Skip to main content Accessibility help
×
Home
  • Print publication year: 2016
  • Online publication date: June 2016

13 - Restoration of high-altitude peatlands on the Ruoergai Plateau (Northeastern Tibetan Plateau, China)

from Part II - Perspectives on peatland restoration

Summary

Introduction

All over the world, high-altitude peatlands are the product of co-evolution between nature and pastoral communities. Over thousands of years, people, looking for subsistence and resources, have changed the character of fragile mountain landscapes and their peatlands through deforestation and livestock grazing (Trimble and Mendel 1995). Increasing population pressure, the quest for mineral resources and perverse policies have in recent times intensified these changes.

The character of high-altitude peatlands can be paraphrased as ‘cold and steep and wet and sheep’. The high altitude induces colder and more humid conditions and – upwind of the mountain – more precipitation. Excessive exposure to ultraviolet radiation at high altitudes requires special adaptation of the biota, whereas the climatic island character explains the disjunct distribution of species and the high degree of endemism (Körner 2003, 2008; Spehn et al. 2010). The colder climate also discourages arable agriculture so that pastoralism – with a wide variety of livestock – is the principal form of subsistence. High rainfall and relatively steep slopes generate surface runoff, exposing the landscape and the sensitive peatlands to strong erosive forces (Evans and Warburton 2007).

The world's largest concentration of high-altitude peatlands is found in the northeastern part of the Qinghai–Tibetan Plateau (China). There, in the provinces of Sichuan and Gansu right in the heart of China (Figure 13.1), the Ruoergai (or Zoige) Plateau is located at an altitude of about 3500 m a.s.l. In contrast to the drier western and central parts of Tibet, the Ruoergai Plateau, a plain glacial landscape with low mountain ranges of some hundred metres in height, has a humid climate with long winters and short summers (Lehmkuhl and Liu 1994) which have facilitated the development of 474 000 ha of peatlands (Schumann, Thevs and Joosten 2008).

In this chapter, we explore the history and drivers of peatland degradation on the Ruoergai Plateau, the loss of important ecosystem services and the impact of such loss on livelihoods. We discuss how integrated projects may facilitate the restoration of ecosystem services and biodiversity while contributing to poverty alleviation. Case studies present the various approaches and illustrate how participatory community involvement is integral to the successful implementation of peatland conservation and restoration programmes.