Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T12:02:58.045Z Has data issue: false hasContentIssue false

5 - Phagocytosis of Streptococcus pneumoniae

Published online by Cambridge University Press:  07 August 2009

Dominic L. Jack
Affiliation:
Professor of Medical Microbiology Linköping University
David H. Dockrell
Affiliation:
Division of Genomic Medicine University of Sheffield Medical School, Beech Hill Road
Robert C. Read
Affiliation:
Division of Genomic Medicine University of Sheffield Medical School
Joel D. Ernst
Affiliation:
New York University
Olle Stendahl
Affiliation:
Linköpings Universitet, Sweden
Get access

Summary

INTRODUCTION

Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide, and commonly colonizes the upper respiratory tract. In some colonized individuals the organism translocates to other tissues and causes life-threatening diseases including pneumonia, bacteremia, and meningitis. Rates of disease are especially high in the very young and old and in patients with predisposing conditions including HIV infection, cardiopulmonary or co-morbidities, renal diseases including nephrotic syndrome, and sickle cell disease and other causes of hyposplenia.

Approximately 5 million children under the age of 5 years die with a respiratory tract infection every year; the major causative pathogen in these cases is S. pneumoniae (Williams et al. 2002). Pneumococcal infection caused approximately 45,000 deaths in adults in the United States in 1998, about two years prior to the introduction of the 7-valent pneumococcal conjugate vaccine for infants (Robinson et al. 2001). Streptococcus pneumoniae also causes less serious but extremely common diseases such as otitis media, sinusitis and exacerbations of chronic obstructive pulmonary disease. It has been estimated that there are 7 million cases of otitis media in the United States every year (Stool & Field 1989).

OVERVIEW OF PATHOGENESIS

Nasopharyngeal carriage

The first step in the pathogenesis of pneumococcal disease is nasopharyngeal colonization, with individuals often carrying more than one serotype at a time. Asymptomatic nasopharyngeal carriage is established when surface components of the pneumococcus bind to nasal epithelium (Tuomanen & Masure 1997; Weiser et al., 1996).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, C., Sancetta, R., Cerutti, A., and Semenzato, G.. 1995. Alveolar macrophages as a cell source of cytokine hyperproduction in HIV-related interstitial lung disease. J Leukoc Biol 58(5): 495–500.CrossRefGoogle ScholarPubMed
Ali, F., Lee, M. E., Iannelli, F.et al. 2003. Streptococcus pneumoniae-associated human macrophage apoptosis after bacterial internalization via complement and Fcgamma receptors correlates with intracellular bacterial load. J Infect Dis 188: 1119–31CrossRefGoogle ScholarPubMed
Allen, R. C., Mills, E. L., McNitt, T. R., and Quie, P. G.. 1981. Role of myeloperoxidase and bacterial metabolism in chemiluminescence of granulocytes from patients with chronic granulomatous disease. J Infect Dis 144: 344–8CrossRefGoogle ScholarPubMed
Alonso de Velasco, E., A. F. Verheul, Verhoef, J., and H Snippe. 1995. Streptococcus pneumoniae: virulence factors, pathogenesis, and vaccines. Microbiol Rev 59: 591–603Google Scholar
Antony, V. B., Godbey, S. W., Hott, J. W., and Queener, S. F.. 1993. Alcohol-induced inhibition of alveolar macrophage oxidant release in vivo and in vitro. Alcohol Clin Exp Res 17(2): 389–93CrossRefGoogle ScholarPubMed
Arulanandam, B. P., Lynch, J. M., D. E. Briles, Hollingshead, S., and Metzger, D. W.. 2001. Intranasal vaccination with pneumococcal surface protein A and interleukin-12 augments antibody-mediated opsonization and protective immunity against Streptococcus pneumoniae infection. Infect Immun 69(11): 6718–24CrossRefGoogle ScholarPubMed
Bals, R., Wang, X., Wu, Z.et al. 1998. Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J Clin Invest 102(5): 874–80CrossRefGoogle ScholarPubMed
Bergeron, Y., Ouellet, N., A. M. Deslauriers et al. 1998. Cytokine kinetics and other host factors in response to pneumococcal pulmonary infection in mice. Infect Immun 66(3): 912–22Google ScholarPubMed
Bergeron, Y., Ouellet, N., Simard, M., Olivier, M., and Bergeron, M. G.. 1999. Immunomodulation of pneumococcal pulmonary infection with N(G)-monomethyl-L-arginine. Antimicrob Agents Chemother 43: 2283–90Google Scholar
Blumenthal, R. L., D. E. Campbell, P. Hwang et al. 2001. Human alveolar macrophages induce functional inactivation in antigen-specific CD4 T cells. J Allergy Clin Immunol 107(2): 258–64CrossRefGoogle ScholarPubMed
Bottcher, T., Gerber, J., Wellmer, A.et al. 2000. Rifampin reduces production of reactive oxygen species of cerebrospinal fluid phagocytes and hippocampal neuronal apoptosis in experimental Streptococcus pneumoniae meningitis. J Infect Dis 181: 2095–8CrossRefGoogle ScholarPubMed
Botto, M. 2000. C3. In The Complement Factsbook, 1st edn, Morley, B. J. & Walport, M. J., eds, pp. 88–94. London: Academic Press.Google Scholar
Boyton, R. J., and Openshaw, P. J.. 2002. Pulmonary defences to acute respiratory infection. Br Med Bull 61: 1–12CrossRefGoogle ScholarPubMed
Braun, J. S., Novak, R., Gao, G., Murray, P. J., and Shenep, J. L.. 1999. Pneumolysin, a protein toxin of Streptococcus pneumoniae, induces nitric oxide production from macrophages. Infect Immun 67: 3750–6Google ScholarPubMed
Briles, D. E., Nahm, M., Schroer, K.et al. 1981. Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 Streptococcus pneumoniae. J Exp Med 153: 694–705CrossRefGoogle ScholarPubMed
Briles, D. E., Tart, R. C., Swiatlo, E.et al. 1998. Pneumococcal diversity: considerations for new vaccine strategies with emphasis on pneumococcal surface protein A (PspA). Clin Microbiol Rev 11: 645–57Google Scholar
Brown, E. J., Hosea, S. W., and Frank, M. M.. 1981. The role of the spleen in experimental pneumococcal bacteremia. J Clin Invest 67(4): 975–82CrossRefGoogle ScholarPubMed
Brown, E. J., Hosea, S. W., and Frank, M. M.. 1983a. The role of antibody and complement in the reticuloendothelial clearance of pneumococci from the bloodstream. Rev Infect Dis 5 (Suppl 4): S797–S805CrossRefGoogle Scholar
Brown, E. J., Joiner, K. A., Cole, R. M., and Berger, M. 1983b. Localisation of complement component 3 on Streptococcus pneumoniae; anti-capsular antibody causes complement deposition on the pneumococcal capsule. Infect Immun 39(1): 403–9Google Scholar
Brown, J. S., Hussell, T., S. M. Gilliand et al. 2002. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci USA 99: 16969–74CrossRefGoogle ScholarPubMed
Chelen, C. J., Fang, Y., G. J. Freeman et al. 1995. Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J Clin Invest 95(3): 1415–21CrossRefGoogle ScholarPubMed
Chen, G. H., Reddy, R. C., M. W. Newstead et al. 2000. Intrapulmonary TNF gene therapy reverses sepsis-induced suppression of lung antibacterial host defense. J Immunol 165(11): 6496–503CrossRefGoogle ScholarPubMed
Clark, R. A. 1986. Oxidative inactivation of pneumolysin by the myeloperoxidase system and stimulated human neutrophils. J Immunol 136: 4617–22Google ScholarPubMed
Clatworthy, M. R., and Smith, K. G.. 2004. Fc{gamma}RIIb balances efficient pathogen clearance and the cytokine-mediated consequences of sepsis. J Exp Med 199(5): 717–23CrossRefGoogle Scholar
Coakley, R. J., Taggart, C., McElvaney, N. G., and S. J. O'Neill. 2002. Cytosolic pH and the inflammatory microenvironment modulate cell death in human neutrophils after phagocytosis. Blood 100: 3383–91CrossRefGoogle ScholarPubMed
Cockeran, R., Anderson, R., and Feldman, C.. 2002a. The role of pneumolysin in the pathogenesis of Streptococcus pneumoniae infection. Curr Opin Infect Dis 15(3): 235–9CrossRefGoogle Scholar
Cockeran, R., Durandt, C., Feldman, C., Mitchell, T. J., and Anderson, R.. 2002b. Pneumolysin activates the synthesis and release of interleukin-8 by human neutrophils in vitro. J Infect Dis 186: 562–565CrossRefGoogle Scholar
Colino, J., Shen, Y., and Snapper, C. M.. 2002. Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms. J Exp Med 195(1): 1–13CrossRefGoogle ScholarPubMed
Coonrod, J. D. 1986. The role of extracellular bactericidal factors in pulmonary host defense. Semin Respir Infect 1: 118–29Google ScholarPubMed
Coonrod, J. D. 1989. Role of leukocytes in lung defenses. Respiration 55 (Suppl 1): 9–13CrossRefGoogle ScholarPubMed
Coonrod, J. D., and Yoneda, K.. 1981. Complement and opsonins in alveolar secretions and serum of rats with pneumonia due to Streptococcus pneumoniae. Rev Infect Dis 3(2): 310–22CrossRefGoogle ScholarPubMed
Coonrod, J. D., Varble, R., and Jarrells, M. C.. 1990. Species variation in the mechanism of killing of inhaled pneumococci. J Lab Clin Med 116(3): 354–62Google ScholarPubMed
Crouch, E., and Wright, J. R.. 2001. Surfactant proteins A and D and pulmonary host defense. Rev Physiol 63: 521–54CrossRefGoogle Scholar
Cundell, D. R., Gerard, N. P., Gerard, C., Idanpaan, H. I., and Tuomanen, E. I.. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377(6548): 435–8CrossRefGoogle ScholarPubMed
Dave, S., A. Brooks-Walter, Pangburn, M. K., and McDaniel, L. S.. 2001. PspC, a pneumococcal surface protein, binds human factor H. Infect Immun 69: 3435–7CrossRefGoogle ScholarPubMed
Dave, S., Carmicle, S., Hammerschmidt, S., Pangburn, M. K., and McDaniel, L. S.. 2004. Dual roles of PspC, a surface protein of Streptococcus pneumoniae, in binding human secretory IgA and factor H. J Immunol 173: 471–4CrossRefGoogle ScholarPubMed
Delclaux, C., S. Rezaiguia-Delclaux, C. Delacourt et al. 1997. Alveolar neutrophils in endotoxin-induced and bacteria-induced acute lung injury in rats. Am J Physiol 273: L104–2Google ScholarPubMed
Dempsey, P. W., Allison, M. E., Akkaraju, S., Goodnow, C. C., and Fearon, D. T.. 1996. C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271: 348–50CrossRefGoogle ScholarPubMed
Dintilhac, A., Alloing, G., Granadel, C., and Claverys, J. P.. 1997. Competence and virulence of Streptococcus pneumoniae: Adc and PsaA mutants exhibit a requirement for zinc and manganese resulting from an activation of putative ABC metal permeases. Molec Microbiol 25: 727–39CrossRefGoogle Scholar
Dockrell, D. H. 2001. Apoptotic cell death in the pathogenesis of infectious diseases. J Infect 42: 227–34CrossRefGoogle ScholarPubMed
Dockrell, D. H., Lee, M., Lynch, D. H., and Read, R. C.. 2001. Immune-mediated phagocytosis and killing of Streptococcus pneumoniae are associated with direct and bystander macrophage apoptosis. J Infect Dis 184: 713–22CrossRefGoogle ScholarPubMed
Dockrell, D. H., Marriott, H. M., L. R. Prince et al. 2003. Alveolar macrophage apoptosis contributes to pneumococcal clearance in a resolving model of pulmonary infection. J Immunol 171(10): 5380–8CrossRefGoogle Scholar
Doerschuk, C. M. 2001. Mechanisms of leukocyte sequestration in inflamed lungs. Microcirculation 8: 71–8CrossRefGoogle ScholarPubMed
Emmerik, L. C. v., Kuijper, E. J., C. A. Fijen, Dankert, J., and Thiel, S.. 1994. Binding of mannan-binding protein to various bacterial pathogens of meningitis. Clin Exp Immunol 97: 411–6CrossRefGoogle ScholarPubMed
Esposito, A. L. 1984. Aspirin impairs antibacterial mechanisms in experimental pneumococcal pneumonia. Am Rev Respir Dis 130(5): 857–62Google ScholarPubMed
Esposito, A. L. 1985. Digoxin disrupts the inflammatory response in experimental pneumococcal pneumonia. J Infect Dis 152(1): 14–23CrossRefGoogle ScholarPubMed
Ettensohn, D. B., and N. J. Roberts, Jr. 1983. Human alveolar macrophage support of lymphocyte responses to mitogens and antigens. Analysis and comparison with autologous peripheral-blood-derived monocytes and macrophages. Am Rev Respir Dis 128(3): 516–22CrossRefGoogle ScholarPubMed
Fang, F. C. 2004. Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2: 820–32CrossRefGoogle ScholarPubMed
Gaboriaud, C., Thielens, N. M., L. A. Gregory et al. 2004. Structure and activation of the C1 complex of complement: unraveling the puzzle. Trends Immunol 25: 368–73CrossRefGoogle ScholarPubMed
Gant, V., Cluzel, M., Shakoor, Z.et al. 1992. Alveolar macrophage accessory cell function in bronchial asthma. Am Rev Respir Dis 146(4): 900–4CrossRefGoogle ScholarPubMed
Gardner, S. E., Anderson, D. C., B. J. Webb et al. 1982. Evaluation of Streptococcus pneumoniae type XIV opsonins by phagocytosis-associated chemiluminescence and a bactericidal assay. Infect Immun 35(3): 800–8Google Scholar
Garg, M., Kaplan, A. M., and Bondada, S.. 1994. Cellular basis of differential responsiveness of lymph nodes and spleen to 23-valent Pnu-Imune vaccine. J Immunol 152(4): 1589–96Google ScholarPubMed
Gentry, M. J., Snitily, M. U., and Preheim, L. C.. 1995. Phagocytosis of Streptococcus pneumoniae measured in vitro and in vivo in a rat model of carbon tetrachloride-induced liver cirrhosis. J Infect Dis 171(2): 350–5CrossRefGoogle Scholar
Goldblatt, D. 2000. Conjugate vaccines. Clin Exp Immunol 119: 1–3CrossRefGoogle ScholarPubMed
Gordon, S. B., and Read, R. C.. 2002. Macrophage defences against respiratory tract infections. Br Med Bull 61: 45–61CrossRefGoogle ScholarPubMed
Gordon, S. B., Irving, G. R., R. A. Lawson, Lee, M. E., and Read, R. C.. 2000. Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins. Infect Immun 68(4): 2286–93CrossRefGoogle ScholarPubMed
Gordon, S. B., Molyneux, M. E., M. J. Boeree et al. 2001. Opsonic phagocytosis of Streptococcus pneumoniae by alveolar macrophages is not impaired in human immunodeficiency virus-infected Malawian adults. J Infect Dis 184(10): 1345–9CrossRefGoogle Scholar
Gordon, S. B., Miller, D. E., R. B. Day et al. 2003. Pulmonary immunoglobulin responses to Streptococcus pneumoniae are altered but not reduced in Human Immunodeficiency Virus-infected Malawian adults. J Infect Dis 188(5): 666–70CrossRefGoogle Scholar
Gordon, S. B., Jarman, E. R., Kanyanda, S.et al. 2005. Reduced interleukin-8 response to Streptococcus pneumoniae by alveolar macrophages from adults with HIV/AIDS. AIDS 19(11): 1197–200CrossRefGoogle ScholarPubMed
Green, G. M. 1985. Mechanisms of tobacco smoke toxicity on pulmonary macrophage cells. Eur J Respir Dis (Suppl) 139: 82–5Google ScholarPubMed
Greenberg, J. W., Fischer, G. W., and Joiner, K. A.. 1996. Influence of lipoteichoic acid structure on recognition by the macrophage scavenger receptor. Infect Immun 64(8): 3318–25Google ScholarPubMed
Greenberg, S. S., Zhao, X., Hua, L.et al. 1999. Ethanol inhibits lung clearance of Pseudomonas aeruginosa by a neutrophil and nitric oxide-dependent mechanism, in vivo. Alcohol Clin Exp Res 23(4): 735–44CrossRefGoogle ScholarPubMed
Guo, R. F., and Ward, P. A.. 2002, Mediators and regulation of neutrophil accumulation in inflammatory responses in lung: insights from the IgG immune complex model. Free Radical Biol Med 33: 303–10CrossRefGoogle ScholarPubMed
Hammerschmidt, S., Talay, S. R., Brandtzaeg, P., and Chatwall, G. S.. 1997. SpsA, a novel pneumococcal surface protein with specific binding to secretory immunoglobulin A and secretory component. Molec Microbiol 35: 1113–24CrossRefGoogle Scholar
Hammerschmidt, S., Bethe, G., Remane, P. H., and Chatwall, G. S.. 1999. Identification of pneumococcal surface protein A as a lactoferrin-binding protein of Streptococcus pneumoniae. Infect Immun 67: 1683–7Google ScholarPubMed
Harms, G., Hardonk, M. J., and Timens, W.. 1996. In vitro complement-dependent binding and in vivo kinetics of pneumococcal polysaccharide TI-2 antigens in the rat spleen marginal zone and follicle. Infect Immun 64(10): 4220–5Google ScholarPubMed
Hartshorn, K. L., Crouch, E., M. R. White et al. 1998. Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria. Am J Physiol 274: L958–69Google Scholar
Haslett, C. 1999. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 160: S5–11CrossRefGoogle ScholarPubMed
Haynes, B. F., Telen, M. J., Hale, L. P., and Denning, S. N.. 1989. CD44 – a molecule involved in leucocyte adherence and T cell activation. Immunol Today 10: 423–8CrossRefGoogle ScholarPubMed
Hebert, J. C., and M. O'Reilly. 1996. Granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances pulmonary defenses against pneumococcal infections after splenectomy. J Trauma 41(4): 663–6CrossRefGoogle ScholarPubMed
Hebert, J. C., M. O'Reilly, K. Yuenger et al. 1994. Augmentation of alveolar macrophage phagocytic activity by granulocyte colony stimulating factor and interleukin-1: influence of splenectomy. J Trauma 37: 909–12CrossRefGoogle ScholarPubMed
Henneke, P., Takeuchi, O., Malley, R.et al. 2002. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J Immunol 169: 3970–7CrossRefGoogle ScholarPubMed
Hetts, S. W. 1998. To die or not to die: an overview of apoptosis and its role in disease. JAMA 279: 300–7CrossRefGoogle ScholarPubMed
Hirschmann, J. V., and Lipsky, B. A.. 1994. The pneumococcal vaccine after 15 years of use. Arch Intern Med 154: 373–7CrossRefGoogle ScholarPubMed
Hof, D. G., Repine, J. E., Peterson, P. K., and Hoidal, J. R.. 1980. Phagocytosis by human alveolar macrophages and neutrophils: qualitative differences in the opsonic requirements for uptake of Staphylococcus aureus and Streptococcus pneumoniae in vitro. Am Rev Respir Dis 121: 65–71Google ScholarPubMed
Hof, D. G., Repine, J. E., Giebink, G. S., and Hoidal, J. R.. 1981. Production of opsonins that facilitate phagocytosis of Streptococcus pneumoniae by human alveolar macrophages or neutrophils after vaccination with pneumococcal polysaccharide. Am Rev Respir Dis 124: 193–5Google ScholarPubMed
Hogg, N. 1992. Roll, roll, roll your leukocyte gently down the vein. Immunol Today 13: 113–5CrossRefGoogle ScholarPubMed
Hoidal, J. R., Schmeling, D., and Peterson, P. K.. 1981. Phagocytosis, bacterial killing, and metabolism by purified human lung phagocytes. J Infect Dis 144(1): 61–71CrossRefGoogle ScholarPubMed
Holmskov, U., Thiel, S., and Jensenius, J. C.. 2003. Collectins and ficolins: Humoral lectins of the innate immune defense. A Rev Immunol 21: 547–78CrossRefGoogle ScholarPubMed
Hosea, S. W., Brown, E. J., and Frank, M. M.. 1980. The critical role of complement in experimental pneumococcal sepsis. J Infect Dis 142: 903–9CrossRefGoogle ScholarPubMed
Hosea, S. W., Brown, E. J., Hamburger, M. I., and Frank, M. M.. 1981a. Opsonic requirements for intravascular clearance after splenectomy. New Engl J Med 304: 245–50CrossRefGoogle Scholar
Hosea, S. W., C. G. Burch, E. J. Brow, Berg, R. A., and Frank, M. M.. 1981b. Impaired immune response of splenectomised patients to polyvalent pneumococcal vaccine. Lancet 1(8224): 804–7CrossRefGoogle Scholar
Hostetter, M. K. 1986. Serotypic variations among virulent pneumococci in deposition and degradation of covalently bound C3b: implications for phagocytosis and antibody production. J Infect Dis 153: 682–93CrossRefGoogle ScholarPubMed
Hostetter, M. K. 1999. Opsonic and nonopsonic interactions of C3 with Streptococcus pneumoniae. Microb Drug Resist Mech Epidem Dis 5: 85–9CrossRefGoogle ScholarPubMed
Huber, G. L., Sornberger, G. C., Mahajan, V., Cutting, M. E., and McCarthy, C. R.. 1997. Impairment of alveolar macrophage bactericidal function by cigar smoke. Bull Eur Physiopathol Respir 13(4): 513–21Google Scholar
Hunninghake, G. W., Gallin, J. I., and Fauci, A. S.. 1978. Immunologic reactivity of the lung: the in vivo and in vitro generation of a neutrophil chemotactic factor by alveolar macrophages. Am Rev Respir Dis 117(1): 15–23Google Scholar
Ieong, M. H., Reardon, C. C., Levitz, S. M., and Kornfeld, H.. 2000. Human immunodeficiency virus type 1 infection of alveolar macrophages impairs their innate fungicidal activity. Am J Resp Crit Care Med 162(3 Pt 1): 966–70CrossRefGoogle ScholarPubMed
Jack, D. L., Klein, N. J., and Turner, M. W.. 2001. Mannose-binding lectin: targetting the microbial world for complement attack and opsonophagocytosis. Immunol Rev 180: 86–99CrossRefGoogle Scholar
Janoff, E. N., Fasching, C., Orenstein, J. M.et al. 1999. Killing of Streptococcus pneumoniae by capsular polysaccharide-specific polymeric IgA, complement, and phagocytes. J Clin Invest 104: 1139–47CrossRefGoogle ScholarPubMed
Jarva, H., Janulczyk, R., Hellwage, J.et al. 2002. Streptococcus pneumoniae evades complement attack and opsonophagocytosis by expressing the pspC locus-encoded Hic protein that binds to short consensus repeats 8–11 of factor H. J Immunol 168: 1886–94CrossRefGoogle ScholarPubMed
Jedrzejas, M. J. 2001. Pneumococcal virulence factors: structure and function. Microbiol Molec Biol Rev 65: 187–207CrossRefGoogle ScholarPubMed
Jeffery, P. K. 1987. The origins of secretions in the lower respiratory tract. Eur J Respir Dis (Suppl) 153: 34–42Google ScholarPubMed
Johnson, J. D., Hand, W. L., King, N. L., and Hughes, C. G.. 1975. Activation of alveolar macrophages after lower respiratory tract infection. J Immunol 115: 80–4Google ScholarPubMed
Johnson, S., Opstad, N. L., J. M. Jr. Douglas, and Janoff, E. N.. 1996. Prolonged and preferential production of polymeric immunoglobulin A in response to Streptococcus pneumoniae capsular polysaccharides. Infect Immun 64: 4339–44Google ScholarPubMed
Jonsson, S., Musher, D. M., Chapman, A., Goree, A., and Lawrence, E. C.. 1985. Phagocytosis and killing of common bacterial pathogens of the lung by human alveolar macrophages. J Infect Dis 152(1): 4–13CrossRefGoogle Scholar
Jounblat, R., Kadioglu, A., Mitchell, T. J., and Andrew, P. W.. 2003. Pneumococcal behavior and host responses during bronchopneumonia are affected differently by the cytolytic and complement-activating activities of pneumolysin (vol 71: pg 1813, 2003). Infect Immun 71: 7239CrossRefGoogle Scholar
Jounblat, R., Kadioglu, A., Iannelli, F.et al. 2004. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains but, SP-D fails to enhance killing by neutrophils. Infect Immun 72: 709–16CrossRefGoogle ScholarPubMed
Kadioglu, A., Gingles, N. A., Grattan, K.et al. 2000. Host cellular immune response to pneumococcal lung infection in mice. Infect Immun 68: 492–501CrossRefGoogle ScholarPubMed
Kadioglu, A., Coward, W., M. J. Colston, C. R. A. Hewitt, and Andrew, P. W.. 2004. CD4-T-lymphocyte interactions with pneumolysin and pneumococci suggest a crucial protective role in the host response to pneumococcal infection. Infect Immun 72(5): 2689–97CrossRefGoogle ScholarPubMed
Kang, Y.-S., J. Y. Kim, S. A. Bruening et al. 2004. The C-type lectin SIGN-RI mediates uptake of the capsular polysaccharide of Streptococcus pneumoniae in the marginal zone of mouse spleen. Proc Natl Acad Sci USA 101(1): 215–20CrossRefGoogle Scholar
Karlsson, M. C. I., Guinamard, R., Bolland, S.et al. 2003. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med 198(2): 333–40CrossRefGoogle ScholarPubMed
Kerr, A. R., Wei, X. Q., Andrew, P. W., and Mitchell, T. J.. 2004. Nitric oxide exerts distinct effects in local and systemic infections with Streptococcus pneumoniae. Microb Pathog 36: 303–310CrossRefGoogle ScholarPubMed
Kiluchi, R., Watabe, N., Konno, T., Mishina, N., Sekizawa, K., and Sasaki, H.. 1994. High incidence of silent aspiration in elderly individuals with community acquired pneumonia. Am J Resp Crit Care Med 150: 251–3Google Scholar
Kim, J. O., and Weiser, J. N.. 1998. Association of intrastrain phase variation in quantity of capsular polysaccharide and teichoic acid with the virulence of Streptococcus pneumoniae. J Infect Dis 177(2): 368–77CrossRefGoogle ScholarPubMed
Klein, N. J., Ison, C. A., Peakman, M.et al. 1996. The influence of capsulation and lipooligosaccharide structure on neutrophil adhesion molecule expression and endothelial injury by Neisseria meningitidis. J Infect Dis 173: 172–9CrossRefGoogle ScholarPubMed
Knapp, S., Leemans, J. C., Florquin, S.et al. 2003. Alveolar macrophages have a protective antiinflammatory role during murine pneumococcal pneumonia. Am J Respir Crit Care Med 167(2): 171–9CrossRefGoogle ScholarPubMed
Koch, C. C., Esteban, D. J., A. C. Chin et al. 2000. Apoptosis, oxidative metabolism and interleukin-8 production in human neutrophils exposed to azithromycin: effects of Streptococcus pneumoniae. J Antimicrob Chemother 46: 19–26CrossRefGoogle ScholarPubMed
Koziel, H., Li, X., M. Y. Armstrong, Richards, F. F., and Rose, R. M.. 2000. Alveolar macrophages from human immunodeficiency virus-infected persons demonstrate impaired oxidative burst response to Pneumocystis carinii in vitro. Am J Respir Cell Mol Biol 23(4): 452–9CrossRefGoogle ScholarPubMed
Kragsbjerg, P., and Fredlund, H.. 2001. The effects of live Streptococcus pneumoniae and tumor necrosis factor-α on neutrophil oxidative burst and β2-integrin expression. Clin Microbiol Infect 7: 125–9CrossRefGoogle Scholar
Kronborg, G., and Garred, P.. 2002. Mannose-binding lectin genotype as a risk factor for invasive pneumococcal infection. Lancet 360: 1176CrossRefGoogle ScholarPubMed
Kruetzmann, S., Rosado, M. M., Weber, H.et al. 2003. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J Exp Med 197(7): 939–45CrossRefGoogle Scholar
Kunkel, E. J., and Butcher, E. C.. 2003. Plasma-cell homing. Nat Rev Immunol 3(10): 822–829CrossRefGoogle ScholarPubMed
Kuronuma, K., Sano, H., Kato, K.et al. 2004. Pulmonary surfactant protein A augments the phagocytosis of Streptococcus pneumoniae by alveolar macrophages through a casein kinase 2-dependent increase of cell surface localization of scavenger receptor A. J Biol Chem 279: 21421–30CrossRefGoogle ScholarPubMed
Lambrecht, B. N., Prins, J. B., and Hoogsteden, H. C.. 2001. Lung dendritic cells and host immunity to infection. Eur Respir J 18(4): 692–704Google ScholarPubMed
Lammas, D. A., Stober, C., C. J. Harvey et al. 1997. ATP-induced killing of mycobacteria by human macrophages is mediated by purinergic P2Z(P2X7) receptors. Immunity 7: 433–44CrossRefGoogle ScholarPubMed
Lee, W. L., and Downey, G. P.. 2001. Neutrophil activation and acute lung injury. Curr Opin Crit Care 7: 1–7CrossRefGoogle ScholarPubMed
Lee, H. Y., Andalibi, A., Webster, P.et al. 2004. Antimicrobial activity of innate immune molecules against Streptococcus pneumoniae, Moraxella catarrhalis and nontypeable Haemophilus influenzae. BMC Infect Dis 4: 12CrossRefGoogle ScholarPubMed
Leusen, J. H. W., Verhoeven, A. J., and Roos, D.. 1996. Interactions between the components of the human NADPH oxidase: A review about the intrigues in the phox family. Front Biosci 1: d72–90Google ScholarPubMed
Li-Korotky, H. S., J. D. Swarts, Hebda, P. A., and Doyle, W. J.. 2004. Cathepsin gene expression profile in rat acute pneumococcal otitis media. Laryngoscope 114: 1032–6CrossRefGoogle ScholarPubMed
Liu, H., Perlman, H., Pagliari, L. J., and Pope, R. M.. 2001. Constitutively activated Akt-1 is vital for the survival of human monocyte-differentiated macrophages. Role of Mcl-1, independent of nuclear factor (NF)-kappaB, Bad, or caspase activation. J Exp Med 194: 113–26CrossRefGoogle ScholarPubMed
Lloyd-Evans, N., T. J. O'Dempsey, I. Baldeh et al. 1996. Nasopharyngeal carriage of pneumococci in Gambian children and in their families. Pediatr Infect Dis J 15(10): 866–71CrossRefGoogle ScholarPubMed
Lohmann-Matthes, M. L., Steinmuller, C., and G. Franke-Ullmann. 1994. Pulmonary macrophages. Eur Respir J 7(9): 1678–89Google ScholarPubMed
Lopez, R., and Garcia, E.. 2004. Recent trends in the molecular microbiology of pneumococcal capsules, lytic enzymes and bacteriophage. FEMS Microbiol Rev 28: 553–80CrossRefGoogle ScholarPubMed
Lucas, M., Stuart, L. M., Savill, J., and A. Lacy-Hulbert. 2003. Apoptotic cells and innate immune stimuli combine to regulate macrophage cytokine secretion. J Immunol 171: 2610–15CrossRefGoogle ScholarPubMed
Madsen, J., Kliem, A., I. Torn⊘e et al. 2000. Localization of lung surfactant protein D on mucosal surfaces in human tissues. J Immunol 164: 5866–70CrossRefGoogle ScholarPubMed
Marriott, H. M., Ali, F., R. C. Read et al. 2004. Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J 18: 1126–8CrossRefGoogle ScholarPubMed
McCool, T. L., Cate, T. R., Moy, G., and Weiser, J. N.. 2002. The immune response to pneumococcal proteins during experimental human carriage. J Exp Med 195: 359–65CrossRefGoogle ScholarPubMed
McCool, T. L., Cate, T. R., E. I. Tuomanen et al. 2003. Serum immunoglobulin G response to candidate vaccine antigens during experimental pneumococcal colonisation. Infection and Immunity 71: 5724–32CrossRefGoogle Scholar
McNeely, T. B., and Coonrod, J. D.. 1993. Comparison of the opsonic activity of human surfactant protein A for Staphylococcus aureus and Streptococcus pneumoniae with rabbit and human macrophages. J Infect Dis 167(1): 91–7CrossRefGoogle ScholarPubMed
Meli, D. N., Christen, S., and Leib, S. L.. 2003. Matrix metalloproteinase-9 in pneumococcal meningitis: activation via an oxidative pathway. J Infect Dis 187: 1411–5CrossRefGoogle ScholarPubMed
Mitchell, T. J. 2000. Virulence factors in the pathogenesis of disease caused by Streptococcus pneumoniae. Research Microbiol 151: 413–19CrossRefGoogle ScholarPubMed
Mizgerd, J.P, Kubo, H., G. J. Kutkosk et al. 1997. Neutrophil emigration in the skin, lungs, and peritoneum: different requirements for CD11/CD18 revealed by CD18-deficient mice. J Exp Med 186(8): 1357–64CrossRefGoogle ScholarPubMed
Mold, C., Edwards, K. M., and Gewurz, H.. 1982. Effect of C-reactive protein on the complement-mediated stimulated of human neutrophils by Streptococcus pneumoniae serotypes 3 and 6. Infect Immun 37: 987–92Google ScholarPubMed
Mold, C., B. Rodic-Polic, B., and T. W. Du Clos. 2002. Protection from Streptococcus pneumoniae Infection by C-reactive protein and natural antibody requires complement but not Fc{gamma} receptors. J Immunol 168: 6375–81CrossRefGoogle Scholar
Monier, R. M., Orman, K. L., Meals, E. A., and English, B. K.. 2002. Differential effects of p38- and extracellular signal-regulated kinase mitogen-activated protein kinase inhibitors on inducible nitric oxide synthase and tumor necrosis factor production in murine macrophages stimulated with Streptococcus pneumoniae. J Infect Dis 185: 921–6CrossRefGoogle ScholarPubMed
Moore, L. J., Pridmore, A. C., Dower, S. K., and Read, R. C.. 2003. Penicillin enhances the Toll-like Receptor 2-mediated proinflammatory activity of Streptococcus pneumoniae. J Infect Dis 188: 1040–8CrossRefGoogle ScholarPubMed
Muller, Q. J., Pfeifer, S., Mannel, D., Strausz, J., and Ferlinz, R.. 1992. Lung-restricted activation of the alveolar macrophage/monocyte system in pulmonary sarcoidosis. Am Rev Respir Dis 145(1): 187–92CrossRefGoogle Scholar
Murdoch, C., Read, R. C., Zhang, Q., and Finn, A.. 2002. Choline-binding protein A of Streptococcus pneumoniae elicits chemokine production and expression of intercellular adhesion molecule 1 (CD54) by human alveolar epithelial cells. J Infect Dis 186(9): 1253–60CrossRefGoogle ScholarPubMed
Musher, D. M., Watson, D. A., and Baughn, R. E.. 1990. Does naturally-acquired IgG antibody to cell wall polysaccharide protect human subjects against pneumococcal infection. J Infect Dis 161: 736–40CrossRefGoogle ScholarPubMed
Musher, D. M., Groover, J. E., J. M. Roland et al. 1993. Antibody to capsular polysaccharides of Streptococcus pneumoniae in adults: prevalence, persistence, relation to carriage and resistance to infection. Clin Infect Dis 17: 66–73CrossRefGoogle Scholar
Musher, D. M., Groover, J. E., M. R. Reichler et al. 1997. Emergence of antibody to capsular polysaccharides of Streptococcus pneumoniae during outbreaks of pneumonia: association with nasopharyngeal colonization. Clin Infect Dis 24(3): 441–6CrossRefGoogle ScholarPubMed
Neth, O., Jack, D. L., A. W. Dodds et al. 2000. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 68: 688–93CrossRefGoogle ScholarPubMed
Nguyen, B. Y., Peterson, P. K., H. A. Verbrugh, Quie, P. G., and Hoidal, J. R.. 1982. Differences in phagocytosis and killing by alveolar macrophages from humans, rabbits, rats, and hamsters. Infect Immun 36(2): 504–9Google ScholarPubMed
Nicod, L. P., Cochand, L., and Dreher, D.. 2000. Antigen presentation in the lung: dendritic cells and macrophages. Sarcoidosis Vasc Diffuse Lung Dis 17(3): 246–55Google ScholarPubMed
Nielsen, B. W., N. Mukaida, and K. Matsushima. 1994. Macrophages as producers of chemotactic proinflammatory cytokines. In Macrophage-Pathogen Interactions, 1st edn. Zwilling, B. S. & Eisenstein, T. K., eds, pp. 131–42. New York: Marcel Dekker.Google Scholar
Nuorti, J. P., Butler, J. C., M. M. Farley et al. 2000. Cigarette smoking and invasive pneumococcal disease. Active Bacterial Core Surveillance Team. N Engl J Med 342(10): 681–9CrossRefGoogle ScholarPubMed
Omidvari, K., Casey, R., Nelson, S., Olariu, R., and Shellito, J. E.. 1998. Alveolar macrophage release of tumor necrosis factor-alpha in chronic alcoholics without liver disease. Alcohol Clin Exp Res 22(3): 567–72CrossRefGoogle ScholarPubMed
Orman, K. L., Shenep, J. L., and English, B. K.. 1998. Pneumococci stimulate the production of the inducible nitric oxide synthase and nitric oxide by murine macrophages. J Infect Dis 178: 1649–57CrossRefGoogle ScholarPubMed
Out, T. A., Wang, S. Z., Rudolph, K., and Bice, D. E.. 2002. Local T-cell activation after segmental allergen challenge in the lungs of allergic dogs. Immunology 105(4): 499–508CrossRefGoogle ScholarPubMed
Paton, J. C., B. Rowan-Kelly, and Ferrante, A.. 1984. Activation of human complement by the pneumococcal toxin pneumolysin. Infect Immun 43: 1085–7Google ScholarPubMed
Paton, J. C., Andrew, P. W., Boulnois, G. J., and Medshaw, T. J.. 1993. Molecular analysis of the pathogenicity of Streptococcus pneumoniae: the role of pneumococcal proteins. A Rev Microbiol 47: 89–115CrossRefGoogle ScholarPubMed
Perry, F. E., Elson, C. J., Greenham, L. W., and Catterall, J. R.. 1993. Interference with the oxidative response of neutrophils by Streptococcus pneumoniae. Thorax 48: 364–9CrossRefGoogle ScholarPubMed
Peset Llopis, M. J., Harms, G., Hardonk, M. J., and Timens, W.. 1996. Human immune response to pneumococcal polysaccharides: complement-mediated localization preferentially on CD21-positive splenic marginal zone B cells and follicular dendritic cells. J Allergy Clin Immunol 97(4): 1015–24CrossRefGoogle Scholar
Pruul, H., Kriek, G., and McDonald, P. J.. 1988. Enoxacin-induced modification of the susceptibility of bacteria to phagocytic killing. J Antimicrob Chemother 21(Suppl B): 19–27CrossRefGoogle ScholarPubMed
Ramirez, M. C., and Sigal, L. J.. 2002. Macrophages and dendritic cells use the cytosolic pathway to rapidly cross-present antigen from live, vaccinia-infected cells. J Immunol 169(12): 6733–42CrossRefGoogle ScholarPubMed
Reeves, E. P., Lu, H., H. L. Jacobs et al. 2002. Killing activity of neutrophils is mediated through activation of proteases by K+ flux. Nature 416: 291–7CrossRefGoogle ScholarPubMed
Ring, A., Weiser, J. N., and Tuomanen, E. I.. 1998. Pneumococcal trafficking across the blood-brain barrier. J Clin Invest 102(2): 347–60CrossRefGoogle ScholarPubMed
Robinson, K. A., Baughman, W., Rothrock, H.et al. 2001. Epidemiology of invasive Streptococcus pneumoniae infections in the United States 1995–1998. Opportunities for prevention in the conjugate vaccine era. JAMA 285: 1729–35CrossRefGoogle ScholarPubMed
Rogers, P. D., Thornton, J., K. S. Barker et al. 2003. Pneumolysin-dependent and -independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect Immun 71: 2087–94CrossRefGoogle ScholarPubMed
Roos, A., Bouwman, L. H., D. J. Gijlswijk-Janssen et al. 2001. Human IgA activates the complement system via the mannan-binding lectin pathway. J Immunol 167: 2861–8CrossRefGoogle ScholarPubMed
Roy, S., Knox, K., Segal, S.et al. 2002. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 359: 1569–73CrossRefGoogle ScholarPubMed
Rubins, J. B. 2003. Alveolar macrophages: wielding the double-edged sword of inflammation. Am J Respir Crit Care Med 167(2): 103–4CrossRefGoogle ScholarPubMed
Rubins, J. B., and Janoff, E. N.. 1998. Pneumolysin: A multifunctional pneumococcal virulence factor. J Lab Clin Med 131: 21–7CrossRefGoogle ScholarPubMed
Ruff, R. L., and Secrist, D.. 1984. Inhibitors of prostaglandin synthesis or cathepsin B prevent muscle wasting due to sepsis in the rat. J Clin Invest 73: 1483–6CrossRefGoogle ScholarPubMed
Sanders, L. A., J. G. van-de-Winkel, G. T. Rijkers et al. 1994. Fc gamma receptor IIa (CD32) heterogeneity in patients with recurrent bacterial respiratory tract infections. J Infect Dis 170: 854–61CrossRefGoogle ScholarPubMed
Schaper, M., Leib, S. L., D. N. Meli et al. 2003. Differential effect of p47phox and gp91phox deficiency on the course of pneumococcal meningitis. Infect Immun 71: 4087–92CrossRefGoogle ScholarPubMed
Scott, J. A., Hall, A. J., Dagan, R.et al. 1996. Serogroup-specific epidemiology of Streptococcus pneumoniae: associations with age, sex, geography in 7,000 episodes of invasive disease. Clin Infect Dis 22: 973–81CrossRefGoogle ScholarPubMed
Shasby, D. M., Vanbenthuysen, K. M., R. M. Tate et al. 1982. Granulocytes mediate acute edematous lung injury in rabbits and in isolated rabbit lungs perfused with phorbol myristate acetate: role of oxygen radicals. Am Rev Respir Dis 125: 443–7Google ScholarPubMed
Shaw, D. R., and Griffin, F. M. J.. 1981. Phagocytosis requires repeated triggering of macrophage phagocytic receptors during particle ingestion. Nature 289: 409–11CrossRefGoogle ScholarPubMed
Shi, L., Takahashi, K., Dundee, J.et al. 2004. Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J Exp Med 199: 1379–90CrossRefGoogle ScholarPubMed
Sibille, Y., and Reynolds, H. Y.. 1990. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 141: 471–501CrossRefGoogle ScholarPubMed
Sim, R. B., Twose, T. M., Paterson, D. S., and Sim, E.. 1981. The covalent binding reaction of complement component C3. Biochem J 193: 115–27CrossRefGoogle ScholarPubMed
Simell, B., Kilpi, T. M., and Kayhty, H.. 2002. Pneumococcal carriage and otitis media induce salivary antibodies to pneumococcal capsular polysaccharides in children. J Infect Dis 186(8): 1106–14CrossRefGoogle ScholarPubMed
Simpson, S. Q., Modi, H. N., R. A. Balk, Bone, R. C., and Casey, L. C.. 1991. Reduced alveolar macrophage production of tumor necrosis factor during sepsis in mice and men. Crit Care Med 19(8): 1060–6CrossRefGoogle ScholarPubMed
Simpson, S. Q., Singh, R., and Bice, D. E.. 1994. Heat-killed pneumococci and pneumococcal capsular polysaccharides stimulate tumor necrosis factor-alpha production by murine macrophages. Am J Respir Cell Mol Biol 10(3): 284–9CrossRefGoogle ScholarPubMed
Smith, T., Lehmann, D., Montgomery, J.et al. 1993. Acquisition and invasiveness of different serotypes of Streptococcus pneumoniae in young children. Epidemiol Infect 111(1): 27–39CrossRefGoogle ScholarPubMed
Soilleux, E. J., Morris, L. S., Leslie, G.et al. 2002. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J Leukoc Biol 71(3): 445–57Google ScholarPubMed
Steffen, M., Reinecker, H. C., Petersen, J.et al. 1993. Differences in cytokine secretion by intestinal mononuclear cells, peripheral blood monocytes and alveolar macrophages from HIV-infected patients. Clin Exp Immunol 91(1): 30–6CrossRefGoogle ScholarPubMed
Stillman, E. G., and Branch, A.. 1924. Experimental production of pneumococcus pneumonia in mice by the inhalation method. J Exp Med 40: 733–42CrossRefGoogle ScholarPubMed
Stool, S. E. and Field, M. J.. 1989. The impact of otitis media. Pediatr Infect Dis J 8: S14CrossRefGoogle ScholarPubMed
Szalai, A. J. 2002. The antimicrobial activity of C-reactive protein. Microbes Infect 4: 201–5CrossRefGoogle ScholarPubMed
Tettelin, H., Nelson, K. E., I. T. Paulsen et al. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 490–505CrossRefGoogle ScholarPubMed
Tino, M. J., and Wright, J. R.. 1996. Surfactant protein A stimulates phagocytosis of specific pulmonary pathogens by alveolar macrophages. Am J Physiol 270: L677–88Google ScholarPubMed
Tkalcevic, J., Novelli, M., Phylactides, M.et al. 2000. Impaired immunity and enhanced resistance to endotoxin in the absence of neutrophil elastase and cathepsin G. Immunity 12: 201–10CrossRefGoogle ScholarPubMed
Toossi, Z., Hirsch, C. S., B. D. Hamilton et al. 1996. Decreased production of TGF-beta 1 by human alveolar macrophages compared with blood monocytes. J Immunol 156(9): 3461–8Google ScholarPubMed
Tu, A. H., Fulgham, R. L., M. A. McCrory, Briles, D. E., and Szalai, A. J.. 1999. Pneumococcal surface protein A inhibits complement activation by Streptococcus pneumoniae. Infect Immun 67: 4720–4Google ScholarPubMed
Tuomanen, E. I., and Masure, H. R.. 1997. Molecular and cellular biology of pneumococcal infection. Microb Drug Resist 3(4): 297–308CrossRefGoogle ScholarPubMed
Tuomanen, E. I., Saukkonen, K., Sande, S., Cioffe, C., and Wright, S. D.. 1989. Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. J Exp Med 170: 959–69CrossRefGoogle ScholarPubMed
Tuomanen, E. I., Austrian, R., and Masure, H. R.. 1995. Pathogenesis of pneumococcal infection. New Engl J Med 332: 1280–4CrossRefGoogle ScholarPubMed
Turner, M. W., and Hamvas, R. M.. 2000. Mannose-binding lectin: structure, function, genetics and disease associations. Rev Immunogenet 2: 305–22Google ScholarPubMed
Twigg, H. L.III, Iwamoto, G. K., and Soliman, D. M.. 1992. Role of cytokines in alveolar macrophage accessory cell function in HIV-infected individuals. J Immunol 149: 1462–9Google ScholarPubMed
Underhill, D. M., and Ozinsky, A.. 2002. Phagocytosis of microbes: complexity in action. A Rev Immunol 20: 825–52CrossRefGoogle ScholarPubMed
Vazquez-Torres, A., J. Jones-Carson, Mastroeni, P., Ischiropoulos, H., and Fang, F. C.. 2000. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med 192: 227–36CrossRefGoogle ScholarPubMed
Veenhoven, R., Bogert, D., Uiterwaal, C.et al. 2003. Effect of conjugate pneumococcal vaccine followed by polysaccharide pneumococcal vaccine on current acute otitis media: a randomised study. Lancet 361: 2189–95CrossRefGoogle Scholar
Venet, A., Hance, A. J., Saltini, C., Robinson, B. W., and R. G. Crystal 1985. Enhanced alveolar macrophage-mediated antigen-induced T-lymphocyte proliferation in sarcoidosis. J Clin Invest 75(1): 293–301CrossRefGoogle ScholarPubMed
Vermaelen, K. Y., I. Carro-Muino, Lambrecht, B. N., and Pauwels, R. A.. 2001. Specific migratory dendritic cells rapidly transport antigen from the airways to the thoracic lymph nodes. J Exp Med 193(1): 51–60CrossRefGoogle ScholarPubMed
Wallaert, B., Aerts, C., Colombel, J. F., and Voisin, C.. 1991. Human alveolar macrophage antibacterial activity in the alcoholic lung. Am Rev Respir Dis 144(2): 278–83CrossRefGoogle ScholarPubMed
Walport, M. J. 2001a. Complement. First of two parts. N Engl J Med 344: 1058–66CrossRefGoogle Scholar
Walport, M. J. 2001b. Complement. Second of two parts. New Engl J Med 344: 1140–4CrossRefGoogle Scholar
Wang, Q., Teder, P., N. P. Judd, Noble, P. W., and Doerschuk, C. M.. 2002. CD44 deficiency leads to enhanced neutrophil migration and lung injury in Escherichia coli pneumonia in mice. Am J Pathol 161: 2219–28CrossRefGoogle ScholarPubMed
Ward, P. A. 1996. Role of complement, chemokines, and regulatory cytokines in acute lung injury. Ann N Y Acad Sci 796: 104–12CrossRefGoogle ScholarPubMed
Weiser, J. N., Markiewicz, Z., Tuomanen, E. I., and Wani, J. H.. 1996. Relationship between phase variation in colony morphology, intrastrain variation in cell wall physiology, and nasopharyngeal colonization by Streptococcus pneumoniae. Infect Immun 64(6): 2240–5Google ScholarPubMed
Weiser, J. N., Bae, D., Epino, H.et al. 2001. Changes in availability of oxygen accentuate differences in capsular polysaccharide expression by phenotypic variants and clinical isolates of Streptococcus pneumoniae. Infect Immun 69(9): 5430–9CrossRefGoogle ScholarPubMed
Weiser, J. N., Bae, D., Fasching, C., R. W. Scamurra, Ratner, A. J., and Janoff, E. N.. 2003. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc Natl Acad Sci USA 100: 4215–20CrossRefGoogle ScholarPubMed
Wewers, M. D., Rennard, S. I., A. J. Hance, Bitterman, P. B., and Crystal, R. G.. 1984. Normal human alveolar macrophages obtained by bronchoalveolar lavage have a limited capacity to release interleukin-1. J Clin Invest 74(6): 2208–18CrossRefGoogle ScholarPubMed
Whitney, C. G., Farley, M. M., Hadler, J.et al. 2003. Decline in invasive pneumococcal disease after introduction of protein-polysaccharide conjugate vaccine. New Engl J Med 348: 1737–46CrossRefGoogle ScholarPubMed
Williams, B. G., Gouws, E., C. Boschi-Pinto, Bryce, J., and Dye, C.. 2002. Estimates of worldwide distribution of child deaths from acute respiratory infections. Lancet Infect Dis 2: 25–32CrossRefGoogle ScholarPubMed
Xu, Y., Ma, M., G. C. Ippolito et al. 2001. Complement activation in factor D-deficient mice. Proc Natl Acad Sci USA 98: 14577–82CrossRefGoogle ScholarPubMed
Yesilkaya, H., Kadioglu, A., Gingles, N.et al. 2000. Role of manganese-containing superoxide dismutase in oxidative stress and virulence of Streptococcus pneumoniae. Infect Immun 68: 2819–26CrossRefGoogle ScholarPubMed
Yrlid, U., and Wick, M. J.. 2000. Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J Exp Med 191: 613–24CrossRefGoogle ScholarPubMed
Zamze, S., L. Martinez-Pomares, H. Jones et al. 2002. Recognition of bacterial capsular polysaccharides and lipopolysaccharides by the macrophage mannose receptor. J Biol Chem 277(44): 41613–23CrossRefGoogle ScholarPubMed
Zandvoort, A., and Timens, W.. 2002. The dual function of the splenic marginal zone: essential for initiation of anti-TI-2 responses but also vital in the general first-line defense against blood-borne antigens. Clin Exp Immunol 130(1): 4–11CrossRefGoogle ScholarPubMed
Zhang, Y., Suankratay, C., X. H. Zhang et al. 1999. Calcium-independent haemolysis via the lectin pathway of complement activation in the guinea-pig and other species. Immunology 97: 686–92CrossRefGoogle ScholarPubMed
Zuercher, A. W., Jiang, H. Q., M. C. Thurnheer, Cuff, C. F., and Cebra, J. J.. 2002. Distinct mechanisms for cross-protection of the upper versus lower respiratory tract through intestinal priming. J Immunol 169(7): 3920–5CrossRefGoogle ScholarPubMed
Zychlinsky, A., and Sansonetti, P.. 1997. Perspectives series: host/pathogen interactions. Apoptosis in bacterial pathogenesis. J Clin Invest 100: 493–5CrossRefGoogle ScholarPubMed
Zysk, G., Bejo, L., B. K. Schneider-Wald, Nau, R., and Heinz, H.. 2000. Induction of necrosis and apoptosis of neutrophil granulocytes by Streptococcus pneumoniae. Clin Exp Immunol 122: 61–6CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×