Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2012
  • Online publication date: May 2012

Chapter 12 - Referring to localized cognitive operations in parts of dynamically active brains


This chapter focuses on the knowledge of the references of perceptual demonstratives: terms like 'this' and 'that' used to refer to currently perceived objects, such as a tree or a person. It has often been remarked, as a basic problem in theory of meaning, that the only credible accounts of meaning are truth conditional, but that it is hard to understand how the functional organization of a subject could constitute their grasp of the truth conditions of the statements they make and the thoughts they have. Functionalism stops short, with a mere characterization of the transitions from content to content one does engage in. In perception we are confronted with the references of perceptual-demonstrative terms, and to that extent we can be said to perceive the intended model for demonstrative discourse. There is an epistemic role for consciousness, for sensory awareness in particular, in our grasp of meaning.

Related content

Powered by UNSILO


Achard, Sophie, Salvador, Raymond, Whitcher, Brandon, Suckling, John, and Bullmore, Ed (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. Journal of Neuroscience 26: 63–72.
Andreasen, Nancy C., O’Leary, Daniel S., Cizadlo, Ted, et al. (1995) Remembering the past: Two facets of episodic memory explored with positron emission tomography. American Journal of Psychiatry 152: 1576–1585.
Antrobus, John S., Singer, Jerome L., Goldstein, S., and Fortgang, M. (1970) Mindwandering and cognitive structure. Transactions of the New York Academy of Sciences 32: 242–252.
Bechtel, William (2008) Mental Mechanisms. London: Routledge.
Bechtel, William and Abrahamsen, Adele (2005) Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences 36: 421–441.
Bechtel, William and Abrahamsen, Adele (2010) Dynamic mechanistic explanation: Computational modeling of circadian rhythms as an exemplar for cognitive science. Studies in History and Philosophy of Science, Part A, 41, no. 3: 321–333.
Bechtel, William and Richardson, Robert C. ([1993] 2010) Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research. Cambridge, MA: MIT. Originally published by Princeton University Press in 1993.
Biswal, Bharat, Yetkin, F. Zerrin, Haughton, Victor M., and Hyde, James S. (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine 34: 537–541.
Britten, Kenneth H., Shadlen, Michael N., Newsome, William T., and Movshon, J. Anthony (1992) The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience 12: 4745–4765.
Broca, Paul (1861) Remarques sur le siége de la faculté du langage articulé, suivies d’une observation d’aphémie (perte de la parole). Bulletin de la Société Anatomique 6: 343–357.
Brodmann, Korbinian ([1909] 1994) Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: J. A. Barth. Translated by L. J. Garvey asBrodmann’s Localization in the Cerebral Cortex: The Principles of Comparative Localisation in the Cerebral Cortex Based on Cytoarchitectonics. New York: Springer, 2006.
Buckner, Randy L., Andrews-Hanna, JessicaR., and Schacter, Daniel L. (2008) The brain’s default network. Annals of the New York Academy of Sciences 1124: 1–38.
Bullmore, Ed and Sporns, Olaf (2009) Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10: 186–198.
Buzsáki, György and Draguhn, Andreas (2004) Neuronal oscillations in cortical networks. Science 304: 1926–1929.
Canolty, R. T., Edwards, E., Dalal, S. S., et al. (2006) High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626–1628.
Cordes, Dietmar, Haughton, Victor M., Arfanakis, Konstantinos, et al. (2000) Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology 21: 1636–1644.
Felleman, Daniel J. and van Essen, David C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1: 1–47.
Flourens, J. P. M. (1824) Recherches expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébris. Paris: Crevot.
Fox, Michael D., Snyder, Abraham Z., Vincent, Justin L., Corbetta, Maurizio, Van Essen, David C., and Raichle, Marcus E. (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America 102: 9673–9678.
Fox, Michael D., Snyder, Abraham Z., Vincent, Justin L., and Raichle, Marcus E. (2007) Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron 56: 171–184.
Fritsch, Gustav Theodor and Hitzig, Eduard (1870) Über die elecktrische Erregbarkeit des Grosshirns. Arhiv für Anatomie und Physiologie 37: 300–332.
Gong, Pulin and van Leeuwen, Cees (2004) Evolution to a small-world network with chaotic units. Europhysics Letters 67: 328–333.
Gray, Charles M. and Singer, Wolf (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proceedings of the National Academy of Sciences of the United States of America 86: 1698–1702.
Greicius, Michael D., Krasnow, Ben, Reiss, Allan L., and Menon, Vinod (2003) Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America 100: 253–258.
Greicius, Michael D., Supekar, Kaustubh, Menon, Vinod, and Dougherty, Robert F. (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex 19: 72–78.
Hagmann, Patric, Cammoun, Leila, Gigandet, Xavier, et al. (2008) Mapping the structural core of human cerebral cortex. PLoS Biology 6: e159.
Hubel, David H. and Wiesel, Torsten N. (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology 160: 106–154.
Hubel, David H. and Wiesel, Torsten N. (1968) Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195: 215–243.
Ingvar, David H. (1975) Patterns of brain activity revealed by measurements of regional cerebral blood flow. In David H. Ingvar and Niels A. Lassen (eds.) Brain Work: The Coupling of Function, Metabolism, and Blood Flow in the Brain: Proceedings of the Alfred Benzon Symposium VIII, Copenhagen, 26–30 May 1974, Held at the Premises of the Royal Danish Academy of Sciences and Letters, Copenhagen. New York: Academic, pp. 397–413.
Kandel, Eric R. (1976) Cellular Basis of Behavior: An Introduction to Behavioral Neurobiology. San Francisco: W. H. Freeman.
Lakatos, Peter, Shah, Ankoor S., Knuth, Kevin H., Ulbert, Istvan, Karmos, George, and Schroeder, Charles E. (2005) An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. Journal of Neurophysiology 94: 1904–1911.
Lashley, Karl S. (1950) In search of the engram. In Society for Experimental Biology (ed.) Physiological Mechanisms in Animal Behaviour, Symposia of the Society for Experimental Biology iv. New York: Academic Press; Cambridge University Press, pp. 454–482.
Laufs, Helmut, Krakow, K., Sterzer, P., et al. (2003) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proceedings of the National Academy of Sciences of the United States of America 100: 11053–11058.
Llinás, Rodolfo R. (1988) The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science 242: 1654–1664.
Llinás, Rodolfo R. and Yarom, Y. (1981) Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. Journal of Physiology 315: 569–584.
Lorente de Nó, Rafael (1938) Analysis of the activity of the chains of internuncial neurons. Journal of Neurophysiology 1: 207–244.
Machamer, Peter, Darden, Lindley, and Craver, Carl F. (2000) Thinking about mechanisms. Philosophy of Science 67: 1–25.
Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., and Corbetta, Maurizio (2007) Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America 104: 13170–13175.
Margulis, Lynn [see also Sagan, Lynn] (1981) Symbiosis in Cell Evolution: Life and Its Environment on the Early Earth. San Francisco: W. H. Freeman.
Milgram, Stanley (1967) The small world problem. Psychology Today 2: 60–67.
Milner, A. David and Goodale, Melvyn G. (1995) The Visual Brain in Action. Oxford University Press.
Munk, Hermann (1881) Über die Funktionen der Grosshirnrinde. Berlin: A. Hirschwald.
Posner, M. I. and Raichle, M. E. (1994) Images of Mind. San Francisco: W. H. Freeman.
Raichle, Marcus E., MacLeod, Ann Mary, Snyder, Abraham Z., Powers, William J., Gusnard, Debra A., and Shulman, Gordon L. (2001) A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America 98: 676–682.
Raichle, Marcus E. and Mintun, Mark A. (2006) Brain work and brain imaging. Annual Review of Neuroscience 29: 449–476.
Rubinov, Mikail, Sporns, Olaf, van Leeuwen, Cees, and Breakspear, Michael (2009) Symbiotic relationship between brain structure and dynamics. BMC Neuroscience 10: 55.
Sagan, Lynn [Lynn Margulis] (1967) On the origin of mitosing cells. Journal of Theoretical Biology 14: 255–274.
Scannell, J. W., Burns, G. A. P. C., Hilgetag, C. C., O’Neil, M. A., and Young, Malcolm P. (1999) The connectional organization of the cortico-thalamic system of the cat. Cerebral Cortex 9: 277–299.
Simon, Herbert A. (1962) The architecture of complexity: hierarchic systems. Proceedings of the American Philosophical Society 106: 467–482.
Song, Sen, Sjöström, Per Jesper, Reigl, Markus, Nelson, Sacha, and Chklovskii, Dmitri B. (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology 3: e68.
Sporns, Olaf and Zwi, Jonathan D. (2004) The small world of the cerebral cortex. Neuroinformatics 2: 145–162.
Steriade, Mircea and Llinás, Rodolfo R. (1988) The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews 68: 649–742.
Ungerleider, Leslie G. and Mishkin, Mortimer (1982) Two cortical visual systems. In D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (eds.) Analysis of Visual Behavior. Cambridge, MA: MIT Press, pp. 549–586.
Uttal, William R. (2001) The New Phrenology: The Limits of Localizing Cognitive Processes in the Brain. Cambridge, MA: MIT Press.
van Essen, David C. and Gallant, Jack L. (1994) Neural mechanisms of form and motion processing in the primate visual system. Neuron 13: 1–10.
van Orden, Guy C. and Paap, Kenneth R. (1997) Functional neural images fail to discover the pieces of the mind in the parts of the brain. Philosophy of Science 64: S85–S94.
van Orden, Guy C., Pennington, Bruce F., and Stone, Gregory O. (2001) What do double dissociations prove? Inductive methods and isolable systems. Cognitive Science 25: 111–172.
Watts, Duncan and Strogatz, Steven (1998) Collective dynamics of small worlds. Nature 393: 440–442.
Wimsatt, William C. (1986) Forms of aggregativity. In A. Donagan, N., Perovich and M. Wedin (eds.) Human Nature and Natural Knowledge. Dordrecht: Reidel, pp. 259–293.
Young, Malcolm P. (1993) The organization of neural systems in the primate cerebral cortex. Proceedings of the Royal Society of London, Series B: Biological Sciences 252: 13–18.