Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T11:57:06.968Z Has data issue: false hasContentIssue false

14 - Robotic Technology in Neurosurgery

Past, Present, and Future Perspectives

Published online by Cambridge University Press:  11 August 2017

Alan David Kaye
Affiliation:
Louisiana State University
Richard D. Urman
Affiliation:
Harvard Medical School, Boston, MA, USA
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Di Ieva, A. Microtechnologies in neurosurgery. Proc Inst Mech Eng H. 2010;224(6):797800.Google Scholar
Kwoh, YS, Hou, J, Jonckheere, EA, Hayati, S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.Google Scholar
Young, RF. Application of robotics to stereotactic neurosurgery. Neurol Res. 1987;9(2):123–8.Google Scholar
Kwoh, YS, Reed, LS, Chen, JY, Shao, H, Truong, TK, Jonckheere, EA. A new computerized tomography aided robotic stereotactic system. Robot Age. 1985;7:1721.Google Scholar
Smith, JA, Jivraj, J, Wong, R, Yang, V. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann Biomed Eng. 2015.Google Scholar
Howe, RD, Matsuoka, Y. Robotics for surgery. Annu Rev Biomed Eng. 1999;1:211–40.Google Scholar
Barbash, GI, Glied, SA. New technology and health care costs – the case of robot-assisted surgery. N Engl J Med. 2010;363(8):701–4.CrossRefGoogle ScholarPubMed
Bergeles, C, Yang, GZ. From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots. IEEE Trans Biomed Eng. 2014;61(5):1565–76.Google Scholar
Gerber, N, Gavaghan, KA, Bell, BJ, et al. High-accuracy patient-to-image registration for the facilitation of image-guided robotic microsurgery on the head. IEEE Trans Biomed Eng. 2013;60(4):960–8.Google Scholar
Benabid, AL, Hoffmann, D, Seigneuret, E, Chabardes, S. Robotics in neurosurgery: which tools for what? Acta Neurochir Suppl. 2006;98:4350.Google Scholar
Adler, JR, Jr. The future of robotics in radiosurgery. Neurosurgery. 2013;72 suppl 1:811.Google Scholar
Goto, T, Hongo, K, Yako, T, et al. The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery. 2013;72 suppl 1:3942.Google Scholar
Kantelhardt, SR, Finke, M, Schweikard, A, Giese, A. Evaluation of a completely robotized neurosurgical operating microscope. Neurosurgery. 2013;72 suppl 1:1926.Google Scholar
Roser, F, Tatagiba, M, Maier, G. Spinal robotics: current applications and future perspectives. Neurosurgery. 2013;72 suppl 1:1218.Google Scholar
Shaikhouni, A, Elder, JB. Computers and neurosurgery. World Neurosurg. 2012;78(5):392–8.CrossRefGoogle ScholarPubMed
Sutherland, G. Introduction to virtual reality and robotics in neurosurgery. Neurosurgery. 2013;72 suppl 1:7.Google Scholar
Sutherland, GR, Lama, S, Gan, LS, Wolfsberger, S, Zareinia, K. Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg. 2013;118(3):521–9.CrossRefGoogle ScholarPubMed
Alric, M, Chapelle, F, Lemaire, JJ, Gogu, G. Potential applications of medical and non-medical robots for neurosurgical applications. Minim Invasive Ther Allied Technol. 2009;18(4):193216.Google Scholar
Dogangil, G, Davies, BL, Rodriguez y Baena, F. A review of medical robotics for minimally invasive soft tissue surgery. Proc Inst Mech Eng H. 2010;224(5):653–79.Google Scholar
Kubben, PL, Pouratian, N. An open-source and cross-platform framework for Brain Computer Interface-guided robotic arm control. Surg Neurol Int. 2012;3:149.Google Scholar
Bertelsen, A, Melo, J, Sanchez, E, Borro, D. A review of surgical robots for spinal interventions. Int J Med Robot. 2013;9(4):407–22.CrossRefGoogle ScholarPubMed
Mattei, TA, Rodriguez, AH, Sambhara, D, Mendel, E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 2014;37(3):357–66; discussion 66.Google Scholar
Zhang, Y, Zhao, D, Li, H, Li, Y, Zhu, X, Zhang, X. Emerging new trends in neurosurgical technologies. Cell Biochem Biophys. 2014;70(1):259–67.CrossRefGoogle ScholarPubMed
Mattei, TA, Fassett, DR. Letter to the editor: The O-arm revolution in spine surgery. J Neurosurg Spine. 2013;19(5):644–7.Google Scholar
Sakaguchi, T. [Percutaneous puncture with a robot]. Hinyokika Kiyo. 1985;31(7):1265–8.Google Scholar
Drake, JM, Joy, M, Goldenberg, A, Kreindler, D. Computer- and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991;29(1):2733.Google Scholar
Lefranc, M, Capel, C, Pruvot-Occean, AS, et al. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg. 2015;122(2):342–52.CrossRefGoogle ScholarPubMed
Bekelis, K, Radwan, TA, Desai, A, Roberts, DW. Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg. 2012;116(5):1002–6.Google Scholar
Benabid, AL, Cinquin, P, Lavalle, S, Le Bas, JF, Demongeot, J, de Rougemont, J. Computer-driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging. Technological design and preliminary results. Appl Neurophysiol. 1987;50(1–6):153–4.Google Scholar
Haegelen, C, Touzet, G, Reyns, N, Maurage, CA, Ayachi, M, Blond, S. Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie. 2010;56(5):363–7.CrossRefGoogle ScholarPubMed
Varma, TR, Eldridge, P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot. 2006;2(2):107–13.CrossRefGoogle Scholar
von Langsdorff, D, Paquis, P, Fontaine, D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg. 2015;122(1):191–4.Google Scholar
Heuer, GG, Zaghloul, KA, Jaggi, JL, Baltuch, GH. Use of an integrated platform system in the placement of deep brain stimulators. Neurosurgery. 2008;62(3 suppl 1):245–7; discussion 7–8.Google Scholar
Eljamel, MS. Robotic neurological surgery applications: accuracy and consistency or pure fantasy? Stereotact Funct Neurosurg. 2009;87(2):8893.Google Scholar
Spire, WJ, Jobst, BC, Thadani, VM, Williamson, PD, Darcey, TM, Roberts, DW. Robotic image-guided depth electrode implantation in the evaluation of medically intractable epilepsy. Neurosurg Focus. 2008;25(3):E19.Google Scholar
Cardinale, F, Cossu, M, Castana, L, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353–66; discussion 66.Google Scholar
Lefranc, M, Capel, C, Pruvot, AS, et al. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA(R) stereotactic robot.Stereotact Funct Neurosurg. 2014;92(4):242–50.Google Scholar
Gonzalez-Martinez, J, Bulacio, J, Thompson, S, et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery. 2015.Google Scholar
Gonzalez-Martinez, J, Vadera, S, Mullin, J, et al. Robot-assisted stereotactic laser ablation in medically intractable epilepsy: operative technique. Neurosurgery. 2014;10 suppl 2:167–72; discussion 72–3.Google Scholar
Zimmermann, M, Krishnan, R, Raabe, A, Seifert, V. Robot-assisted navigated neuroendoscopy. Neurosurgery. 2002;51(6):1446–51; discussion 51–2.Google Scholar
Zimmermann, M, Krishnan, R, Raabe, A, Seifert, V. Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir (Wien). 2004;146(7):697704.Google Scholar
Benabid, AL, Lavallee, S, Hoffmann, D, Cinquin, P, Demongeot, J, Danel, F. Potential use of robots in endoscopic neurosurgery. Acta Neurochir Suppl (Wien). 1992;54:93–7.Google Scholar
Goto, T, Hongo, K, Kakizawa, Y, et al. Clinical application of robotic telemanipulation system in neurosurgery. Case report. J Neurosurg. 2003;99(6):1082–4.Google Scholar
Hongo, K, Kobayashi, S, Kakizawa, Y, et al. NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery-preliminary results. Neurosurgery. 2002;51(4):985–8; discussion 8.Google ScholarPubMed
Takasuna, H, Goto, T, Kakizawa, Y, Miyahara, T, Koyama, J, Tanaka, Y, et al. Use of a micromanipulator system (NeuRobot) in endoscopic neurosurgery. J Clin Neurosci. 2012;19(11):1553–7.Google Scholar
Calisto, A, Dorfmuller, G, Fohlen, M, Bulteau, C, Conti, A, Delalande, O. Endoscopic disconnection of hypothalamic hamartomas: safety and feasibility of robot-assisted, thulium laser-based procedures. J Neurosurg Pediatr. 2014;14(6):563–72.Google Scholar
Hanna, EY, Holsinger, C, DeMonte, F, Kupferman, M. Robotic endoscopic surgery of the skull base: a novel surgical approach. Arch Otolaryngol Head Neck Surg. 2007;133(12):1209–14.Google Scholar
O’Malley, BW, Jr., Weinstein, GS. Robotic skull base surgery: preclinical investigations to human clinical application. Arch Otolaryngol Head Neck Surg. 2007;133(12):1215–9.Google Scholar
O’Malley, BW, Jr., Weinstein, GS. Robotic anterior and midline skull base surgery: preclinical investigations. Int J Radiat Oncol Biol Phys. 2007;69(2 suppl):S125–8.Google Scholar
Cabuk, B, Ceylan, S, Anik, I, Tugasaygi, M, Kizir, S. A haptic guided robotic system for endoscope positioning and holding. Turk Neurosurg. 2015;25(4):601–7.Google ScholarPubMed
Wirz, R, Torres, LG, Swaney, PJ, et al. An experimental feasibility study on robotic endonasal telesurgery. Neurosurgery. 2015;76(4):479–84; discussion 84.Google Scholar
Ozer, E, Durmus, K, Carrau, RL, et al. Applications of transoral, transcervical, transnasal, and transpalatal corridors for robotic surgery of the skull base. Laryngoscope. 2013;123(9):2176–9.Google Scholar
Chauvet, D, Missistrano, A, Hivelin, M, Carpentier, A, Cornu, P, Hans, S. Transoral robotic-assisted skull base surgery to approach the sella turcica: cadaveric study. Neurosurg Rev. 2014;37(4):609–17.CrossRefGoogle ScholarPubMed
Lee, JY, Lega, B, Bhowmick, D, et al. Da Vinci robot-assisted transoral odontoidectomy for basilar invagination. ORL J Otorhinolaryngol Relat Spec. 2010;72(2):91–5.Google Scholar
Lee, JY, O’Malley, BW, Newman, JG, et al. Transoral robotic surgery of craniocervical junction and atlantoaxial spine: a cadaveric study. J Neurosurg Spine. 2010;12(1):13–8.CrossRefGoogle ScholarPubMed
Hong, WC, Tsai, JC, Chang, SD, Sorger, JM. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study. Neurosurgery. 2013;72 suppl 1:33–8.Google Scholar
Marcus, HJ, Hughes-Hallett, A, Cundy, TP, Yang, GZ, Darzi, A, Nandi, D. da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev. 2015;38(2):367–71; discussion 71.Google Scholar
L’Orsa, R, Macnab, CJ, Tavakoli, M. Introduction to haptics for neurosurgeons. Neurosurgery. 2013;72 suppl 1:139–53.CrossRefGoogle ScholarPubMed
Arata, J, Tada, Y, Kozuka, H, et al. Neurosurgical robotic system for brain tumor removal. Int J Comput Assist Radiol Surg. 2011;6(3):375–85.Google Scholar
Sutherland, GR, Latour, I, Greer, AD, Fielding, T, Feil, G, Newhook, P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–92; discussion 92–3.CrossRefGoogle ScholarPubMed
Pandya, S, Motkoski, JW, Serrano-Almeida, C, Greer, AD, Latour, I, Sutherland, GR. Advancing neurosurgery with image-guided robotics. J Neurosurg. 2009;111(6):1141–9.CrossRefGoogle ScholarPubMed
Sutherland, GR. Neurorobotics: driving the paradigm shift. World Neurosurg. 2014;81(5–6):668.Google Scholar
Spetzger, U, Von Schilling, A, Winkler, G, Wahrburg, J, Konig, A. The past, present and future of minimally invasive spine surgery: a review and speculative outlook. Minim Invasive Ther Allied Technol. 2013;22(4):227–41.Google Scholar
Devito, DP, Kaplan, L, Dietl, R, et al. Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine. 2010;35(24):2109–15.CrossRefGoogle ScholarPubMed
Kantelhardt, SR, Martinez, R, Baerwinkel, S, Burger, R, Giese, A, Rohde, V. Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J. 2011;20(6):860–8.Google Scholar
Lieberman, IH, Hardenbrook, MA, Wang, JC, Guyer, RD. Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech. 2012;25(5):241–8.Google Scholar
Ringel, F, Stuer, C, Reinke, A, et al. Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine. 2012;37(8):E496–501.Google Scholar
Schizas, C, Thein, E, Kwiatkowski, B, Kulik, G. Pedicle screw insertion: robotic assistance versus conventional C-arm fluoroscopy. Acta Orthop Belg. 2012;78(2):240–5.Google Scholar
Shoham, M, Lieberman, IH, Benzel, EC, et al. Robotic assisted spinal surgery – from concept to clinical practice. Comput Aided Surg. 2007;12(2):105–15.Google ScholarPubMed
Sukovich, W, Brink-Danan, S, Hardenbrook, M. Miniature robotic guidance for pedicle screw placement in posterior spinal fusion: early clinical experience with the SpineAssist. Int J Med Robot. 2006;2(2):114–22.Google Scholar
Lonjon, N, Chan-Seng, E, Costalat, V, Bonnafoux, B, Vassal, M, Boetto, J. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J. 2015.Google ScholarPubMed
Melzer, A, Gutmann, B, Remmele, T, et al. INNOMOTION for percutaneous image-guided interventions: principles and evaluation of this MR- and CT-compatible robotic system. IEEE Eng Med Biol Mag. 2008;27(3):6673.CrossRefGoogle ScholarPubMed
Tovar-Arriaga, S, Tita, R, Pedraza-Ortega, JC, Gorrostieta, E, Kalender, WA. Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. Int J Med Robot. 2011;7(2):225–36.Google Scholar
Barzilay, Y, Schroeder, JE, Hiller, N, et al. Robot-assisted vertebral body augmentation: a radiation reduction tool. Spine. 2014;39(2):153–7.Google Scholar
Cleary, K, Watson, V, Lindisch, D, et al. Precision placement of instruments for minimally invasive procedures using a “needle driver” robot. Int J Med Robot. 2005;1(2):40–7.Google Scholar
Romanelli, P, Adler, JR, Jr. Technology Insight: image-guided robotic radiosurgery – a new approach for noninvasive ablation of spinal lesions. Nat Clin Pract Oncol. 2008;5(7):405–14.Google Scholar
Moskowitz, RM, Young, JL, Box, GN, Pare, LS, Clayman, RV. Retroperitoneal transdiaphragmatic robotic-assisted laparoscopic resection of a left thoracolumbar neurofibroma. JSLS. 2009;13(1):64–8.Google Scholar
Beutler, WJ, Peppelman, WC, Jr., DiMarco, LA. The da Vinci robotic surgical assisted anterior lumbar interbody fusion: technical development and case report. Spine. 2013;38(4):356–63.CrossRefGoogle Scholar
Ascari, L, Stefanini, C, Bertocchi, U, Dario, P. Robot-assisted endoscopic exploration of the spinal cord. Journal of Mechanical Engineering Science. 2010;224(7):1515–29.Google Scholar
Marcus, HJ, Cundy, TP, Nandi, D, Yang, GZ, Darzi, A. Robot-assisted and fluoroscopy-guided pedicle screw placement: a systematic review. Eur Spine J. 2014;23(2):291–7.Google Scholar
Schatlo, B, Molliqaj, G, Cuvinciuc, V, Kotowski, M, Schaller, K, Tessitore, E. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine. 2014;20(6):636–43.Google Scholar
Nectoux, E, Taleb, C, Liverneaux, P. Nerve repair in telemicrosurgery: an experimental study. J Reconstr Microsurg. 2009;25(4):261–5.Google Scholar
Mantovani, G, Liverneaux, P, Garcia, JC, Jr., Berner, SH, Bednar, MS, Mohr, CJ. Endoscopic exploration and repair of brachial plexus with telerobotic manipulation: a cadaver trial. J Neurosurg. 2011;115(3):659–64.Google Scholar
Porto de Melo, PM, Garcia, JC, Montero, EF, et al. Feasibility of an endoscopic approach to the axillary nerve and the nerve to the long head of the triceps brachii with the help of the Da Vinci Robot. Chir Main. 2013;32(4):206–9.Google Scholar
Miyamoto, H, Leechavengvongs, S, Atik, T, Facca, S, Liverneaux, P. Nerve transfer to the deltoid muscle using the nerve to the long head of the triceps with the da Vinci robot: six cases. J Reconstr Microsurg. 2014;30(6):375–80.CrossRefGoogle Scholar
Lequint, T, Naito, K, Chaigne, D, Facca, S, Liverneaux, P. Mini-invasive robot-assisted surgery of the brachial plexus: a case of intraneural perineurioma. J Reconstr Microsurg. 2012;28(7):473–6.Google Scholar
Deboudt, C, Labat, JJ, Riant, T, Bouchot, O, Robert, R, Rigaud, J. Pelvic schwannoma: robotic laparoscopic resection. Neurosurgery. 2013;72(1 suppl):25; discussion.Google Scholar
Lollis, SS, Roberts, DW. Robotic catheter ventriculostomy: feasibility, efficacy, and implications. J Neurosurg. 2008;108(2):269–74.Google Scholar
Lollis, SS, Roberts, DW. Robotic placement of a CNS ventricular reservoir for administration of chemotherapy. Br J Neurosurg. 2009;23(5):516–20.Google Scholar
Barua, NU, Hopkins, K, Woolley, M, et al. A novel implantable catheter system with transcutaneous port for intermittent convection-enhanced delivery of carboplatin for recurrent glioblastoma. Drug Deliv. 2015:17.Google Scholar
Barua, NU, Lowis, SP, Woolley, M, O’Sullivan, S, Harrison, R, Gill, SS. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir (Wien). 2013;155(8):1459–65.Google Scholar
Motkoski, JW, Yang, FW, Lwu, SH, Sutherland, GR. Toward robot-assisted neurosurgical lasers. IEEE Trans Biomed Eng. 2013;60(4):892–8.Google Scholar
Saini, R, Saini, S. Nanotechnology and surgical neurology. Surg Neurol Int. 2010;1:57.Google Scholar
Freitas, RA, Jr. Nanotechnology, nanomedicine and nanosurgery. Int J Surg. 2005;3(4):243–6.Google Scholar
Elder, JB, Liu, CY, Apuzzo, ML. Neurosurgery in the realm of 10(-9), Part 2: applications of nanotechnology to neurosurgery – present and future. Neurosurgery. 2008;62(2):269–84; discussion 84–5.Google Scholar
Elder, JB, Liu, CY, Apuzzo, ML. Neurosurgery in the realm of 10(-9), Part 1: stardust and nanotechnology in neuroscience. Neurosurgery. 2008;62(1):120.Google Scholar
Saadeh, Y, Leung, T, Vyas, A, Chaturvedi, LS, Perumal, O, Vyas, D. Applications of nanomedicine in breast cancer detection, imaging, and therapy. J Nanosci Nanotechnol. 2014;14(1):913–23.Google Scholar
Khawaja, AM. The legacy of nanotechnology: revolution and prospects in neurosurgery. Int J Surg. 2011;9(8):608–14.Google Scholar
Shah, S, Solanki, A, Lee, KB. Nanotechnology-based approaches for guiding neural regeneration. Acc Chem Res. 2015.Google Scholar
Vidu, R, Rahman, M, Mahmoudi, M, Enachescu, M, Poteca, TD, Opris, I. Nanostructures: a platform for brain repair and augmentation. Front Syst Neurosci. 2014;8:91.Google Scholar
Leary, SP, Liu, CY, Apuzzo, ML. Toward the emergence of nanoneurosurgery: part III –nanomedicine: targeted nanotherapy, nanosurgery, and progress toward the realization of nanoneurosurgery. Neurosurgery. 2006;58(6):1009–26; discussion 26.CrossRefGoogle ScholarPubMed
Leary, SP, Liu, CY, Apuzzo, ML. Toward the emergence of nanoneurosurgery: part II – nanomedicine: diagnostics and imaging at the nanoscale level. Neurosurgery. 2006;58(5):805–23; discussion -23.Google Scholar
White-Schenk, D, Shi, R, Leary, JF. Nanomedicine strategies for treatment of secondary spinal cord injury. Int J Nanomedicine. 2015;10:923–38.Google Scholar
Tsintou, M, Dalamagkas, K, Seifalian, AM. Advances in regenerative therapies for spinal cord injury: a biomaterials approach. Neural Regen Res. 2015;10(5):726–42.Google Scholar
Raspa, A, Marchini, A, Pugliese, R, et al. A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale. 2015;8(1):253–65.Google Scholar
Chang, WC, Hawkes, E, Keller, CG, Sretavan, DW. Axon repair: surgical application at a subcellular scale.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(2):151–61.Google Scholar
Chang, WC, Hawkes, EA, Kliot, M, Sretavan, DW. In vivo use of a nanoknife for axon microsurgery. Neurosurgery. 2007;61(4):683–91; discussion 91–2.Google Scholar
Sretavan, DW, Chang, W, Hawkes, E, Keller, C, Kliot, M. Microscale surgery on single axons. Neurosurgery. 2005;57(4):635–46; discussion -46.Google Scholar
Yang, R, Song, B, Sun, Z, et al. Cellular level robotic surgery: nanodissection of intermediate filaments in live keratinocytes. Nanomedicine. 2015;11(1):137–45.Google Scholar
Gaurav, C, Saurav, B, Goutam, R, Goyal, AK. Nano-systems for advanced therapeutics and diagnosis of atherosclerosis. Curr Pharm Des. 2015;21(30):4498–508.CrossRefGoogle ScholarPubMed
Lee, HJ, Park, J, Yoon, OJ, et al. Amine-modified single-walled carbon nanotubes protect neurons from injury in a rat stroke model. Nat Nanotechnol. 2011;6(2):121–5.Google Scholar
Sang, LY, Liang, YX, Li, Y, et al. A self-assembling nanomaterial reduces acute brain injury and enhances functional recovery in a rat model of intracerebral hemorrhage. Nanomedicine. 2015;11(3):611–20.Google Scholar
Roy, S, Ferrara, LA, Fleischman, AJ, Benzel, EC. Microelectromechanical systems and neurosurgery: a new era in a new millennium. Neurosurgery. 2001;49(4):779–97; discussion 97–8.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×