Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T20:58:44.295Z Has data issue: false hasContentIssue false

12 - Spinodal decomposition

from Part III - Types of phase transformations

Published online by Cambridge University Press:  05 September 2014

Brent Fultz
Affiliation:
California Institute of Technology
Get access

Summary

Figures 1.5c,d and 1.6a,b illustrate the difference between chemical unmixing that occurs by nucleation and growth (the topic of the previous Chapter 11) and spinodal decomposition (the topic of Chapter 12). Nucleation creates a distinct surface between the new phase and the parent phase, and the two phases differ significantly in their chemical composition or structure. In addition to the surface energy, an elastic energy is often important, too.

Spinodal decomposition does not involve a surface in the usual sense because it begins with infinitesimally small changes in composition. Nevertheless, there is an energy cost for gradients in composition, specifically the square of the gradient, since a region with a large composition gradient begins to look like an interface. The “square gradient energy” is an important new concept presented in this chapter, but it is also essential to phase field theory and to the Ginzburg–Landau theory of superconductivity.

At the end of Sect. 2.7 on unmixing phase diagrams, it was pointed out that there are conceptual problems with a free energy that is concave downwards because the alloy is unstable, but the free energy pertains to equilibrium states. An unstable free energy function may prove useful for short times, however. Taking a kinetic approach, we use the thermodynamic tendencies near equilibrium to obtain a chemical potential to drive a diffusion flux that causes unmixing.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Spinodal decomposition
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107589865.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Spinodal decomposition
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107589865.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Spinodal decomposition
  • Brent Fultz, California Institute of Technology
  • Book: Phase Transitions in Materials
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781107589865.016
Available formats
×