Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T16:30:58.255Z Has data issue: false hasContentIssue false

2 - Crystalline Silicon Cells

Published online by Cambridge University Press:  05 July 2018

J. N. Roy
Affiliation:
Indian Institute of Technology, Kharagpur
D. N. Bose
Affiliation:
Indian Institute of Technology, Kharagpur
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Runyan, W. G. 1965. Silicon Semiconductor Technology. New York: McGraw Hill.Google Scholar
[2] Sze, S. M. 1985. Semiconductor Devices – Physics and Technology. New York: John Wiley.Google Scholar
[3] Laudise, R. A. 1970. The Growth of Single Crystals. New Jersey: Prentice Hall.Google Scholar
[4] Pamplin, B. R. ed. 1975. Crystal Growth, Vols. I & II. Oxford: Pergamon Press.Google Scholar
[5] Ghandhi, S. K. 1983. VLSI Fabrication Principles. New York: John Wiley.Google Scholar
[6] Pfann, W. G. 1958. Zone Melting. New York: John Wiley.Google Scholar
[7] Bhattacharya, T. K. 1998. Terrestrial Solar Photovoltaics. New Delhi: Narosa.Google Scholar
[8] Stepanov, B. 1959. Sov. Phys.-Tech. Phys. 29: 339.
[9] Paranthaman, M. P., Winnie, Wong-Ng, and R. N., Bhattacharya, eds. 2015. Semiconductor Materials for Solar Photovoltaic Cells. Vol. 218. Springer series in materials science; Vol. 218. Cham: Springer.Google Scholar
[10] Davis, J. R., Ajeet, Rohatgi, Richard H., Hopkins, Philip D., Blais, P., Rai-Choudhury, James R., Mccormick, and H. C., Mollenkopf. 1980. ‘Impurities in Silicon Solar Cells’. IEEE Trans. ED 27 (4): 677.CrossRefGoogle Scholar
[11] Yablonovitch, E., D. L., Allara, C. C., Chang, T., Gmitter, and T. B., Bright. 1986. ‘Unusually Low Surface Recombination Velocity on Silicon and Germanium Surfaces’. Phys. Rev. Lett. 57 (2): 249.CrossRefGoogle ScholarPubMed
[12] Seto, J. W. Y. 1975. ‘Variation of Grain Boundary Height with Doping Level’. J. Appl. Phys. 46: 5247.CrossRefGoogle Scholar
[13] Bose, D. N. 2012. Semiconductor Materials and Devices. Delhi: New Age.Google Scholar
[14] Socolof, S. I., and P. A. Iles. 1978. Proc. 13th IEEE PV Specialists Conference. New York. 56.Google Scholar
[15] Card, H. C., and E. S., Yang. 1977. ‘Electronic Processes at Grain Boundaries in Polycrystalline Semiconductors under Optical Illumination’. Proc. IEEE, ED 24: 397.CrossRefGoogle Scholar
[16] Lindmayer, J., and J. L., Allison. 1972. ‘The Violet Cell: An Improved Silicon Solar Cell’. Proc. 9th IEEE PV Specialists Conf. 83.Google Scholar
[17] Mandelkorn, J., and J. H., Lanneck Jr. 1972. ‘Simplified Fabrication of Back Surface Electric Field Silicon Cells and Novel Characteristics of Such Cells’. Proc. 9th IEEE PV Specialists Conf. 66.Google Scholar
[18] Green, M. A. et al. 1984. ‘High Efficiency Silicon Solar Cells’, IEEE-ED 31 (5): 679.CrossRefGoogle Scholar
[19] Green, M. A. 1982. Solar Cells – Operating Principles, Technology and Device Applications. Englewood Cliffs, N. J.: Prentice Hall.Google Scholar
[20] Goetzberger, A. 1981. ‘Optical Confinement in Thin Si-solar Cells by Diffuse Back Reflectors’. Proc. 15th IEEE PV Spec. Conf. Kissimmee, FL. 867.Google Scholar
[21] Green, M. A. 2002. ‘Lambertian Light Trapping in Textured Solar Cells and Light Emitting Diodes: Analytical Solutions’. Prog. Photovolt: Res. Appl. 10: 235–41.CrossRefGoogle Scholar
[22] Shimokawa, Ryuichi, Kenihi, Ishii, Hideshi, Nishikawa, Tetsuo, Takahashi, Yutaka, Hayashi, Ichiro, Saito, Fumiaki, Nagamine, and Sanekazu, Igari. 1994. ‘Sub-5 μm Thin Film c-Si Solar Cell and Optical Confinement by Diffuse Reflective-substrate’. Solar Energy Materials and Solar Cells. 34 (1-4): 277.CrossRefGoogle Scholar
[23] Jansen,, Henri, Meint de, Boer, Rob, Legtenberg, and Miko, Elwenspoek. 1995. ‘The Black Silicon Method: A Universal Method for Determining the Parameter Setting of a Fluorine-based Reactive Ion Etcher in Deep Silicon Trench Etching with Profile Control’. Journal of Micromechanics and Microengineering. 5(2): 115.CrossRefGoogle Scholar
[24] Torres, R. et al. 2010. ‘Femtsecond Laser Texturization for Improvement of Photovoltaic Cells: Black Silicon’. Journal of Optoelectronics and Advanced Materials 12 (3): 621.Google Scholar
[25] Oh, J., H.-C, Yuan, and H. M., Branz. 2012. ‘Carrier Recombination Mechanisms in High Surface Area Nanostructured Solar Cells by Study of 18.2%-efficient Black Silicon Solar Cells’. Nature Nanotechology 7: 743.CrossRefGoogle Scholar
[26] Savin, H. et al. 2015. ‘Black Silicon Solar Cells with Interdigitated Back-Contacts Achieve 22.1% Efficiency’. Nature Nanotechnology. 10: 24.CrossRefGoogle ScholarPubMed
[27] Atwater, H. 2007. ‘The Future of Plasmonics’. Sci. Am. 2 (4): 36.Google Scholar
[28] Atwater, H., and A., Polman. 2010. ‘Plasmonics for Improved Photovoltaic Devices’. Nature Materials 9 (3): 205.CrossRefGoogle ScholarPubMed
[29] Catchpole, K. R., and A., Polman. 2008. ‘Plasmonic Solar Cells’. Opt. Express 16: 21793–21800.CrossRefGoogle ScholarPubMed
[30] Tanabe, K. M. 2009. ‘A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures’. Energies 2 (3): 504.CrossRefGoogle Scholar
[31] Yinan, Z. et al. 2014. ‘Towards Ultra-thin Plasmonic Silicon Wafer Solar Cells with Minimized Efficiency Loss’. Scientific Reports 4: 4939.Google Scholar
[32] Goetzberger, A., and W., Greube. 1977. ‘Solar Energy Conversion with Fluorescent Collectors’. Appl. Phys. 14 (2): 123.CrossRefGoogle Scholar
[33] Wikipedia, ‘Luminescent Solar Concentrators’. Accessed 8 March 2017.
[34] Meinardi, F. et al. 2014. ‘Large-area Luminescent Solar Concentrators Based on “Stokes-shiftengineered” Nanocrystals in a Mass-polymerized PMMA Matrix’. Nature Photonics 8 (5): 392.CrossRefGoogle Scholar
[35] Yablonovich, E. 1982. ‘Statistical Ray Optics’. J. Optic. Soc Am. A 72 (7): 899.CrossRefGoogle Scholar
[36] Green, M. et al. 1984. ‘Limits on the Open-circuit Voltage and Efficiency of Silicon Solar Cells Imposed by Intrinsic Auger Processes’. IEEE ED 31 (5): 671.CrossRefGoogle Scholar
[37] Blakers, A. W. et al. 1989. ‘22.8% Efficient Silicon Solar Cell’. Appl. Phys. Lett. 55: 1363.CrossRefGoogle Scholar
[38] Green, M. A. et al. 1981. ‘The MINP Solar Cell – A New High Voltage, High Efficiency Silicon Solar Cell’. Proc. 15th IEEE PV Spec. Conf. Kissimmee, FL 1405.Google Scholar
[39] Swanson, R. M. et al. 1984. ‘Point Contact Silicon Solar Cells’. IEEE Trans. ED 31, 5: 661.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×