[1] Bassi, A., Ippoliti, E., and Vacchini, B.
2005. On the energy increase in space-collapse models. Journal of Physics A: Mathematical and General.
38(37), 8017.
[2] Bedingham, D. J.
2011. Relativistic state reduction dynamics. Found. Phys..
41, 686– 704.
[3] Bombelli, L., Lee, J., Meyer, D. and Sorkin, R. 1987. Space-Time as a Causal Set. Phys. Rev. Lett..
59, 521–4.
[4] Cañate, P., Pearle, P. and Sudarsky, D.
2013. Continuous spontaneous localization wave function collapse model as a mechanism for the emergence of cosmological asymmetries in inflation. Phys. Rev.. D87(10), 104024.
[5] Carlip, S.
2008. Is Quantum Gravity Necessary?
Class. Quant. Grav..
25, 154010.
[6] Castagnino, M., Fortin, S., Laura, R. and Sudarsky, D.
2014. Interpretations of Quantum Theory in the Light of Modern Cosmology. (2014) arXiv:1412.75756.
[7] Das, S., Lochan, K., Sahu, S. and Singh, T. P.
2013. Quantum to classical transition of inflationary perturbations: Continuous spontaneous localization as a possible mechanism. Phys. Rev.. D88(8), 085020.
[8] Diez-Tejedor, A. and Sudarsky, D.
2012. Towards a formal description of the collapse approach to the inflationary origin of the seeds of cosmic structure. JCAP.
1207, 045.
[9] Diosi, L.
1984. Gravitation and Quantum Mechanical Localization of Macro-Objects. Phys. Lett. A.
105, 4–5, 199–202.
[10] Diosi, L.
1987. A Universal Master Equation for the Gravitational Violation of Quantum Mechanics. Phys. Lett.. A120, 377.
[11] Diosi, L.
1989. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev., A40, 1165–1174.
[12] Diosi, L. and Lukacs, B.
1987. In Favor of a Newtonian Quantum Gravity. Annalen Phys..
44, 488.
[13] Diosi, L. and Lukacs, B.
1989. On the minimum uncertainty of space-time geodesics. Phys. Lett., A142, 331.
[14] Diosi, L.
1997. Lorentz covariant stochastic wave function dynamics? arXiv:quantph/ 9704025.
[15] Diosi, L.
2000. Emergence of classicality: from collapse phenomenologies to hybrid dynamics. Lect. Notes Phys..
538, 243–50.
[16] Diosi, L.
2004. Probability of intrinsic time arrow from information loss. Lect. Notes Phys..
633, 125–35.
[17] Diosi, L.
2014. Gravity-related spontaneous wave function collapse in bulk matter. New J. Phys..
16(10), 105006.
[18] Diosi, L. and Papp, T. N.
2009. Schrödinger–Newton equation with complex Newton constant and induced gravity. Phys. Lett., A373, 3244–7.
[19] Durr, D., Goldstein, S., Tumulka, R. and Zanghi, N.
2004. Bohmian mechanics and quantum field theory. Phys. Rev. Lett..
93, 090402.
[20] Gambini, R., Porto, R. A. and Pullin, J.
2004. Fundamental decoherence from relational time in discrete quantum gravity: Galilean covariance. Phys. Rev., D70, 124001.
[21] Ghirardi, G. C., Rimini, A. and Weber, T.
1985. A model for a unified quantum description of macroscopic and microscopic systems. In Quantum Probability and Applications II, Lecture Notes in Mathematics. Vol. 1136. ISBN 978-3-540-15661-1. Springer Verlag, p. 223.
[22] Ghirardi, G. C., Rimini, A. and Weber, T.
1986. A Unified Dynamics for Micro and MACRO Systems. Phys. Rev., D34, 470.
[23] Ghirardi, G. C., Nicrosini, O., Rimini, A. and Weber, T. 1988. Spontaneous Localization of a System of Identical Particles. Nuovo Cim., B102, 383.
[24] Ghirardi, G. C., Grassi, R. and Pearle, Philip M.
1990a. Relativistic dynamical reduction models: General framework and examples. Foundations of Physics.
20, 11, 1271–316.
[25] Ghirardi, G. C., Pearle, P. M. and Rimini, A.
1990b. Markov Processes in Hilbert Space and Continuous Spontaneous Localization of Systems of Identical Particles. Phys. Rev., A42, 78–9.
[26] Ghirardi, G. C., Grassi, R. and Rimini, A.
1990c. A continuous spontaneous reduction model involving gravity. Phys. Rev., A42, 1057–64.
[27] Ghirardi, G. C., Grassi, R. and Pearle, P.M.
1990d. Relativistic dynamical reduction models and nonlocality. J. Found. Mod. Phys., 0109–123.
[28] Hartle, J. B.
2006. Generalizing quantum mechanics for quantum gravity. Int. J. Theor. Phys..
45, 1390–96.
[29] Israel, W.
1966. Singular hypersurfaces and thin shells in general relativity. Nuovo Cim., B44S10, 1.
[30] Jacobson, T.
1995. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett..
75, 1260–63.
[31] Kastner, R. E.
2014. Comment on “Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps,” arxiv:1412.5206.
[32] Martin, J., Vennin, V. and Peter, P.
2012. Cosmological Inflation and the Quantum Measurement Problem. Phys. Rev., D86, 103524.
[33] Modak, S. K., Ortz, L., Pea, I., and Sudarsky, D.
2014. Black Holes: Information Loss But No Paradox. arXiv:1406.4898 [gr-qc].
[34] Mott, N. F.
1929. The Wave Mechanics of α- Ray tracks. Proc. of the Royal Soc. of.
London, 126, 79.
[35] Okon, E. and Sudarsky, D.
2014. Benefits of Objective Collapse Models for Cosmology and Quantum Gravity. Foundations of Physics.
44(2), 114–3.
[36] Okon, E. and Sudarsky, D.
2015. The Black Hole Information Paradox and the Collapse of the Wave Function. Foundations of Physics.
45(4), 461–70.
[37] Page, D. N. and Geilker, C. D.
1981. Indirect Evidence for Quantum Gravity. Phys. Rev. Lett..
47, 979–82.
[38] Pearle, P.M.
1984. Experimental tests of dynamical state-vector reduction. Phys. Rev., D29, 235–40.
[39] Pearle, P.M.
2014a. CollapseMiscellany. In: Struppa, D. C. and Tollaksen, J. M., eds. Quantum Theory: A Two-Time Success Story. (Milan: Springer Milan), pp. 131–56.
[40] Pearle, P. M.
1976. Reduction of the State Vector by a Nonlinear Schrodinger Equation. Phys.Rev., D13, 857–68.
[41] Pearle, P. M.
1979. Toward Explaining Why Events Occur. Int. J. Theor. Phys..
18, 489–518.
[42] Pearle, P. M.
1989. Combining Stochastic Dynamical State Vector Reduction With Spontaneous Localization. Phys. Rev., A39, 2277–89.
[43] Pearle, P. M.
1999. Collapse models. Lect. Notes Phys..
526, 195.
[44] Pearle, P. M.
2000. Wave function collapse and conservation laws. Found. Phys..
30, 1145–60.
[45] Pearle, P. M.
2014b. A Relativistic Dynamical Collapse Model for a Scalar Field. arXiv:1404.5074.
[46] Pearle, P.M. and Squires, E.
1996. Gravity, energy conservation and parameter values in collapse models. Found. Phys..
26, 291.
[47] Penrose, R.
2000. Gravitational collapse of the wavefunction: An experimentally testable proposal. Proceedings, 9th Marcel Grossman Meeting, 3–6.
[48] Penrose, R.
2001. On gravity's role in quantum state reduction. In: Callender, C., ed. Physics Meets Philosophy at the Planck Scale, pp. 290–304.
[49] Penrose, R.
1996. On gravity's role in quantum state reduction. Gen. Rel. Grav..
28, 581–600.
[50] Penrose, R.
2014. On the Gravitization of Quantum Mechanics 1: Quantum State Reduction. Found. Phys..
44, 557–5.
[51] Perez, A., Sahlmann, H. and Sudarsky, D.
2006. On the quantum origin of the seeds of cosmic structure. Class. Quant. Grav..
23, 2317–54.
[52] Seiberg, N.
2007. Emergent spacetime. In The Quantum Structure of Space and Time. World Scientific. arXiv:hep-th/0601234.
[53] Shimony, A.
2013. Bell's Theorem. In Zalta, E. N., ed. The Stanford Encyclopedia of Philosophy, winter 2013 edn. http://plato.stanford.edu/entries/bell-theorem/.
[54] Sudarsky, D.
2011. Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical. Int. J. Mod. Phys., D20, 509–52.
[55] Tumulka, R.
2006. On spontaneous wave function collapse and quantum field theory. Proc. Roy. Soc. Lond., A462, 1897–908.
[56] Weinberg, S.
2008. Cosmology.
Oxford University Press.
[57] Weinberg, S.
2012. Collapse of the State Vector. Phys. Rev., A85, 062116.
[58] Zurek, W. H. (2016) Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps. Physics Today.
67, 10, 44–50.
[59] Zurek, W. H.
1998. Decoherence, Einselection, and the existential interpretation: The Rough guide. Phil. Trans. Roy. Soc. Lond., A356, 1793–820.
[60] Valentine, A.
2010. Phys. Rev., D82, 063513, 43pp.
[61] Pinto-Neto, N., Santos, G. and Struyve, W.
2012. Phys. Rev., D85, 083506, 4pp.