Skip to main content Accessibility help
  • Print publication year: 2010
  • Online publication date: May 2010

2 - Neurobiology of TBI sustained during development



Changes in brain growth and connectivity continue throughout an individual's lifespan. The most rapid period of cerebral changes are observed during infancy and childhood but have recently been shown to continue into early adulthood (Toga et al.,2006). While the pediatric population as a whole shows robust differences across countless variables compared to the “adult” or mature brain, there are also significant differences between subgroups within the pediatric population. The pediatric population is not a homogenous group, but rather is made up of subgroups as defined by their developmental profiles for a given parameter. Despite the fact that increasing clinical and experimental evidence reveals age-related differences in response to traumatic brain injury (TBI) within the pediatric population, there remains a lack of appreciation for these differences when establishing standards of care for children. Many parameters (serum glucose management) continue to be “modified” from adult practice without direct knowledge of age-related responses. These findings emphasize the fact that developmental physiology impacts the pathophysiological response to traumatic brain injury and ultimately influences developmental disability.

Traumatic brain injury early in life

Myelination and compliance

Changes in cerebral myelination continue throughout adolescence into early adulthood (Courhesne et al., 2000; Giorgio et al., 2008; Paus et al., 1999). As brain myelin content increases, brain water content decreases (Himwich, 1973) with consequent changes in the biomechanical properties of the brain.

Related content

Powered by UNSILO
Adelson, P., Clyde, B., Kochanek, P. M., Wisniewski, S., Marion, D. & Yonas, H. (1997). Cerebrovascular response in infants and young children following severe traumatic brain injury. Pediatric Neurosurgery, 26, 200–207.
Adelson, P. D., Jenkins, L. W., Hamilton, R. L., Robichaud, P., Tran, M. P. & Kochanek, P. M. (2001). Histopathologic response of the immature rat to diffuse traumatic brain injury. Journal of Neurotrauma, 18, 967–976.
Appelberg, S., Hovda, D. A. & Prins, M. L. (2009). The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in juvenile and adult rat. Journal of Neurotrauma, 26, 497–506.
Bartnik, B. L., Sutton, R. L., Fukushima, M., Harris, N. G., Hovda, D. A. & Lee, S. M. (2005). Upregulation of pentose phosphate pathway and preservation of tricarboxylic acid cycle flux after experimental brain injury. Journal of Neurotrauma, 22, 1052–1065.
Berger, N. A. (1985). Poly (ADP-ribose) in the cellular response to DNA damage. Radiation Research, 101, 4–15.
Biagas, K. V., Grundl, P. D., Kochanek, P., Schiding, J. K. & Nemoto, E. M. (1996). Posttraumatic hyperemia in immature, mature, and aged rats: autoradiographic determination of cerebral blood flow. Journal of Neurotrauma, 13, 189–200.
Biegon, A., Fry, P. A., Paden, C. M., Alexandrovich, A. & Tsenter, J. E. S. (2004). Dynamic changes in N-methyl-d-aspartate receptors after closed head injury in mice: implications for treatment of neurological and cognitive deficits. Proceedings of the National Academy of Sciences, USA, 101, 5117–5122.
Bittigau, P., Sifringer, M., Pohl, al. (1999). Apoptotic neurodegeneration following trauma is markedly enhanced in the immature brain. Annals of Neurology, 45, 724–735.
Bittigau, P., Sifringer, M., Genz, al. (2002). Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proceedings of the National Academy of Sciences, USA, 99, 15089–15094.
Booth, R. F. G., Patel, T. B. & Clark, J. B. (1980). The development of enzymes of energy metabolism in the brain of a precocial (guinea pig) and non-precocial (rat) species. Journal of Neurochemistry, 34, 17–25.
Bonvento, G., Sibson, N. & Pellerin, L. (2002). Does glutamate image your thoughts?Trends in Neuroscience, 25, 359–364.
Bruce, D., Alvai, A., Bilaniuk, L., Dolinskas, C., Obrist, W. & Uzzell, B. (1981). Diffuse cerebral swelling following head injuries in children: the syndrome of malignant brain edema. Journal of Neurosurgery, 54, 170–178.
Cazalis, F., Babikian, T., Newman, N., Hovda, D. A., Giza, C. C. & Asarnow, R. F. (2007). Longitudinal fMRI study of severe traumatic brain injury in adolescents. Society for Neuroscience Abstracts.
Cherian, L., Hlatky, R. & Robertson, C. S. (2004). Comparison of tetrahydrobiopterin and l-arginine on cerebral blood flow after controlled cortical impact injury in rats. Journal of Neurotrauma, 21, 1196–1203.
Chiron, C., Raynaud, C., Maxiere, al. (1992). Changes in regional cerebral blood flow during brain maturation in children and adolescents. Journal of Nuclear Medicine, 33, 696–703.
Chugani, H. T., Phelps, M. E. & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–497.
Conti, A. C., Raghupathi, R., Trojanowski, J. Q. & McIntosh, T. K. (1998). Experimental brain injury induces regionally distinct apoptosis during the acute and delayed post-traumatic period. Journal of Neuroscience, 18, 5663–5672.
Cosi, C. & Marien, M. (1998). Decreases in mouse brain NAD+ and ATP induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): prevention by the poly (ADP-ribose) polymerase inhibitor, benzamide. Brain Research, 809, 58–67.
Courchesne, E., Chisum, H. J., Townsend, al. (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology, 216, 672–682.
Cremer, J. E., Braun, L. D. & Oldendorf, W. H. (1976). Changes during development in transport processes of the blood–brain barrier. Biochimica et Biophyica Acta, 448, 633–637.
Dahlquist, G. & Persson, B. (1976). The rat of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats. Pediatric Research, 10, 910–917.
Davis, L. M., Pauly, J. R., Readnower, R. D., Rho, J. M. & Sullivan, P. G. (2008). Fasting is neuroprotective following traumatic brain injury. Journal of Neuroscience Research, 86, 1812–1822.
Dietrich, W. D., Alonso, O., Busto, R. & Ginsberg, M. D. (1994). Widespread metabolic depression and reduced somatosensory circuit activation following traumatic brain injury in rats. Journal of Neurotrauma, 11, 629–640.
Dixon, C. E., Ma, X. & Marion, D. W. (1997). Reduced evoked release of acetylcholine in the rodent neocortex following traumatic brain injury. Brain Research, 749, 127–130.
Dudek, F. E. & Sutula, T. P. (2007). Epileptogenesis in the dentate gyrus: a critical perspective. Progress in Brain Research, 163, 755–773.
Durham, S. R., Raghupathi, R., Helfaer, M. A., Marwaha, S. & Duhaime, A. C. (2000). Age-related differences in acute physiologic response to focal traumatic brain injury in piglets. Pediatric Neurology, 33, 76–82.
Enerson, B. E. & Drewes, L. R. (2003). Molecular features, regulation and function of monocarboxylate transporters: implications for drug delivery. Journal of Pharmaceutical Science, 92, 1531–1544.
Farwell, J. R., Lee, Y. J., Hirtz, D. G., Sulzbacher, S. I., Ellenberg, J. H. & Nelson, K. B. (1990). Phenobarbital for febrile seizures–effects on intelligence and on seizure recurrence. New England Journal of Medicine, 322, 364–369.
Feusner, J., Ritchie, T., Lawford, B., Young, R. M., Kann, B. & Noble, E. P. (2001). GABA(A) receptor beta 3 subunit gene and psychiatric morbidity in a post-traumatic stress disorder population. Psychiatry Research, 104, 109–117.
Fineman, I., Hovda, D. A., Smith, M., Yoshino, A. & Becker, D. P. (1993). Concussive brain injury is associated with a prolonged accumulation of calcium: a 45Ca autoradiographic study. Brain Research, 624, 94–102.
Fineman, I., Giza, C. C., Nahed, B. V., Lee, S. M. & Hovda, D. A. (2000). Inhibition of neocortical plasticity during development by a moderate concussive brain injury. Journal of Neurotrauma, 17, 739–749.
Flint, A. C., Maisch, U. S., Weishaupt, J. H., Kriegstein, A. R. & Monyer, H. (1997). NR2A subunit expression shortens NMDA receptor synaptic currents in developing neocortex. The Journal of Neuroscience, 17, 2469–2476.
Geuze, E., Berckel, B. N., Lammertsma, A. al. (2008). Reduced GABAA benzodiazepine receptor binding in veterans with post-traumatic stress disorder. Molecular Psychiatry, 13, 74–83.
Giorgio, A., Watkins, K. E., Douaud, al. (2008). Changes in white matter microstructure during adolescence. NeuroImage, 39, 52–61.
Giza, C. C. & Hovda, D. A. (2001). The neurometabolic cascade of concussion. Journal of Athletic Training, 36, 228–235.
Giza, C., Lee, S. M. & Hovda, D. A. (2000). Increased N-Methyl d-Aspartate (NMDA) receptor NR2A:NR2B subunit ratio induced by rearing in an enriched environment (EE). Society for NeuroscienceAbstracts, 15.3.
Giza, C. C., Griesbach, G. S. & Hovda, D. A. (2005). Experience-dependent behavioral plasticity is disturbed following traumatic brain injury to the immature brain. Behavioural Brain Research, 157, 11–22.
Giza, C. C., Maria, N. S. & , D. A., , H. (2006). N-methyl-d-aspartate receptor subunit changes after traumatic injury to the developing brain. Journal of Neurotrauma, 23, 950–961.
Golarai, G., Greenwood, A., Feeney, D. & Connor, J. (2001). Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. Journal of Neuroscience, 21, 8523–8537.
Gorman, L., Fu, K., Hovda, D., Murray, M. & Traystman, R. (1996). Effects of traumatic brain injury on the cholinergic system in the rat. Journal of Neurotrauma, 13, 457–463.
Greenough, W. T., Volkmar, F. R. & Juraska, J. M. (1973). Effects of rearing complexity on dendritic branching in frontolateral and temporal cortex of the rat. Experimental Neurology, 41, 371–378.
Grundl, P. D., Biagas, K. V., Kochanek, P. M., Schiding, J. K., Barmada, M. A. & Nemoto, E. M. (1994). Early cerebrovascular response to head injury in immature and mature rats. Journal of Neurotrauma, 11, 135–148.
Gsell, W., Burke, M., Wiedermann, al. (2006). Differential effects of NMDA and AMPA glutamate receptors on functional magnetic resonance imaging signals and evoked neuronal activity during forepaw stimulation of the rat. Journal of Neuroscience, 26, 8409–8416.
Gumbiner, B., Wendel, J. A. & McDermott, M. P. (1996). Effects of diet composition and ketosis on glycemia during very-low-energy-diet therapy in obese patients with non-insulin-dependent diabetes mellitus. American Journal of Clinical Nutrition, 63, 110–115.
Gurkoff, G. G., Giza, C. C. & Hovda, D. A. (2006). Lateral fluid percussion injury in the developing rat causes an acute, mild behavioral dysfunction in the absence of significant cell death. Brain Research, 1077, 24–36.
Hall, E. D., Andrus, P. K. & Yonkers, P. A. (1993). Brain hydroxyl radical generation in acute experimental head injury. Journal of Neurochemistry, 60, 588–594.
Hardingham, G. E. & Bading, H. (2002). Coupling of extrasynaptic NMDA receptors to a CREB shut-off pathway is developmentally regulated. Biochimica et Biophysica Acta, 1600, 148–153.
Hardingham, G. E. & Bading, H. (2003). The Yin and Yang of NMDA receptor signalling. Trends in Neuroscience, 26, 81–89.
Hawkins, R. A., Williamson, D. H. & Krebs, H. A. (1971). Ketone-body utilization by adult and suckling rat brain in vivo. Biochemical Journal, 122, 13–18.
Hensch, T., Fagiolini, M., Mataga, N., Stryker, M., Baekkeskov, S. & Kash, S. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 282, 1504–1508.
Himwich, H. E. (1973). Early studies of the developing brain. In Himwich, W., ed. Biochemistry of the Developing Brain Volume 1. New York, NY: Marcel Dekker Inc, pp. 2–20.
Hovda, D. A. (1996). In Narayan, R. K., Wilberger, J. E. & Povlishock, J. T., ed. Metabolic Dysfunction in Neurotrauma, New York: McGraw-Hill Inc, pp. 1459–1478.
Hovda, D. A., Le, H. M., Lifshitz, al. (1994). Long-term changes in metabolic rates for glucose following mild, moderate and severe concussive head injuries in adult rats. Journal of Neuroscience, 20, 845.
Ikonomidou, C. & Turski, L. (2002). Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury?Lancet Neurology, 1, 383–386.
Ikonomidou, C., Bosch, F., Miksa, al. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science, 283, 70–74.
Ip, E. Y., Giza, C. C., Griesbach, G. S. & Hovda, D. A. (2002). Effects of enriched environment and fluid percussion injury on dendritic arborization within the cerebral cortex of the developing rat. Journal of Neurotrauma, 19, 573–585.
Ip, E. Y., Zanier, E. R., Moore, A. H., Lee, S. M. & Hovda, D. A. (2003). Metabolic, neurochemical, and histological responses to vibrissa motor cortex stimulation after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 23, 900–910.
Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N. & Chuang, D. M. (1998). Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Molecular Pharmacology, 53, 701–707.
Jevtovic-Todorovic, V., Hartman, R. E., Izumi, al. (2003). Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. The Journal of Neuroscience, 23, 876–882.
Kaindl, A. M., Asimiadou, S., Manthey, D., Hagen, M. V., Turski, L. & Ikonomidou, C. (2006). Antiepileptic drugs and the developing brain. Cellular and Molecular Life Sciences, 63, 399–413.
Katayama, Y., Becker, D. P., Tamura, T. & Hovda, D. A. (1990). Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. Journal of Neurosurgery, 73, 889–900.
Kawamata, T., Katayama, Y., Hovda, D. A., Yohino, A. & Becker, D. P. (1992). Administration of excitatory amino acid antagonists via microdialysis attenuates the increase in glucose utilization seen following concussive brain injury. Journal of Cerebral Blood Flow and Metabolism, 12, 12–24.
Kim, C. I., Lee, S. H., Seong, G. J., Kim, Y. H. & Lee, M. Y. (2006). Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochemical and Biophysical Research Communications, 341, 1237–1243.
Kroppenstedt, S. N., Schneider, G. H., Thomale, U. W. & Unterberg, A. W. (1998). Protective effects of aptiganel HCl (Cerestat) following controlled cortical impact injury in the rat. Journal of Neurotrauma, 15, 191–197.
Kumar, A., Zou, L., Yuan, X., Long, Y. & Yang, K. (2002). N-methyl-d-aspartate receptors: transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. Journal of Neuroscience Research, 67, 781–786.
LaPlaca, M. C., Raghupathi, R., Verma, al. (1999). Temporal patterns of poly (ADP-Ribose) polymerase activation in the cortex following experimental brain injury in the rat. Journal of Neurochemistry, 73, 205–213.
Leong, S. F. & Clark, J. B. (1984). Regional enzyme development in rat brain. Enzymes associated with glucose utilization. Biochemical Journal, 218, 131–138.
Li, Q., Spigelman, I., Hovda, D. A. & Giza, C. C. (2005). Decreased NMDA receptor mediated synaptic currents in CA1 neurons following fluid percussion injury in developing rats. Journal of Neurotrauma, 20 (10), 1249 (abstract).
Liu, D., Diorio, J., Day, J. C., Francis, D. D. & Meaney, M. J. (2000). Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nature Neuroscience, 3, 799–806.
Lotze, M., Grodd, W., Rodden, F. al. (2006). Neuroimaging patterns associated with motor control in traumatic brain injury. Neurorehabilitation and Neural Repair, 20, 14–23.
Lowenstein, D. H., Thomas, M. J., Smith, D. H. & McIntosh, T. K. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. Journal of Neuroscience, 12, 4846–4853.
Marklund, N., Clausen, F., Lewander, T. & Hillered, L. (2001). Monitoring of reactive oxygen species production after traumatic brain injury in rats with microdialysis and the 4-hydroxygenzoic acid trapping methods. Journal of Neurotrauma, 18, 1217–1227.
Maset, A. L., Marmarou, A., Ward, al. (1987). Pressure–volume index in head injury. Journal of Neurosurgery, 67, 832–840.
McAllister, T. W., Saykin, A. J., Flashman, L. al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53, 1300–1308.
McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C. & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. Neuroimage, 14, 1004–1012.
McIntosh, T. K., Vink, R., Soares, H., Hayes, R. & Simon, R. (1989). Effects of the N-methyl-d-aspartate receptor blocker MK-801 on neurologic function after experimental brain injury. Journal of Neurotrauma, 6, 247–259.
Miller, L., Lyeth, B., Jenkins, al. (1990). Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Research, 526, 103–107.
Molteni, R., Ying, Z. & Gomez-Pinilla, F. (2002). Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. European Journal of Neuroscience, 16, 1107–1116.
Muizelaar, J., Marmarou, A., DeSalles, al. (1989). Cerebral blood flow and metabolism in severely head injured children.1. Relationship with GCS score, outcome, ICPA and PVI. Journal of Neurosurgery, 71, 63–71.
Nakamura, T., Yoshihara, D., Ohmori, T., Yanai, M. & Takeshita, Y. (1994). Effects of diet high in medium-chain triglyceride on plasma ketone, glucose and insulin concentrations in enterectomized and normal rats. Journal of Nutritional Science and Vitaminology, 40, 147–159.
Nehlig, A., Pereira de Vasconcelos, A. & Boyet, S. (1987). Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. Journal of Neuroscience, 8, 2321–2333.
Nehlig, A., Pereira de Vasconcelos, A. & Boye, S. (1989). Postnatal changes in local cerebral blood flow measured by the quantitative autoradiographic 14cIodoantipyrine technique in freely moving rats. Journal of Cerebral Blood Flow and Metabolism, 9, 579–588.
Nehlig, A., Boyet, S. & Pereira de Vasconcelos, A. (1991). Autoradiographic measurements of local cerebral B-hydroxybutyrate uptake in the rat during postnatal development. Neuroscience, 40(3), 871–878.
Olney, J. W., Young, C., Wozniak, D. F., Jevtovic-Todorovic, V. & Ikonomidou, C. (2004). Do pediatric drugs cause developing neurons to commit suicide?Trends in Pharmacological Sciences, 25, 135–139.
Osteen, C. L., Moore, A. H., Prins, M. L. & Hovda, D. A. (2001). Age-dependency of 45calcium accumulation following lateral fluid percussion: acute and delayed patterns. Journal of Neurotrauma, 18, 141–162.
Osteen, C., Giza, C. & Hovda, D. (2004). Injury-induced alterations in N-methyl-d-aspartate receptor subunit composition contribute to prolonged 45calcium accumulation following lateral fluid percussion. Neuroscience, 128, 305–322.
Owen, O. E., Morgan, A. P., Kemp, H. G., Sullivan, J. M., Herrera, M. G. & Cahill, G. F. J. (1967). Brain metabolism during fasting. The Journal of Clinical Investigation, 46, 1589–1595.
Passineau, M. J., Zhao, W., Busto, al. (2000). Chronic metabolic sequelae of traumatic brain injury: prolonged suppression of somatosensory activation. American Journal of Physiology Heart Circulatory Physiology, 279, H924–931.
Paus, T., Zijdenbos, A., Worsley, al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science, 283, 1908–1911.
Prince, D. A., Parada, I., Scalise, K., Graber, K., Jin, X. & Shen, F. (2009). Epilepsy following cortical injury: cellular and molecular mechanisms as targets for potential prophylaxis. Epilepsia, 50 Suppl 2, 30–40.
Prins, M. L. & Da, H. (2001). Mapping cerebral glucose metabolism during spatial learning: interactions of development and traumatic brain injury. Journal of Neurotrauma, 18, 31–46.
Prins, M. L. & Hovda, D. A. (1998). Traumatic brain injury in the developing rat: effects of maturation on Morris water maze acquisition. Journal of Neurotrauma, 15, 799–811.
Prins, M. L. & Hovda, D. A. (2009). The effects of age and ketogenic diet on local cerebral metabolic rates of glucose after controlled cortical impact injury in rats. Journal of Neurotrauma, 26(7), 1083–1093.
Prins, M. L., Lee, S. M., Cheng, C. L. Y., Becker, D. P. & Hovda, D. A. (1996). Fluid percussion brain injury in the developing and adult rat: a comparative study of mortality, morphology, intracranial pressure and mean arterial blood pressure. Developmental Brain Research, 95, 272–282.
Prins, M. L., Povlishock, J. T. & Phillips, L. L. (2003). The effects of combined fluid percussion traumatic brain injury and unilateral entorhinal deafferentation on the juvenile rat brain. Developmental Brain Research, 140, 93–104.
Prins, M. L., Lee, S. M., Fujima, L. & Hovda, D. A. (2004). Increased cerebral uptake and oxidation of exogenous betaHB improves ATP following traumatic brain injury in adult rats. Journal of Neurochemistry, 90, 666–672.
Prins, M. L., Fujima, L. S. & Hovda, D. A. (2005). Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. Journal of Neuroscience Research, 82, 413–420.
Quinlan, E. M., Olstein, D. H. & Bear, M. F. (1999). Bidirectional, experience-dependent regulation of N-methyl-d-aspartate receptor subunit composition in the rat visual cortex during postnatal development. Proceedings of the National Academy of Sciences, USA, 96, 12876–12880.
Quinlan, E. M., Philpot, B. D., Huganir, R. L. & Bear, M. F. (1999). Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo [see comments]. Nature Neuroscience, 2, 352–357.
Rao, V. L., Dogan, A., Todd, K. G., Bowen, K. K. & Dempsey, R. J. (2001). Neuroprotection by memantine, a non-competitive NMDA receptor antagonist after traumatic brain injury in rats. Brain Research, 911, 96–100.
Reger, M. L., Gurkoff, G. G., Hovda, D. A. & Giza, C. C. (2005). The novel object recognition task detects a transient cognitive deficit after developmental TBI. Journal of Neurotrauma, 20 (10), 1206 (abstract).
Ritter, A. M., Robertson, C. S., Goodman, J. C., Contant, C. F. & Grossman, R. G. (1996). Evaluation of carbohydrate free diet for patients with severe head injury. Journal of Neurotrauma, 13, 473–485.
Riva, M. A., Tascedda, F., Molteni, R. & Racagni, G. (1994). Regulation of NMDA receptor subunit mRNA expression in the rat brain during postnatal development. Brain Research Molecular Brain Research, 25, 209–216.
Roberts, E. B. & Ramoa, A. S. (1999). Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret. Journal of Neurophysiology, 81, 2587–2591.
Robertson, C. S., Goodman, J. C., Narayan, R. K., Contant, C. F. & Grossman, R. G. (1991). The effect of glucose admnistration on carbohydrate metabolism after head injury. Journal of Neurosurgery, 74, 43–50.
Rosenzweig, M. R. & Bennett, E. L. (1996). Psychobiology of plasticity: effects of training and experience on brain and behavior. Behavioural Brain Research, 78, 57–65.
Rudy, J. W., Stadler-Morris, S. & Albert, P. (1987). Ontogeny of spatial navigation behaviors in the rat: dissociation of “proximal” and “distal” cue based behaviors. Behavioral Neuroscience, 101, 62–73.
Satchell, M. A., Zhang, X., Kochanek, al. (2003). A dual role for poly-ADP-ribosylation in spatial memory acquisition after traumatic brain injury in mice involving NAD+ depletion and ribosylation of 14–3–3. Journal of Neurochemistry, 85, 697–708.
Shao, L., Ciallella, J., Yan, al. (1999). Differential effects of traumatic brain injury on vesicular acetylcholine transporter and M2 muscarinic receptor mRNA and protein in rat. Journal of Neurotrauma, 16, 555–566.
Sharples, P., Stuart, A., D., M., Aynsley-Green, A. & Eyre, J. (1995). Glasgow coma score, outcome, intracranial pressure and time after injury. Journal of Neurology, Neurosurgery, and Psychiatry, 58, 145–152.
Sheline, C. T., Behrens, M. M. & Choi, D. W. (2000). Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD+ and inhibition of glycolysis. Journal of Neuroscience, 20, 3139–3146.
Sihver, S., Marklund, N., Hillered, L., Långström, B., Watanabe, Y. & Bergström, M. (2001). Changes in mACh, NMDA and GABA(A) receptor binding after lateral fluid-percussion injury: in vitro autoradiography of rat brain frozen sections. Journal of Neurochemistry, 78, 417–423.
Skippen, P., Seear, M., Poskitt, al. (1997). Effect of hyperventilation on regional cerebral blood flow in head injured children. Critical Care Medicine, 25, 1402–1409.
Sutton, R. L., Hovda, D. A., Adelson, P. D., Benzel, E. C. & Becker, D. P. (1994). Metabolic changes following coritcal contusion: relationship to edema and morphological changes. Acta Neurochirurgica, 60 Suppl, 446–448.
Takahashi, T., Feldmeyer, D., Suzuki, al. (1996). Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. Journal of Neuroscience, 16, 4376–4382.
Tanaka, R., Mochizuki, H., Suzuki, al. (2002). Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. Journal of Cerebral Blood Flow and Metabolism, 22, 280–288.
Thomas, S., Prins, M. L., Samii, M. & Hovda, D. A. (2000). Cerebral metabolic response to traumatic brain injury sustained early in development: a 2-deoxy-d-glucose autoradiographic study. Journal of Neurotrauma, 17, 649–665.
Toga, A., Thompson, P. & Sowell, E. (2006). Mapping brain maturation. Trends in Neuroscience, 29, 148–159.
Toth, Z., Hollrigel, G. S., Gorcs, T. & Soltesz, I. (1997). Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. Journal of Neuroscience, 17, 8106–8117.
Tovar, K. R. & Westbrook, G. L. (1999). The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. The Journal of Neuroscience, 19, 4180–4188.
Udomphorn, Y., Armstead, W. M. & Vavilala, M. S. (2008). Cerebral blood flow and autoregulation after pediatric traumatic brain injury. Pediatric Neurology, 38, 225–234.
Vannucci, S. J. & Simpson, I. A. (2003). Developmental switch in brain nutrient transporter expression in the rat. American Journal of Physiology, 285, E1127–E1134.
Vavilala, M. S., Muangman, S., Tontisirin, al. (2006). Impaired cerebral autoregulation and 6-month outcome in children with severe traumatic brain injury: preliminary findings. Developmental Neuroscience, 28(4–5), 348–353.
Wilder, R. T., Flick, R. P., Sprung, al. (2009). Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology, 110, 796–804.
Ying, W., Gernier, P. & Swanson, R. A. (2003). NAD+ repletion prevents PARP-1 induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochemical and Biophysical Research Communications, 308, 809–813.
Yoshino, A., Hovda, D. A., Kawamata, T., Katayama, Y. & Becker, D. P. (1991). Dynamic changes in local cerebral glucose utilization following cerebral concussion in rats: evidence of a hyper- and subsequent hypometabolic state. Brain Research, 561, 106–119.
Zwienenberg, M. & Muizelaar, J. P. (1999). Severe pediatric head injury: the role of hyperemia revisited. Journal of Neurotrauma, 16(10), 937–943.