Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T02:09:17.534Z Has data issue: false hasContentIssue false

10 - Theory and applications of statistical solutions of the Navier–Stokes equations

Published online by Cambridge University Press:  07 September 2011

R. Rosa
Affiliation:
Universidade Federal do Rio de Janeiro
James C. Robinson
Affiliation:
University of Warwick
José L. Rodrigo
Affiliation:
University of Warwick
Get access

Summary

Abstract

Since the 1970s the use of statistical solutions of the Navier–Stokes equations has led to a number of rigorous results for turbulent flows. This paper reviews the concept of a statistical solution, its role in the mathematical foundation of the theory of turbulence, some of its successes, and the theoretical and applied challenges that still remain. The theory is illustrated in detail for the particular case of a two-dimensional flow driven by a uniform pressure gradient.

Introduction

It is believed that turbulent fluid motions are well modelled by the Navier–Stokes equations. However, due to the complicated nature of these equations, most of our understanding of turbulence relies to a great extent on laboratory experiments and on heuristic and phenomenological arguments. Nevertheless, a number of rigorous mathematical results have been obtained directly from the Navier–Stokes equations, particularly in the last two decades.

Of great interest in turbulence theory are mean quantities, which are in general well behaved, in contrast to the corresponding instantaneous values, which tend to vary quite dramatically in time. The treatment of mean values, however, is a delicate problem, as remarked by Monin & Yaglom (1975). In practice time and space averages are the most generally used, while in theory averages with respect to a large ensemble of flows avoid some analytical difficulties and have a more universal character.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×