Skip to main content Accessibility help
A Philosophical Approach to Quantum Field Theory
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Cited by
    This book has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Öttinger, Hans Christian 2018. Hamiltonian formulation of a class of constrained fourth-order differential equations in the Ostrogradsky framework. Journal of Physics Communications, Vol. 2, Issue. 12, p. 125006.

  • Export citation
  • Recommend to librarian
  • Recommend this book

    Email your librarian or administrator to recommend adding this book to your organisation's collection.

    A Philosophical Approach to Quantum Field Theory
    • Online ISBN: 9781108227667
    • Book DOI:
    Please enter your name
    Please enter a valid email address
    Who would you like to send this to *
  • Buy the print book

Book description

This text presents an intuitive and robust mathematical image of fundamental particle physics based on a novel approach to quantum field theory, which is guided by four carefully motivated metaphysical postulates. In particular, the book explores a dissipative approach to quantum field theory, which is illustrated for scalar field theory and quantum electrodynamics, and proposes an attractive explanation of the Planck scale in quantum gravity. Offering a radically new perspective on this topic, the book focuses on the conceptual foundations of quantum field theory and ontological questions. It also suggests a new stochastic simulation technique in quantum field theory which is complementary to existing ones. Encouraging rigor in a field containing many mathematical subtleties and pitfalls this text is a helpful companion for students of physics and philosophers interested in quantum field theory, and it allows readers to gain an intuitive rather than a formal understanding.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive
  • Send content to

    To send content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about sending content to .

    To send content items to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

    Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

    Find out more about the Kindle Personal Document Service.

    Please be advised that item(s) you selected are not available.
    You are about to send

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


[1] L., Boltzmann, Theoretical Physics and Philosophical Problems (Dordrecht: Reidel, 1974).
[2] P., Duhem, The Aim and Structure of Physical Theory (Princeton, NJ: Princeton University Press, 1991).
[3] W. V., Quine, Two dogmas of empiricism. Philosophical Review, 60 (1951), 20–43.
[4] L., Susskind & A., Friedman, Quantum Mechanics: The Theoretical Minimum (Basic Books: 2014, 2014).
[5] D. Z., Albert, Quantum Mechanics and Experience (Cambridge, MA: Harvard University Press, 1992).
[6] A., Whitaker, Einstein, Bohr and the Quantum Dilemma: From Quantum Theory to Quantum Information, 2nd ed. (Cambridge: Cambridge University Press, 2006).
[7] H., Margenau, The Nature of Physical Reality (Woodbridge, CT: Ox Bow Press, 1977).
[8] D., Hume, A Treatise of Human Nature, Penguin Classics (London: Penguin Books, 1985).
[9] S. L., Altmann, Is Nature Supernatural? (Amherst, NY: Prometheus Books, 2002).
[10] T. Y., Cao, From Current Algebra to Quantum Chromodynamics: A Case for Structural Realism (Cambridge: Cambridge University Press, 2010).
[11] L., Boltzmann, Populare Schriften (Leipzig: Barth, 1905).
[12] W., James, The Meaning of Truth, Great Books in Philosophy (Amherst, NY: Prometheus Books, 1997).
[13] P. K., Feyerabend, Problems of microphysics. In R. G., Colodny, ed., Frontiers of Science and Philosophy, University of Pittsburgh Series in the Philosophy of Science, Volume 1 (Pittsburg: University of Pittsburgh Press, 1962), pp. 189–283.
[14] T. S., Kuhn, The Structure of Scientific Revolutions, 3rd ed. (Chicago: University of Chicago Press, 1996).
[15] A. A. P., Videira, Atomisme epistémologique et pluralisme théorique dans la pensée de Boltzmann, PhD Thesis, University of Paris VII (1992).
[16] M. B., Ribeiro, A. A. P., Videira, Dogmatism and theoretical pluralism in modern cosmology. Apeiron, 5 (1998), 227–234.
[17] B. C. van, Fraassen, The Scientific Image (Oxford: Oxford University Press, 1980).
[18] C., Cercignani, Ludwig Boltzmann: The Man Who Trusted Atoms (Oxford: Oxford University Press, 1998).
[19] K. G., Wilson & J. B., Kogut, The renormalization group and the expansion. Physics Reports, 12 (1974), 75–200.
[20] P. A. M., Dirac, The inadequacies of quantum field theory. In B. N., Kursunoglu and E. P., Wigner, eds., Reminiscences about a Great Physicist: Paul Adrien Maurice Dirac (Cambridge: Cambridge University Press, 1987), pp. 194–198.
[21] P. A. M., Dirac, Directions in Physics (New York: Wiley, 1978).
[22] T. Y., Cao, Conceptual Developments of 20th Century Field Theories (Cambridge: Cambridge University Press, 1997).
[23] R., Dworkin, Religion without God (Cambridge, MA: Harvard University Press, 2013).
[24] S. Y., Auyang, How Is Quantum Field Theory Possible? (New York: Oxford University Press, 1995).
[25] B., Russell, On the notion of cause. Proceedings of the Aristotelian Society, 13 (1912), 1–26.
[26] I., Kant, Critik der reinen Vernunft (Riga: Hartknoch, 1781).
[27] M. von, Laue, Erkenntnistheorie und Relativitatstheorie. In Gesammelte Schriften und Vortrage, Band III (Braunschweig: Vieweg, 1961), pp. 159–167.
[28] A., Lasenby, C., Doran, & S., Gull, Gravity, gauge theories and geometric algebra. Philosophical Transactions of the Royal Society of London A, 356 (1998), 487–582.
[29] E., Wigner, On unitary representations of the inhomogeneous Lorentz group. Annals of Mathematics, 40 (1939), 149–204.
[30] A., Duncan, The Conceptual Framework of Quantum Field Theory (Oxford: Oxford University Press, 2012).
[31] A., Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung (Berlin: Springer, 1933).
[32] H., Bauer, Probability Theory and Elements of Measure Theory, 2nd ed. (London: Academic Press, 1981).
[33] A. L., Fetter & J. D., Walecka, Quantum Theory of Many-Particle Systems, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1971).
[34] J. D., Bjorken & S. D., Drell, Relativistic Quantum Fields, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1965).
[35] M. E., Fisher & M. N., Barber, Scaling theory for finite-size effects in the critical region. Physical Review Letters, 28 (1972), 1516–1519.
[36] V., Privman (Ed.), Finite Size Scaling and Numerical Simulations of Statistical Systems (Singapore: World Scientific, 1990).
[37] L., Ruetsche, Interpreting Quantum Theories (Oxford: Oxford University Press, 2011).
[38] J. S., Briggs, A derivation of the time-energy uncertainty relation. Journal of Physics: Conference Series, Journal of Physics: Conference Series (99), 2008.
[39] H. C., Öttinger, Beyond Equilibrium Thermodynamics (Hoboken, NJ: Wiley, 2005).
[40] H., Price, Time's arrow and Eddington's challenge. In B., Duplantier, ed., Time: Poincaré Seminar 2010, Progress in Mathematical Physics, Volume 63 (Basel: Birkhauser, 2013), pp. 187–215.
[41] H., Price, Time's Arrow and Archimedes' Point (New York: Oxford University Press, 1996).
[42] M., Kuhlmann, The Ultimate Constituents of the Material World: In Search of an Ontology for Fundamental Physics, Philosophical Analysis, Volume 37 (Frankfurt: Ontos Verlag, 2010).
[43] A. N., Gorban, N., Kazantzis, I. G., Kevrekidis, H. C., Öttinger, & C., Theodoropoulos, eds., Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena (Berlin: Springer, 2006).
[44] W. G., Hoover, Time Reversibility, Computer Simulation, and Chaos, Advanced Series in Nonlinear Dynamics, Volume 13 (Singapore: World Scientific, 1999).
[45] D. Z., Albert, Time and Chance (Cambridge, MA: Harvard University Press, 2000).
[46] T., Petrosky & I., Prigogine, Poincaré resonances and the extension of classical dynamics. Chaos, Solitons & Fractals, 7(1996), 441–497.
[47] T., Petrosky & I., Prigogine, The Liouville space extension of quantum mechanics. Advances in Chemical Physics, 99 (1997), 1–120.
[48] T. Y., Petrosky & I., Prigogine, Poincaré's theorem and unitary transformations for classical and quantum systems. Physica A, 147 (1988), 439–460.
[49] R. de la, Madrid, The role of the rigged Hilbert space in quantum mechanics. European Journal of Physics, 26 (2005), 287–312.
[50] S. A., Rice, Obituary for Ilya Prigogine. Physics Today, 57/4 (2004), 102–103.
[51] G. C., Ghirardi, A., Rimini & T., Weber, Unified dynamics for microscopic and macroscopic systems. Physics Review D, 34 (1986), 470–491.
[52] V., Allori, S., Goldstein, R., Tumulka, & N., Zanghı, On the common structure of Bohmian mechanics and the Ghirardi-Rimini-Weber theory. British Journal for the Philosophy of Science, 59 (2008), 353–389.
[53] T., Maudlin, Three measurement problems. Topoi, 14 (1995), 7–15.
[54] R. P., Feynman, Simulating physics with computers. International Journal of Theoretical Physics, 21 (1982), 467–488.
[55] M., Gell-Mann, What are the building blocks of matter? In D., Huff and O., Prewett, eds., The Nature of the Physical Universe: Nobel Conference, 1976 (New York: Wiley, 1979), pp. 27–45.
[56] J. A., Barrett, Entanglement and disentanglement in relativistic quantum mechanics. Studies in History and Philosophy of Modern Physics, 48 (2014), 168–174.
[57] B., Schroer, Modular localization and the holistic structure of causal quantum theory, a historical perspective. Studies in History and Philosophy of Modern Physics, 49 (2015), 109–147.
[58] P., Teller, An Interpretive Introduction to Quantum Field Theory (Princeton, NJ: Princeton University Press, 1995).
[59] D., Malament, In defense of dogma: Why there cannot be a relativistic quantum mechanics of (localizable) particles. In R., Clifton, ed., Perspectives on Quantum Reality (Dordrecht: Kluwer, 1996), pp. 1–10.
[60] G. C., Hegerfeldt, Instantaneous spreading and Einstein causality in quantum theory. Annalen der Physik (Leipzig), 7 (1998), 716–725.
[61] G. C., Hegerfeldt, Particle localization and positivity of the energy in quantum theory. In A., Bohm, H.-D., Doebner, and P., Kielanowski, eds., Irreversibility and Causality: Semigroups and Rigged Hilbert Spaces, Lecture Notes in Physics, Volume 504 (Berlin: Springer, 1998), pp. 238–245.
[62] J. W., Gibbs, Elementary Principles in Statistical Mechanics (New York: Charles Scribner's Sons, 1902).
[63] D., Fraser, The fate of ‘particles’ in quantum field theories with interactions. Studies in History and Philosophy of Modern Physics, 39 (2008), 841–859.
[64] P. A. M., Dirac, The Principles of Quantum Mechanics (Oxford: Clarendon Press, 1930).
[65] M. E., Peskin & D. V., Schroeder, An Introduction to Quantum Field Theory (Reading, MA: Perseus Books, 1995).
[66] A., Zee, Quantum Field Theory in a Nutshell, 2nd ed. (Princeton, NJ: Princeton University Press, 2010).
[67] R. P., Feynman, Space-time approach to non-relativistic quantum mechanics. Review of Modern Physics, 20 (1948), 367–387.
[68] S., Weinberg, Foundations, Vol. 1 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).
[69] H., Goldstein, Classical Mechanics, 2nd ed. (Reading, MA: Addison-Wesley, 1980).
[70] R. M., Santilli, The Inverse Problem in Newtonian Mechanics, Vol. I of Foundations of Theoretical Mechanics (Berlin: Springer, 1978).
[71] D., Wallace, In defence of naiveté: The conceptual status of Lagrangian quantum field theory. Synthese, 151 (2006), 33–80.
[72] R., Haag, D., Kastler, An algebraic approach to quantum field theory. Journal of Mathematical Physics, 5 (1964), 848–861.
[73] R., Haag, Local Quantum Physics: Fields, Particles, Algebras, 2nd ed., Texts and Monographs in Physics (Berlin: Springer, 1996).
[74] A. S., Wightman, Quantum field theory in terms of vacuum expectation values. Physical Review, 101 (1956), 860–866.
[75] H. C., Öttinger, Kinetic theory and stochastic simulation of field quanta. Physical Review D, Physical Review D (90), 2014.
[76] C., Becchi, A., Rouet, R., Stora, Renormalization of gauge theories. Annals of Physics (N.Y.), 98 (1976), 287–321.
[77] I. V., Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, preprint of P. N. Lebedev Physical Institute, No. 39, 1975, arXiv:0812.0580 (1975).
[78] J. D., Bjorken, S. D., Drell, Relativistic Quantum Mechanics, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1964).
[79] C., Itzykson, J. B., Zuber, Quantum Field Theory, International Series in Pure and Applied Physics (New York: McGraw-Hill, 1980).
[80] S., Weinberg, Modern Applications, Vol. 2 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).
[81] S., Weinberg, Supersymmetry, Vol. 3 of The Quantum Theory of Fields (Cambridge: Cambridge University Press, 2005).
[82] E., Abdalla, M. C. B., Abdalla, K. D., Rothe, Non-Perturbative Methods in 2 Dimensional Quantum Field Theory (Singapore: World Scientific, 1991).
[83] H.-P., Breuer, F., Petruccione, The Theory of Open Quantum Systems (Oxford: Oxford University Press, 2002).
[84] H. C., Öttinger, The geometry and thermodynamics of dissipative quantum systems. Europhysics Letters 94 (2011), 10006.
[85] D., Taj, H. C., Öttinger, Natural approach to quantum dissipation. Physical Review A, 92 (2015), 062128.
[86] R., Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 12 (1957), 570–586.
[87] P. C., Martin, J., Schwinger, Theory of many-particle systems. I. Physical Review, 115 (1959), 1342–1373.
[88] G., Lindblad, On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48 (1976), 119–130.
[89] H. C., Öttinger, Dynamic coarse-graining approach to quantum field theory. Physical Review, D 84 (2011), 065007.
[90] H. C., Öttinger, Nonlinear thermodynamic quantum master equation: Properties and examples. Physical Review A, 82 (2010), 052119.
[91] E. B., Davies, Markovian master equations. Communication in Mathematical Physics, 39 (1974), 91–110.
[92] C. W., Gardiner, P., Zoller, Quantum Noise: A Handbook of Markovian and Non- Markovian Quantum Stochastic Methods with Applications to Quantum Optics, 3rd ed., Springer Series in Synergetics, Volume 56 (Berlin: Springer, 2004).
[93] P. G. de, Gennes, Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press, 1979).
[94] J. des, Cloizeaux, G., Jannink, Polymers in Solution: Their Modelling and Structure (Oxford: Clarendon Press, 1990).
[95] K. F., Freed, Renormalization Group Theory of Macromolecules, (New York: Wiley, 1987).
[96] Y., Oono, Statistical physics of polymer solutions: Conformation-space renormalization-group approach. Advances in Chemical Physics, 61 (1985), 301–437.
[97] H. C., Öttinger, Dynamic renormalization in the framework of nonequilibrium thermodynamics, Physical Review E, 79 (2009), 021124.
[98] H. C., Öttinger, Y., Rabin, Renormalization-group calculation of viscometric functions based on conventional polymer kinetic theory, Journal of Non-Newtonian Fluid Mechanics, 33 (1989), 53–93.
[99] H., Kleinert, V., Schulte-Frohlinde, Critical Properties of ϕ4-Theories (Singapore: World Scientific, 2001).
[100] L., Pietronero, The fractal structure of the universe: Correlations of galaxies and clusters and the average mass density. Physica A, 144 (1987), 257–284.
[101] E., Brézin, J. C. L., Guillon, J., Zinn-Justin, Field theoretical approach to critical phenomena. In: C., Domb, M. S., Green, eds., The Renormalization Group and Its Applications, Vol. 6 of Phase Transitions and Critical Phenomena (London: Academic Press, 1976), pp. 125–247.
[102] S., Weinberg, Critical phenomena for field theorists. In: A., Zichichi, ed., Understanding the Fundamental Constituents of Matter, Proceedings of the 1976 International School of Subnuclear Physics, The Subnuclear Series, Volume 14 (New York: Plenum Press, 1978), pp. 1–52.
[103] C. N., Yang, R. L., Mills, Conservation of isotopic spin and isotopic gauge invariance, Physical Review, 96 (1954), 191–195.
[104] J., Flakowski, M., Schweizer, H. C., Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation. II. Simulation. Physical Review A, 86 (2012), 032102.
[105] H. C., Öttinger, Stochastic process behind nonlinear thermodynamic quantum master equation. I. Mean-field construction, Physical Review A, 86 (2012), 032101.
[106] F. M., Kronz, Quantum entanglement and nonideal measurements: A critique of Margenau's objections to the projection postulate. Synthese, 89 (1991), 229–251.
[107] S., Friederich, Interpreting Quantum Theory: A Therapeutic Approach (Basingstoke, UK: Palgrave Macmillan, 2015).
[108] A., Einstein, B., Podolsky, N., Rosen, Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47 (1935), 777–780.
[109] J. S., Bell, On the Einstein-Podolsky-Rosen paradox. Physics, 1 (1964), 195–200.
[110] J. S., Bell, On the problem of hidden variables in quantum mechanics. Reviews of Modern Physics, 38 (1966), 447–452.
[111] M., Born, W., Heisenberg, P., Jordan, Zur Quantenmechanik II. Zeitschrift für Physik, 35 (1926), 557–615.
[112] P. A. M., Dirac, The quantum theory of the emission and absorption of radiation. Proc. Roy. Soc. Proceedings of the Royal Society of London A, 114 (1927), 243–265.
[113] P., Jordan, O., Klein, Zum Mehrkorperproblem in der Quantentheorie, Zeitschrift für Physik, 45 (1927), 751–765.
[114] P., Jordan, E., Wigner, Über das Paulische Aquivalenzverbot. Zeitschrift fur Physik 47 (1928), 631–651.
[115] W., Heisenberg, W., Pauli, Zur Quantendynamik der Wellenfelder, Zeitschrift für Physik, 56 (1929), 1–61.
[116] V., Fock, Konfigurationsraum und zweite Quantelung. Zeitschrift für Physik, 75 (1932), 622–647.
[117] J., Glimm, A., Jaffe, Constructive Quantum Field Theory, Vol. 2 of Collected Papers (Boston: Birkhauser, 1985).
[118] D. C., Brydges, J., Frohlich, A. D., Sokal, A new proof of the existence and nontriviality of the continuum ϕ 4 and ϕ 4 quantum field theories. Communication in Mathematical Physics, 91 (1983), 141–186.
[119] J., Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th ed., International Series of Monographs on Physics, Volume 113 (Oxford: Oxford University Press, 2002).
[120] F. J., Dyson, Divergence of perturbation theory in quantum electrodynamics. Physical Review, 85 (1952), 631–632.
[121] S. N., Gupta, Theory of longitudinal photons in quantum electrodynamics. Proceedings of the Physical Society A, 63 (1950), 681–691.
[122] K., Bleuler, Eine neue Methode zur Behandlung der longitudinalen und skalaren Photonen. Helvetica Physica Acta, 23 (1950), 567–586.
[123] O. M., Boyarkin, Particles, Fields, and Quantum Electrodynamics, Vol. I of Advanced Particle Physics (Boca Raton, FL: Taylor & Francis, 2011).
[124] C., Cohen-Tannoudji, J., Dupont-Roc, G., Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics (New York: Wiley, 1989).
[125] J., Schwinger, Field theory commutators. Physical Review Letters, 3 (1959), 296–297.
[126] K., Nishijima, R., Sasaki, Nature of the Schwinger term in spinor electrodynamics. Progress of Theoretical Physics, 53 (1975), 1809–1812.
[127] J., Kubo, An analysis on the convergence of equal-time commutators and the closure of the BRST algebra in Yang-Mills theories. Nuclear Physics B, 427 (1994), 398–424.
[128] T., Kinoshita (Ed.), Quantum Electrodynamics, Advanced Series on Directions in High Energy Physics, Volume 7 (Singapore: World Scientific, 1990).
[129] D., Nemeschansky, C., Preitschopf, M., Weinstein, A BRST primer. Annals of Physics (N.Y.), 183 (1988), 226–268.
[130] C. S., Gardner, J. M., Greene, M. D., Kruskal, R. M., Miura, Method for solving the Korteweg-deVries equation. Physical Review Letters, 19 (1967), 1095–1097.
[131] H. B., Thacker, Polynomial conservation laws in (1 + 1)-dimensional classical and quantum field theory. Physical Review, D 17 (1978), 1031–1040.
[132] J., Honerkamp, P., Weber, A., Wiesler, On the connection between the inverse transform method and the exact quantum eigenstates. Nuclear Physics B, 152 (1979), 266–272.
[133] L. D., Faddeev, Quantum completely integral models of field theory. Soviet Scientific Reviews C, 1 (1980), 107–155.
[134] H. C., Öttinger, Correlation functions for n species of one-dimensional impenetrable bosons. Physica A, 107 (1981), 423–430.
[135] L., Faddeev, Instructive history of the quantum inverse scattering method. Acta Applicandae Mathematicae, 39 (1995), 69–84.
[136] C. N., Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Physical Review Letters, 19 (1967), 1312–1315.
[137] R. J., Baxter, Partition function of the eight-vertex lattice model. Annals of Physics, 70 (1972), 193–228.
[138] A. B., Zamolodchikov, Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field theory models, Annals of Physics, 120 (1979), 253–291.
[139] H. C., Öttinger, J., Honerkamp, Note on the Yang-Baxter equations for generalized Baxter models. Physics Letters A, 88 (1982), 339–343.
[140] J., Schwinger, Gauge invariance and mass. II. Physical Review, 128 (1962), 2425–2429.
[141] J. H., Lowenstein, J. A., Swieca, Quantum electrodynamics in two dimensions. Annals of Physics, 68 (1971), 172–195.
[142] J. B., Kogut, L., Susskind, How quark confinement solves the η → 3π problem. Physical Review D, 11 (1975), 3594–3610.
[143] F., Englert, R., Brout, Broken symmetry and the mass of gauge vector mesons. Physical Review Letters, 13 (1964), 321–323.
[144] P. W., Higgs, Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13 (1964), 508–509.
[145] G. S., Guralnik, C. R., Hagen, T.W. B., Kibble, Global conservation laws and massless particles. Physical Review Letters, 13 (1964), 585–587.
[146] M. B., Halpern, Equivalent-boson method and free currents in two-dimensional gauge theories. Physical Review D, 13 (1976), 337–342.
[147] D. C., Mattis, E. H., Lieb, Exact solution of a many-fermion system and its associated boson field. Journal of Mathematical Physics, 6 (1965), 304–312.
[148] S., Mandelstam, Soliton operators for the quantized sine-Gordon equation. Physical Review D, 11 (1975), 3026–3030.
[149] H., Lehmann, K., Symanzik, W., Zimmermann, Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento, 1 (1955), 205–225.
[150] R., Haag, Quantum field theories with composite particles and asymptotic conditions. Physical Review, 112 (1958), 669–673.
[151] D., Ruelle, On the asymptotic condition in quantum field theory. Helvetica Physica Acta, 35 (1962), 147–163.
[152] HRS Collaboration, Experimental study of the reactions e+ e− → e+ e− and e+ e− → γ γ at 29 GeV. Physical Review D, 34 (1986) 3286–3303.
[153] DELPHI Collaboration, Determination of the e+ e → γ γ(γ) cross-section at LEP 2. The European Physical Journal C, 37 (2004), 405–419.
[154] I. S., Gradshteyn, I. M., Ryzhik, Table of Integrals, Series and Products, 4th ed. (San Diego, CA: Academic Press, 1980).
[155] J., Schwinger, On quantum-electrodynamics and the magnetic moment of the electron. Physical Review, 73 (1948), 416–417.
[156] K. G., Wilson, Confinement of quarks. Physical Review D, 10 (1974), 2445–2459.
[157] S., Duane, J. B., Kogut, The theory of hybrid stochastic algorithms. Nuclear Physics B, 275 (1986), 398–420.
[158] S., Gottlieb, W., Liu, D., Toussaint, R. L., Renken, R. L., Sugar, Hybrid-moleculardynamics algorithms for the numerical simulation of quantum chromodynamics. Physical Review D, 35 (1987), 2531–2542.
[159] J. B., Kogut, E., Dagotto, A., Kocic, New phase of quantum electrodynamics: A nonperturbative fixed point in four dimensions. Physical Review Letters, 60 (1988), 772–775.
[160] J. B., Kogut, E., Dagotto, A., Kocic, A supercomputer study of strongly coupled QED. Nuclear Physics B, 317 (1989), 271–301.
[161] S., Kim, J. B., Kogut, M.-P., Lombardo, Gauged Nambu–Jona-Lasinio studies of the triviality of quantum electrodynamics. Physical Review D, 65 (2002), 054015.
[162] M., Gockeler, R., Horsley, E., Laermann, P., Rakow, G., Schierholz, R., Sommer, U.-J., Wiese, QED – A lattice investigation of the chiral phase transition and the nature of the continuum limit. Nuclear Physics B, 334 (1990), 527–558.
[163] M., Gockeler, R., Horsley, P., Rakow, G., Schierholz, R., Sommer, Scaling laws, renormalization group flow and the continuum limit in non-compact lattice QED. Nuclear Physics B, 371 (1992), 713–772.
[164] M., Gockeler, R., Horsley, V., Linke, P. E. L., Rakow, G., Schierholz, H., Stüben, Seeking the equation of state of non-compact lattice QED. Nuclear Physics B, 487 (1997), 313–341.
[165] M., Gockeler, R., Horsley, V., Linke, P., Rakow, G., Schierholz, H., Stüben, Is there a Landau pole problem in QED? Physical Review Letters, 80 (1998), 4119–4122.
[166] A., Vassallo, M., Esfeld, Leibnizian relationalism for general relativistic physics. Studies in History and Philosophy of Modern Physics, 55 (2016), 101–107.
[167] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of Yang-Mills theories physical state subsidiary conditions and physical S-matrix unitarity. Physics Letters B, 73 (1978), 459–462.
[168] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang-Mills field theories. I. General formalism. Progress of Theoretical Physics, 60 (1978), 1869–1889.
[169] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang- Mills field theories. II. SU(2) Higgs-Kibble model with spontaneous symmetry breaking. Progress of Theoretical Physics, 61 (1979), 294–314.
[170] T., Kugo, I., Ojima, Manifestly covariant canonical formulation of the Yang-Mills field theories. III. Pure Yang-Mills theories without spontaneous symmetry breaking. Progress of Theoretical Physics, 61 (1979), 644–655.


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed