4346.Google Scholar
Chaumette, P., Deregel, J., Durand, G., et al., Attempt to polarize a large sample of 7LiH irradiated with high energy electrons, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, 8183.Google Scholar
Chaumette, P., Deregel, J., Durand, G., et al., Progress report on polarization of 6LiD and 7LiH irradiated with high energy electrons, in: Jaccard, S., Mango, S. (eds.) International Workshop on Polarized Sources and Targets, Birkhäuser, Montana, Switzerland, 1986, 767771.Google Scholar
Chaumette, P.,, J. Deregel, , , G. Durand, , , J. Fabre, , , L. van Rossum, , Progress report on polarization of irradiated 6LiD and 7LiH, in: Heller, K. J. (ed.) Proc. Int. Symp. on High Energy Spin Physics, AIP, Minneapolis, 1988, 12751280.Google Scholar
van den Brandt, B., Konter, J. A., Mango, S., Weßler, M., Results from the PSI 6LiD target, in: Steffens, E., et al. (eds.) Proc. 6th Workshop on Polarized Solid Targets, Springer Verlag, Heidelberg, 1991, 320324.Google Scholar
van den Brandt, B., Konter, J. A., Kovalev, A. I., Mango, S., Wessler, M., Operation of a polarized 7LiH target, in: Hasegawa, T., et al. (eds.) Proc. 10th Int. Symp. on High-Energy Spin Physics, Universal Academy Press, Inc., Tokyo, 1993, 369370.Google Scholar
Durand, G., Gaudron, C., Ball, J., Combet, M., Sans, J., Progress report on polarizable lithium hydrides, in: Hasegawa, T., et al. (eds.) Proc. 10th Int. Symp. on High-Energy Spin Physics, Universal Academy Press, Inc., Tokyo, 1993, 355361.Google Scholar
Jarmer, J. J., Penttilä, S., Polarization of irradiated lithium hydride, in: Hasegawa, T., et al. (eds.) Proc. 10th Int. Symp. on High-Energy Spin Physics, Universal Academy Press, Inc., Tokyo, 1993, 363367.Google Scholar
Goertz, S., Bradtke, C., Dutz, H., et al., Investigations in high temperature irradiated 6,7LiH and 6LiD, its dynamic nuclear polarization and radiation resistance, in: Dutz, H., Meyer, W. (eds.) 7th Int. Workshop on Polarized Target Materials and Techniques, Elsevier, Amsterdam, 1994, 2028.Google Scholar
Heckmann, J., Goertz, S., Meyer, W., Radtke, E., Reicherz, G., EPR spectroscopy at DNP conditions, Nucl. Instrum. Methods Phys. Res. A 526 (2004) 110116.Google Scholar
Bültmann, S., Crabb, D. G., Day, D. B., et al., A study of lithium deuteride as a material for a polarized target, Nucl. Instr. Meth. A 425 (1999) 2336.Google Scholar
Ball, J., Baum, G., Berglund, P., et al., First results of the large COMPASS 6LiD polarized target, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 498 (2003) 101111.Google Scholar
Kondo, K., Ball, J., Baum, G., et al., Polarization measurement in the COMPASS polarized target, Nuclear Instruments and Methods in Physics Research A 526 (2004) 7075.CrossRefGoogle Scholar
Doshita, N., Ball, J., Baum, G., et al., The COMPASS polarized target, Czechoslovak Journal of Physics 55 (2005) A367A374.CrossRefGoogle Scholar
Adolph, C., Aghasyan, M., Akhunzyanov, R., et al., Final COMPASS results on the deuteron spin-dependent structure function g1d and the Bjorken sum rule, Physics Letters B 769 (2017) 3441.CrossRefGoogle Scholar
Abbon, P., Albrecht, E., Alexakhin, V. Y., et al., The COMPASS experiment at CERN, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 577 (2007) 455518.Google Scholar
Slichter, C. P., Principles of Magnetic Resonance, 3rd ed., Springer-Verlag, Berlin, 1990.CrossRefGoogle Scholar
Crabb, D., Irradiated butanol, in: Court, G. R., et al. (eds.) Proc. Second Workshop on Polarized Target Materials, SRC, Rutherford Laboratory, 1980, 3336.Google Scholar
Goertz, S. T., Harmsen, J., Heckmann, J., et al., Highest polarizations in deuterated compounds, Nuclear Instruments and Methods in Physics Research A 526 (2004) 4352.Google Scholar
Hutchison, C. A., Mangum, B. W., Paramagnetic resonance absorption in naphthalene in its phosphorescent state, J. Chem. Phys. 34 (1961) 908922.CrossRefGoogle Scholar
van Kesteren, H. W., Wenckebach, W. T., Schmidt, J., Production of high, long-lasting, dynamic proton polarization by way of photoexcited triplet states, Phys. Rev. Lett. 55 (1985) 16421644.Google Scholar
Verheij, P. F. A., Wenckebach, W. T., Schmidt, J., Microwave induced optical deuteron polarization at 75 GHz: a quantitative analysis, Applied Magnetic Resonance 5 (1993) 187205.CrossRefGoogle Scholar
Schmugge, T. J., Jeffries, C. D., High dynamic polarization of protons, Phys. Rev. 138 (1965) A1785A1801.Google Scholar
Leifson, O. S., Jeffries, C. D., Dynamic polarization of nuclei by electron-nuclear dipolar coupling in crystals, Phys. Rev. 122 (1961) 17811795.Google Scholar
Schmugge, T. J., Jeffries, C. D., Sizeable dynamic proton polarizations, Phys. Rev. Lett. 9 (1962) 268270.Google Scholar
Sowinski, J., Knutson, L. D., A spin refrigerator polarized target for nuclear physics experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 355 (1995) 242252.CrossRefGoogle Scholar
Atsarkin, V. A., Mefed, A. E., Rodak, M. I., Connection between dynamic polarization of nuclei and electron spin-spin reservoir temperature, Sov. Phys. JETP 6 (1967) 359362.Google Scholar
Atsarkin, V. A., Mefed, A. E., Rodak, M. I., Connection of electron spin-spin interactions with polarization and nuclear spin relaxation in ruby, Sov. Phys. JETP 28 (1969) 877885.Google Scholar
Atsarkin, V. A., Mefeod, A. E., Rodak, M. I., Electron cross relaxation and nuclear polarization in ruby, Phys Lett. 27A (1968) 5758.Google Scholar
Atsarkin, V. A., Verification of the spin-spin temperature concept in experiments on saturation of electron paramagnetic resonance, Soviet Phys.- JETP 31 (1970) 10121018.Google Scholar
Atsarkin, A., Experimental investigation of the manifestations of the spin-spin interaction reservoir in a system of EPR lines connected with cross relaxation, Sov. Phys. JETP 32 (1971) 421425.Google Scholar
Masaike, A., Toward precise tests of time reversal invariance using very low energy neutrons, First Int. Symp. on Symmetries in Subatomic Physics, Taipei, 1994.Google Scholar
Adachi, T., Asahi, K., Doi, M., et al., Test of parity violation and time reversal invariance in slow neutron absorption rections, Nucl. Phys. A577 (1994) 433 c–442 c.Google Scholar
Abragam, A., Chapellier, M., Goldman, M., Jacquinot, J.F., Chau, V. H., A clean example of large dynamic polarization of F19 in CaF2, in: Shapiro, G. (ed.) Proc. 2nd Int. Conf. on Polarized Targets, LBL, University of California, Berkeley, Berkeley, 1971, 247256.Google Scholar
Fernow, R. C., Radiation damage in polarized target materials, Nucl. Instr. and Meth. 148 (1978) 311316.CrossRefGoogle Scholar
Petri, H., Abshire, G., Polarization decay of an ethylene glycol polarized proton target in an intense proton beam, Nucl. Instr. and Meth. 119 (1974) 205207.Google Scholar
Crabb, D., Measurement of the polarization parameter in pp elastic scattering at 24 GeV/c, in: Marshak, M. L. (ed.) High Energy Physics with Polarized Beams and Targets, American Institute of Physics, New York, 1976, 120125.Google Scholar
Court, G. R., Crabb, D. G., Fernow, R. C., et al., Report of the workshop on polarized target materials, in: Thomas, G. H. (ed.) High Energy Physics with Polarized Beams and Polarized Targets, American Institute of Physics, New York, Argonne, 1979, 1540.Google Scholar
Althoff, K. H., Burkert, V., Hartfiel, U., et al., Radiation resistances of ammonia at 1 kelvin and 2.5 tesla, in: Meyer, W. (ed.) Proc. 4th Int. Workshop on Polarized Target Materials and Techniques, Physikalisches Institut, Universität Bonn, Bonn, 1984, 2332.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×