Skip to main content Accessibility help
  • Print publication year: 2015
  • Online publication date: March 2015

24 - Bringing together phylogenies and behaviour in host–parasite interactions

from Part III - Combining ecology and phylogenetics


Arlettaz, R., Christe, P., Lugon, A., Perrin, N. & Vogel, P. (2001). Food availability dictates the timing of parturition in insectivorous mouse-eared bats. Oikos, 95, 105–111.
Banks, J. C., Palma, R. L. & Paterson, A. M. (2006). Cophylogenetic relationships between penguins and their chewing lice. Journal of Evolutionary Biology, 19, 156–166.
Barker, S. C. (1994). Phylogeny and classification, origins, and evolution of host associations of lice. International Journal for Parasitology, 24, 1285.
Biollaz, F., Bruyndonckx, N., Beuneux, G., et al. (2010). Genetic isolation of insular populations of the Maghrebian bat, Myotis punicus, in the Mediterranean Basin. Journal of Biogeography, 37, 1557–1569.
Bolnick, D. I., Svanback, R., Fordyce, J. A., et al. (2003). The ecology of individuals: incidence and implications of individual specialization. The American Naturalist, 161, 1–28.
Brodie, E. D. & Ridenhour, B. J. (2002). The evolutionary response of predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution, 56, 2067–2082.
Bruyndonckx, N., Henry, I., Christe, P. & Kerth, G. (2009a). Spatio-temporal population genetic structure of the parasitic mite Spinturnix bechsteini is shaped by its own demography and the social system of its bat host. Molecular Ecology, 18, 3581–3592.
Bruyndonckx, N., Dubey, S., Ruedi, M. & Christe, P. ( 2009b). Molecular cophylogenetic relationships between European bats and their ectoparasitic mites (Acari, Spinturnicidae). Molecular Phylogenetics and Evolution, 51, 227–237.
Bruyndonckx, N., Biollaz, F., Dubey, S., Goudet, J. & Christe, P. (2010). Mites as biological tags of their hosts. Molecular Ecology, 19, 2770–2778.
Bush, S. E. & Clayton, D. H. ( 2006). The role of body size in host specificity: reciprocal transfer experiments with feather lice. Evolution, 60, 2158–2167.
Bush, S. E., Sohn, E. & Clayton, D. H. (2006). Ecomorphology of parasite attachment: experiments with feather lice. Journal of Parasitology, 92, 25–31.
Carius, H. J., Little, T. J. & Ebert, D. (2001). Genetic variation in a host–parasite association: potential for coevolution and frequency-dependent selection. Evolution, 55, 1136–1145.
Christe, P., Arlettaz, R. & Vogel, P. (2000). Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecology Letters, 3, 207–212.
Christe, P., Giorgi, M. S., Vogel, P. & Arlettaz, R. (2003). Differential species-specific ectoparasitic mite intensities in two intimately coexisting sibling bat species: resource-mediated host attractiveness or parasite specialization?Journal of Animal Ecology, 72, 866–872.
Clayton, D. H. (1991). Coevolution of avian grooming and ectoparasite avoidance. In Perrins, C. M. (ed.), Bird–Parasite Interactions: Ecology, Evolution and Behaviour. Oxford: Oxford University Press.
Clayton, D. H., Lee, P. L. M., Tompkins, D. M. & Brodie, E. D. I. (1999). Reciprocal natural selection on host parasite phenotypes. The American Naturalist, 154, 261–270.
Clayton, D. H., Al-Tamimi, S. & Johnson, K. P. (2003a). The ecological basis of coevolutionary history. In Page, R. D. M. (ed.), Tangled Trees: Phylogeny, Cospeciation and Coevolution. Chicago, IL: University of Chicago Press, pp. 310–341.
Clayton, D. H., Bush, S. E., Goates, B. M. & Johnson, K. P. (2003b). Host defense reinforces host–parasite cospeciation. Proceedings of the National Academy of Sciences USA, 100, 15694–15699.
Clayton, D. H., Moyer, B. R., Bush, S. E., et al. (2005). Adaptive significance of avian beak morphology for ectoparasite control. Proceedings of the Royal Society of London B, 272, 811–817.
Cornet, S., Nicot, A., Rivero, A. & Gandon, S. (2012). Malaria infection increases bird attractiveness to uninfected mosquitoes. Ecology Letters, 16, 323–329.
Davies, N. B. & Brooke, M. D. L. (1989). An experimental study of co-evolution between the cuckoo, Cuculus canorus, and its hosts: II. Host egg markings, chick discrimination and general discussion. Journal of Animal Ecology, 58, 225–236.
Day, J. F. (2005). Host-seeking strategies of mosquito disease vectors. Journal of the American Mosquito Control Association, 21, 17–22.
de Meeûs, T., Michalakis, Y. & Renaud, F. (1998). Santa Rosalia revisited: or why are there so many kinds of parasites in ‘the garden of earthly delights’?Parasitology Today, 14, 10–13.
Desdevises, Y., Morand, S., Jousson, O. & Legendre, P. ( 2002a). Coevolution between Lamellodiscus (Monogenea : Diplectanidae) and Sparidae (Teleostei): the study of a complex host–parasite system. Evolution, 56, 2459–2471.
Desdevises, Y., Morand, S. & Legendre, P. (2002b). Evolution and determinants of host specificity in the genus Lamellodiscus (Monogenea). Biological Journal of the Linnean Society, 77, 431–443.
Dietrich, M., Gomez-Diaz, E. & McCoy, K. D. (2011). Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens. Vector-Borne and Zoonotic Diseases, 11, 453–470.
Dietrich, M., Beati, L., Elguero, E., Boulinier, T. & McCoy, K. (2013). Body size and shape evolution in host races of the tick Ixodes uriae. Biological Journal of the Linnean Society, 108, 323–334.
Dietrich, M., Lobato, E., Boulinier, T. & McCoy, K. D. (2014). A experimental test of host specialization in a ubiquitous pdar ectoparasite: a role for adaptation?Journal of Animal Ecology, 83, 576–587.
Dobson, A. P. (1988). The population biology of parasite-induced changes in host behavior. The Quarterly Review of Biology, 63, 139–165.
Duval, L., Fourment, M., Nerrienet, E., et al. (2010). African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proceedings of the National Academy of Sciences USA, 107, 10561–10566.
Dybdahl, M. F. & Lively, C. M. (1998). Host–parasite coevolution: evidence for rare advantage and time-lagged selection in a natural population. Evolution, 52, 1057–1066.
Ebert, D. (1994). Virulence and local adaptation of a horizontally transmitted parasite. Science, 265, 1084–1086.
Escalante, A. A. & Ayala, F. J. (1994). Phylogeny of the malarial genus Plasmodium, derived from rRNA gene sequences. Proceedings of the National Academy of Sciences USA, 91, 11373–11377.
Ewald, P. W. (1983). Host–parasite relations, vectors, and the evolution of disease severity. Annual Review of Ecology, Evolution, and Systematics, 14, 465–485.
Garamszegi, L. Z. ( 2009). Patterns of co-speciation and host switching in primate malaria parasites. Malaria Journal, 8, 110.
Garnham, P. C. C. (1966). Malaria Parasites and Other Haemosporidia. Oxford: Blackwell Scientific Publications.
Giorgi, M. S., Arlettaz, R., Guillaume, F., et al. (2004). Causal mechanisms underlying host specificity in bat ectoparasites. Oecologia, 138, 648–654.
Gomulkiewicz, R., Drown, D. M., Dybdahl, M. F., et al. (2007). Dos and don'ts of testing the geographic mosaic theory of coevolution. Heredity, 98, 249–258.
Greischar, M. A. & Koskella, B. (2007). A synthesis of experimental work on parasite local adaptation. Ecology Letters, 10, 418–434.
Hafner, M. S. & Nadler, S. A. (1988). Phylogenetic trees support the coevolution of parasites and their hosts. Nature, 332, 258–259.
Hafner, M. S. & Page, R. D. M. ( 1995). Molecular phylogenies and host–parasite cospeciation: gophers and lice as a model system. Philosophical Transactions of the Royal Society of London B, 349, 77–83.
Hafner, M. S., Demastes, J. W, Spradling, T. A & Reed, D. L ( 2003). Cophylogeny between pocket gophers and chewing lice. In Page, R. D. M. (ed.), Tangled Trees: Phylogeny, Cospeciation and Coevolution. Chicago, IL: University of Chicago Press, pp. 1–21.
Hamilton, W. D. & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites?Science, 218, 384–387.
Hellgren, O., Bensch, S. & Malmqvist, B. (2008). Bird hosts, blood parasites and their vectors: associations uncovered by molecular analyses of blackfly blood meals. Molecular Ecology, 17, 1605–1613.
Hurd, H. (2003). Manipulation of medically important insect vectors by their parasites. Annual Review of Entomology, 48, 141–161.
Ishtiaq, F., Guillaumot, L. & Clegg, S. M., et al. (2008). Avian haematozoan parasites and their associations with mosquitoes across Southwest Pacific Islands. Molecular Ecology, 17, 4545–4555.
Ishtiaq, F., Clegg, S. M., Phillimore, A. B., et al. (2010). Biogeographical patterns of blood parasite lineage diversity in avian hosts from southern Melanesian islands. Journal of Biogeography, 37, 120–132.
Jaenike, J. (1990). Host specialization in phytophagous insects. Annual Review of Ecology and Systematics, 21, 243–273.
Janzen, D. H. (1980). When is it coevolution?Evolution, 34, 611–612.
Jenkins, T., Thomas, G. H., Hellgren, O. & Owens, I. P. F. (2012). Migratory behavior of birds affects their coevolutionary relationship with blood parasites. Evolution, 66, 740–751.
Johnson, K. P. & Clayton, D. H. (2003). Coevolutionary history of ecological replicates: comparing phylogenies of wing and body lice to columbiform hosts. In Page, R. D. M. (ed.), Tangled Trees. Chicago, IL and London: Chicago University Press pp. 262–286.
Johnson, K. P., Adams, R. J., Page, R. D. M. & Clayton, D. H. (2003). When do parasites fail to speciate in response to host speciation?Systematic Biology, 52, 37–47.
Johnson, K. P., Bush, S. E. & Clayton, D. H. ( 2005). Correlated evolution of host and parasite body size: tests of Harrison's rule using birds and lice. Evolution, 59, 1744–1753.
Joy, D. A., Gonzalez-Ceron, L., Carlton, J. M., et al. (2008). Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Molecular Biology and Evolution, 25, 1245–1252.
Koella, J. C., Sörensen, F. L. & Anderson, R. (1998). The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae. Proceedings of the Royal Society of London B, 265, 763–768.
Koskella, B. & Lively, C. M. (2007). Advice of the rose: experimental coevolution of a trematode parasite and its snail host. Evolution, 61, 152–159.
Lalubin, F., Bize, P., van Rooyen, J., Christe, P. & Glaizot, O. (2012). Potential evidence of parasite avoidance in an avian malarial vector. Animal Behaviour, 84, 539–545.
Lalubin, F., Deledevant, A., Glaizot, O. & Christe, P. (2014). Natural malaria infection reduces starvation resistance of nutrionally stressed mosquitoes, Journal of Animal Ecology, 83, 850–857.
Lehane, M. (2005). The Biology of Blood-Sucking Insects. Cambridge: Cambridge University Press.
Lively, C. M. & Dybdahl, M. F. (2000). Parasite adaptation to locally common host genotypes. Nature, 405, 679–681.
Malenke, J. R., Johnson, K. P. & Clayton, D. H. ( 2009). Host specialization differentiates cryptic species of feather-feeding lice. Evolution, 63, 1427–1438.
Martinez-de la Puente, J., Martinez, J., Rivero-de Aguilar, J., Herrero, J. & Merino, S. (2011). On the specificity of avian blood parasites: revealing specific and generalist relationships between haemosporidians and biting midges. Molecular Ecology, 20, 3275–3287.
McCoy, K. D., Boulinier, T., Chardine, J. W., Danchin, E. & Michalakis, Y. (1999). Dispersal and distribution of the tick Ixodes uriae within and among seabird host populations: the need for a population genetic approach. Journal of Parasitology, 85, 196–202.
McCoy, K. D., Boulinier, T., Tirard, C. & Michalakis, Y. (2001). Host specificity of a generalist parasite: genetic evidence of sympatric host races in the seabird tick Ixodes uriae. Journal of Evolutionary Biology, 14, 395–405.
McCoy, K. D., Chapuis, E., Tirard, C., et al. (2005). Recurrent evolution of host-specialized races in a globally distributed parasite. Proceedings of the Royal Society of London B, 272, 2389–2395.
Milinski, M. (2001). Bill Hamilton, sexual selection, and parasites. Behavioral Ecology, 12, 264–266.
Møller, A. P., Christe, P. & Lux, E. (1999). Parasitism, host immune function, and sexual selection. Quarterly Review of Biology, 74, 3–20.
Møller, A. P., Christe, P. & Garamszegi, L. Z. (2005). Coevolutionary arms races: increased host immune defense promotes specialization by avian fleas. Journal of Evolutionary Biology, 18, 46–59.
Moreira, L. A., Saig, E., Turley, A. P., et al. ( 2009). Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia. PLoS Neglected Tropical Diseases, 3, e568.
Muzaffar, C. B. & Jones, I. L. ( 2007). Activity periods and questing behavior of the seabird tick Ixodes uriae (Acari : Ixodidae) on Gull Island, Newfoundland: the role of puffin chicks. Journal of Parasitology, 93, 258–264.
Nuismer, S. L., Gomulkiewicz, R. & Ridenhour, B. J. (2010). When is correlation coevolution?American Naturalist, 175, 525–537.
Poisot, T., Bever, J. D., Nemri, A., Thrall, P. H. & Hochberg, M. E. (2011). A conceptual framework for the evolution of ecological specialisation. Ecology Letters, 14, 841–851.
Prugnolle, F., Durand, P., Neel, C., et al. ( 2010). African great apes are natural hosts of multiple related malaria species, including Plasmodium falciparum. Proceedings of the National Academy of Sciences USA, 107, 1458–1463.
Read, A. F. (1987). Comparative evidence supports the Hamilton and Zuk hypothesis on parasites and sexual selection. Nature, 328, 68–70.
Read, A. F. & Harvey, P. H. (1989). Reassessment of comparative evidence for Hamilton and Zuk theory on the evolution of secondary sexual characters. Nature, 339, 618–620.
Read, A. F. & Weary, D. M. (1990). Sexual selection and the evolution of bird song: a test of the Hamilton–Zuk hypothesis. Behavioral Ecology and Sociobiology, 26, 47–56.
Ricklefs, R. E., Fallon, S. M. & Bermingham, E. ( 2004). Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. Systematic Biology, 53, 111–119.
Rudnick, A. (1960). A revision of the mites of the family Spinturnicidae. University of California Press, 17, 157–284.
Scott, T. W., Naksathit, A., Day, J. F., Kittayapong, P. & Edman, J. D. (1997). A fitness advantage for Aedes aegypti and the viruses it transmits when females feed only on human blood. The American Journal of Tropical Medicine and Hygiene, 57, 235–239.
Thompson, J. N. (1994). The Coevolutionary Process. Chicago, IL: Chicago University Press.
Thompson, J. N. (2005a). Coevolution: the geographic mosaic of coevolutionary arms races. Current Biology, 15, R992–R994.
Thompson, J. N. (2005b). The Geographic Mosaic of Coevolution. Chicago, IL: University of Chicago Press.
Tripet, F., Christe, P. & Møller, A. P. ( 2002). The importance of host spatial distribution for parasite specialization and speciation: a comparative study of bird fleas (Siphonaptera: Ceratophyllidae). Journal of Animal Ecology, 71, 735–748.
Valkiunas, G. (2005). Avian Malaria Parasites and Other Haemosporidia. Boca Raton, FL: CRC Press.
Vézilier, J., Nicot, A., Gandon, S. & Rivero, A. (2012). Plasmodium infection decreases fecundity and increases survival of mosquitoes. Proceedings of the Royal Society of London B, 279, 4033–4041.
Weckstein, J. D. (2004). Biogeography explains cophylogenetic patterns in toucan chewing lice. Systematic Biology, 53, 154–164.
Witsenburg, F., Schneider, F. & Christe, P. (2014). Signs of a vector's adaptive choice: on the evasion of infectious hosts and parasite-induced mortality. Oikos, doi: 10.1111/oik.01785.
Yoder, J. B. & Nuismer, S. L. (2010). When does coevolution promote diversification?The American Naturalist, 176, 802–817.