Skip to main content Accessibility help
×
  • Cited by 23
Publisher:
Cambridge University Press
Online publication date:
May 2016
Print publication year:
2016
Online ISBN:
9781316286852

Book description

The synthesis of symplectic geometry, the calculus of variations and control theory offered in this book provides a crucial foundation for the understanding of many problems in applied mathematics. Focusing on the theory of integrable systems, this book introduces a class of optimal control problems on Lie groups, whose Hamiltonians, obtained through the Maximum Principle of optimality, shed new light on the theory of integrable systems. These Hamiltonians provide an original and unified account of the existing theory of integrable systems. The book particularly explains much of the mystery surrounding the Kepler problem, the Jacobi problem and the Kovalevskaya Top. It also reveals the ubiquitous presence of elastic curves in integrable systems up to the soliton solutions of the non-linear Schroedinger's equation. Containing a useful blend of theory and applications, this is an indispensable guide for graduates and researchers in many fields, from mathematical physics to space control.

Reviews

'The book is written in a very refreshing style that reflects the author's contagious enthusiasm for the subject. It manages this by focusing on the geometry, using the precise language of differential geometry, while not getting bogged down by analytic intricacies. Throughout, the book pays much attention to historical developments and evolving and contrasting points of view, which is also reflected in the rich bibliography of classical resources.'

Matthias Kawski Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[AM] R., Abraham and J., Marsden, Foundations of Mechanics, Benjamin-Cummings, Reading, MA, 1978.
[Ad] J. F., Adams, Lectures on Lie Groups, Mathematics Lecture Notes Series,W. A. Benjamin, New York, 1969.
[Al] M., Adler, On a trace functional for formal pseudo-differential operators and symplectic structure of the Korteweg-de Vries equation, Invent. Math. 50 (1979), 219–249.
[AB] A., Agrachev, B., Bonnard, M., Chyba and I., Kupka, Sub-Riemannian sphere in Martinet flat case, ESAIM: Control, Optimization and Calculus of Variations 2 (1997), 377–448.
[AS] A., Agrachev and Y., Sachkov, Control Theory from the Geometric Point of View, Encyclopedia of Mathematical Sciences, vol. 87, Springer-Verlag, New York, 2004.
[Ap] R. Appell, E. and Lacour, , Principes de la theorie des fonctions elliptiques et applications, Gauthier-Villars, Paris, 1922.
[Ar] V. I., Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, vol. 60, Springer-Verlag, New York, 1978.
[AKh] V. I., Arnold and B., Khesin, Topological Methods in Hydrodynamics, App. Math. Sci. (125), Springer-Verlag, New York, 1998.
[AKN] V. I., Arnold, V.V., Kozlov, and A. I., Neistadt, Mathematical aspects of classical and celestial mechanics, In Encyclopedia of Mathematical Sciences, Vol 3, Springer-Verlag, Berlin-Heidelberg, 1988.
[Bl] A. G., Bliss, Calculus of Variations, American Mathematical Society, LaSalle, IL, 1925.
[BR] A. I, Bobenko, A. G., Reyman and M. A., Semenov-Tian Shansky, The Kowalewski top 99 years later: a Lax pair, generalizations and explicit solutions, Comm. Math. Phys 122 (1989), 321–354.
[Bg1] O., Bogoyavlenski, New integrable problem of classical mechanics, Comm. Math. Phys. 94 (1984), 255–269.
[Bg2] O., Bogoyavlenski, Integrable Euler equations on SO4 and their physical applications, Comm. Math. Phys. 93 (1984), 417–436.
[Bv] A.V., Bolsinov, A completeness criterion for a family of functions in involution obtained by the shift method, Soviet Math. Dokl. 38 (1989), 161–165.
[BJ] B., Bonnard, V., Jurdjevic, I., Kupka and G., Sallet, Transitivity of families of invariant vector fields on semi-direct products of Lie groups, Trans. Amer. Math. Soc. 271 (1982), 525–535.
[BC] B., Bonnard and M., Chyba, Sub-Riemannian geometry: the Martinet case (Conference on Geometric Control and Non-Holonomic Mechanics, Mexico City, 1996, edited by V. Jurdjevic and R.W. Sharpe), Canad. Math. Soc. Conference Proceedings, 25 (1998), 79–100.
[Bo] A., Borel, Kählerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. USA, 40 (1954), 1147–1151.
[BT] R., Bott and W., Tu, Differential Forms in Algebraic Topology, Graduate Texts in Mathematics, Springer-Verlag, New York, (1982).
[Br1] R., Brockett, Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics (P., Hilton and G., Young, eds.), Springer- Verlag, New York, 1981, 11–27.
[Br2] R., Brockett, Nonlinear control theory and differential geometry, Proceedings of the International Congress of Mathematicians, Aug. 16–24 (1983), Warszawa, 1357–1368.
[BGN] R., Brockett, S., Glazer, and N., Khaneja, Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, Phys. Rev. A 65(3), 032301, (2002).
[BG] R., Bryant and P., Griffiths, Reductions for constrained variational problems and 1/2∫κ2ds, Amer. Jour. Math. 108 (1986), 525–570.
[Br] J.P, Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Progress in Math. (108), Birkhauser, Boston, Mass, 1993.
[Cr] C., Carathéodory, Calculus of Variations, reprinted by Chelsea in 1982, Teubner, 1935.
[C1] E., Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math.France 54 (1927), 114–134.
[C2] E., Cartan, Leçons sur les invariants integraux, Herman, Paris, 1958.
[CK] A. l., Castro and J., Koiller, On the dynamicMarkov–Dubins problem: from path planning in robotics and biolocomotion to computational anatomy, Regular and Chaotic Dynamics 18, No. 1–2 (2013), 1–20.
[Ch] J., Cheeger and D., Ebin, Comparison Theorems in Reimannian Geometry, North-Hollond, Amsterdam, 1975.
[CL] E. A., Coddington and N., Levinson, Theory of Ordinary Differential Equations, McGraw Hill, New York, 1955.
[Dr] G., Darboux, La théory général des surfaces, Vol III, Translation of the Amer. Math. Soc. original publication Paris 1894, Chelsea, New York, 1972.
[D] P.A.M., Dirac, Generalized Hamiltonian Dynamics, Can. J. Math. 1 (1950), 129–148.
[DC] M. P., DoCarmo, Riemannian Geometry, Birkhäuser, Boston, MA, 1992.
[Drg] V., Dragovic, Geometrization and generalization of the Kowdewski top, Commun. Math. Phys. 298 (2010), 37–64.
[Db] L. E., Dubins, On curves of minimal ength with a constraint on the average curvature and with prescribed initial positions and tangents, Amer. J. Math. 79 (1957), 497–516.
[DKN] B. A., Dubrovin, I.M., Kirchever and S. P., Novikov, Integrable systems I, In Dynamical systems IV (V. I., Arnold and S. P., Novikov, eds.), Encylopaedia of Mathematical Sciences, Vol 4. (1990), Springer-Verlag, 174–271.
[Eb] P. B., Eberlein, Geometry of Nonpositively CurvedManifolds, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, IL, 1997.
[Ep] C. K., Epstein and M. I., Weinstein, A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math. XL (1987), 119–139.
[E] L., Euler, Methodus inveniendi lineas curvas maximi minimive proprieatate gaudentes, sive solutio, problematis isoperimetrici lattisimo sensu accepti, Opera Omnia Ser. IaLausannae 24 (1744).
[Eu] L., Euler, Evolutio generalior formularum comparationi curvarum inserventium, Opera Omnia Ser Ia 20 (E347/1765), 318–354.
[Fa] L., Faddeev L. and L., Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1980.
[FJ] Y. Fedorov and B. Jovanovic, Geodesic flows and Newmann systems on Steifel varieties: geometry and integrability, Math. Z. 270, (3–4) (2012), 659–698.
[Fl1] H., Flaschka, Toda, latice, I: Existence of integrals, Phys. Rev. B3(9) (1974), 1924–1925.
[Fl2] H. Flaschka, Toda latice, II: Inverse scattering solution, Progr. Theor. Phys. 51 (1974), 703–716.
[Fk] V. A., Fock, The hydrogen atom and non-Euclidean geometry, Izv. Akad. Nauk SSSR, Ser. Fizika 8 (1935).
[FM] A. T., Fomenko and A. S., Mischenko, Euler equation on finite-dimensional Lie groups, Math USSR Izv. 12 (1978), 371–389.
[FT] A. T., Fomenko and V.V., Trofimov, Integrability in the sense of Louville of Hamiltonian systems on Lie algebras, (in Russian), Uspekhi Mat. Nauk 2(236) (1984), 3–56.
[FT1] A. T., Fomenko and V.V., Trofimov, Integrable systems on Lie algebras and symmetric spaces, in Advanced Studies in Contemporary Mathematics, Vol. 2, Gordon and Breach, 1988.
[GM] E., Gasparim, L., Grama and A.B., San Martin, Adjoint orbits of semisimple Lie groups and Lagrangian submanifolds, to appear, Proc. of Edinburgh Mat. Soc.
[GF] I. M., Gelfand and S.V., Fomin, Calculus of Variations, Prentice-Hall, Englewood Cliffs, NJ, (1963).
[Gb] V.V., Golubev, Lectures on the Integration of the Equations of Motion of a Heavy Body Around a Fixed Point, (in Russian), Gostekhizdat, Moscow, 1977.
[Gr] P., Griffiths, Exterior Differential Systems and the Calculus of Variations, Birkhäuser, Boston, MA, 1983.
[GH] P., Griffiths and J., Harris, Principles of Algebraic Geometry, Wiley-Interscience, New York, 1978.
[GS] V., Guillemin and S., Sternberg, Variations on a Theme by Kepler, vol. 42 Amer. Math. Soc., 1990.
[Gy] G., Györgi, Kepler's equation, Fock Variables, Baery's equation and Dirac. brackets, Nyovo cimertio A 53 (1968), 717–736.
[Hm] R. S., Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7 (1982), 65–221.
[H1] H., Hasimoto, Motion of a vortex filament and its relation to elastica, J. Phys. Soc. Japan (1971), 293–294.
[H2] H., Hasimoto, A soliton on the vortex filament, J. Fluid Mech. 51 (1972), 477–485.
[Hl] S., Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York, 1978.
[HV] D., Hilbert and S., Cohn-Vossen, Geometry and Imagination, Amer. Math. Soc., 1991.
[Hg] J., Hilgert, K. H., Hofmann and J. D., Lawson, Lie Groups, Convex Cones ans Semigroups, Oxford Univesity Press, Oxford, 1989.
[HM] E., Horozov and P., Van Moerbeke, The full geometry of Kowalewski's top and (1, 2) Abelian surfaces, Comm. Pure and App. Math. XLII (1989), 357-407.
[IS] C.|Ivanescu and A., Savu, The Kowalewski top as a reduction of a Hamiltonian system on Sp(4, R), Proc. Amer. Math. Soc. (to appear).
[IvS] T., Ivey T and D.A., Singer, Knot types, homotopies and stability of closed elastic curves, Proc. London Math. Soc 79 (1999), 429-450.
[Jb] C. G. J., Jacobi, Vorlesungen uber Dynamik, Druck und Verlag von G. Reimer, Berlin, 1884.
[J1] V., Jurdjevic, The Delauney-Dubins Problem, in Geometric Control Theory and Sub-Riemannian Geometry. (U., Boscain, J. P., Gauthier, A., Sarychev and M., Sigalotti, eds.) INDAM Series 5, Springer Intl. Publishing 2014, 219-239.
[Ja] V., Jurdjevic, The symplectic structure of curves in three dimensional spaces of constant curvature and the equations of mathematical physics, Ann. I. H. Poincare (2009), 1843-1515.
[Jr] V., JurdjevicOptimal control on Lie groups and integrable Hamiltonian systems, Regular and Chaotic Dyn. (2011), 514-535.
[Je] V., JurdjevicNon-Euclidean elasticae, Amer. J. Math. 117 (1995), 93-125.
[Jc] V., JurdjevicGeometric Control Theory, Cambridge Studues in Advanced Mathematics, vol. 52, Cambridge University Press, New York, 1997.
[JA] V., JurdjevicIntegrable Hamiltonian systems on Lie groups: Kowalewski type, Annals Math. 150 (1999), 605-644.
[Jm] V., JurdjevicHamiltonian systems on complex Lie groups and their Homogeneous spaces, Memoirs AMS, 178, (838) (2005).
[JM] V., Jurdjevic and R, Perez-Monroy, Variational problems on Lie groups and their homogeneous spaces: elastic curves, tops and constrained geodesic problems, in Non-linear Control Theory and its Applications (B., Bonnardet al., eds.) (2002), World Scientific Press, 2002, 3-51.
[JZ] V., Jurdjevic and J., Zimmerman, Rolling sphere problems on spaces of constant curvature, Math. Proc. Camb. Phil. Soc. 144 (2008), 729-747.
[Kl] R. E., Kalman, Y. C., Ho and K. S., Narendra, Controllability of linear dynamical systems, Contrib. Diff. Equations, 1 (1962), 186-213.
[Kn] H., Knörrer, Geodesics on quadrics and a mechanical problem of C. Newmann, J. Riene Angew. Math. 334 (1982) 69-78.
[Ki] A. A., Kirillov, Elements of the Theory of Representations, Springer, Berlin, 1976.
[KN] S., Kobayashi and K., Nomizu, Foundations of Differential Geometry, Vol I, Interscience Publishers, John Wiley and Sons, New York, 1963.
[Km] I. V., Komarov, Kovalewski top for the hydrogen atom, Theor. Math. Phys 47(1) (1981), 67-72.
[KK] I. V., Komarov and V. B., Kuznetsov, Kowalewski top on the Lie algebras o(4), e(3) and o(3,1), J. Phys. A 23(6) (1990), 841-846.
[Ks] B., Kostant, The solution of a generalized Toda latrtice and representation theory, Adv. Math. 39 (1979), 195-338.
[Kw] S., Kowalewski, Sur le problème de la rotation d'un corps, solide autor d'un point fixéActa Math. 12(1889), 177-232.
[LP] J., Langer and R., Perline, Poisson geometry of the filament equation, J. Nonlinear Sci., 1 (1978), 71-93.
[LS] J., Langer and D., Singer, The total squared curvature of closed curves, J. Diff. Geometry, 20 (1984), 1-22.
[LS1] J., Langer and D., Singer, Knotted elastic curves in R3, J. London Math. Soc. 2(30) (1984), 512-534.
[Lt] R, Silva Leite, M., Camarinha and P., Crouch, Elastic curves as solutions of Riemannian and sub-Riemannian control problems, Math. Control Signals Sys. 13 (2000), 140-155.
[LL] L. D., Landau and E. M., Lifshitz, Mechanics, 3rd edition, Pergamon Press, Oxford, 1976.
[Li] R., Liouville, Sur le movement d'un corps solide pesant suspendue autour d'un point fixé, Ada Math. 20 (1896), 81-93.
[LSu] W., Liu and H. J., Sussmann, Shortest Paths for Sub-Riemannian Metrics on Rank 2 Distributions, Amer. Math. Soc. Memoirs 564, Providence, RI, (1995).
[Lv] A. E., Love, A Treatise on the Mathematical Theory of Elasticity, 4th edition, Dover, New York, 1927.
[Lya] A. M., Lyapunov, On a certain property of the differential, equations of a heavy rigid body with a fixed pointSoobshch. Kharkov. Mat. Obshch. Ser. 2 4 (1894), 123-140.
[Mg] F. A., Magri, A simple model for the integrable Hamiltonian equation, J. Math. Phys. 19(1978), 1156-1162.
[Mn] S. V., Manakov, Note on the integration of Euler's equations of the dynamics of an n dimensional rigid body, Funct. Anal. Appl. 10 (1976), 328-329.
[MK] A. A., Markov, Some examples of the solution of a special kind of problem in greatest and lowest quantities (in Russian), Soobsch. Karkovsk. Mat. Obshch. (1887), 250-276.
[MZ] J., Millson and B. A., Zambro, A Kahter structure on the moduli spaces of isometric maps of a circle into Euclidean spaces, Invert. Math. 123(1) (1996), 35-59.
[Ml] J., Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21(3), (1976), 293-329.
[Mi1] D., Mittenhuber, Dubins' problem in hyperbolic spaces, in Geometric Control and Non-holonomic Mechanics (V., Jurdjevic and R. W., Sharpe, eds.), vol. 25, CMS Conference Proceedings American Mathematical Society Providence, RI, 1998, 115-152.
[Mo] F., Monroy-Pérez, Three dimensional non-Euclidean Dubins' problem, in Geometric Control and Non-Holonomic Mechanics (V., Jurdjevic and R. W., Sharpe, eds.), vol. 25, CMS Conference Proceedings Canadian Math. Soc., 1998, 153-181.
[Mt] R., Montgomery, Abnormal minimizers, SIAM J. Control Opt. 32(6) (1994), 1605-1620.
[Ms1] J., Moser, Regularization of Kepler's problem and the averaging method on a manifold, Comm. Pure Appl. Math. 23(4) (1970), 609–623.
[Ms2] J., Moser, Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Academia Nazionale dei Lincei, Scuola Normale, Superiore Pisa, 1981.
[Ms4] J., Moser, Finitely Many Mass Points on the Line Under the Influence of an Exponential Potential-an Integrable System, in Lecture notes in Physics, vol 38 Springer, Berlin, 1975, 97–101.
[Ms3] J., Moser, Various aspects of integrable Hamiltonian systems, in Dynamical Systems, C.I.M.E. Lectures, Bressanone, Italy, June, 1978, Progress in Mathematics, vol 8, Birkhauser, Boston, MA, 1980, 233–290.
[Na] I. P., Natanson, Theory of Function of a Real Variable, Urgar, 1995.
[Nm] C., Newmann, De probleme quodam mechanico, quod ad primam, integralium ultra-ellipticoram classem revocatumJ. Reine Angew. Math. 56 (1856).
[NP] L., Noakes L. and T., Popiel, Elastica on SO(3), J. Australian Math. Soc. 83(1) (2007), 105–125.
[NHP] L., Noakes, G., Heizinger and B., Paden, Cubic spines of curved spaces, IMA J. Math. Control Info. 6 (1989), 465–473.
[O1] Y., Osipov, Geometric interpretation of Kepler's problem, Usp. Mat. Nauk 24(2), (1972), 161.
[O2] Y., Osipov, The Kepler problem and geodesic flows in spaces of constant curvature, Celestial Mechanics 16 (1977), 191–208.
[Os] R., Osserman, From Schwarz to Pick to Ahlfors and beyond, Notices of AMS 46(8) (1997), 868–873.
[Pr] A. M., Perelomov, Integrable Systems of ClassicalMechanics and Lie Algebras, vol. I, Birkhauser Verlag, Basel, 1990.
[Pc] E., Picard, Oeuvres de Charles Hermite, Publiées sous les auspices de l'Academie des sciences, Tome I, Gauthier-Villars, Paris, 1917.
[Po] H., Poincaré, Les méthodes nouvelles de la mechanique celeste, Tome I, Gauthier-Villars, Paris, 1892.
[Pt] L. S., Pontryagin, V.G., Boltyanski, R.V., Gamkrelidze and E. F., Mishchenko, The Mathematical Theory of Optimal Processes, Translated from Russian by D. E., Brown, Pergamon Press, Oxford, 1964.
[Rt1] T., Ratiu, The motion of the free n-dimensional Rigid body, Indiana Univ.Math. J. 29(4), (1980), 602–629.
[Rt2] T., Ratiu, The C. Newmann problem as a completely integrable system on a coadjoint orbit, Trans. Amer. Mat. Soc. 264(2) (1981), 321–329.
[Rn] C. B., Rauner, The exponential map for the Lagrange problem on differentiable manifolds, Phil. Trans. Royal Soc. London, Ser. A 262 (1967), 299–344.
[Rm] A. G., Reyman, Integrable Hamiltonian systems connected with graded Lie algebras, J. Sov. Math. 19 (1982), 1507–1545.
[RS] A. G., Reyman and M. A. Semenov-Tian, Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations I., Invent. Math. 54 (1979), 81–100.
[RT] A. G., Reyman and M. A. Semenov-Tian, Shansky, Group-theoretic methods in the theory of finite-dimensional integrable systems, Encyclopaedia of Mathematical Sciences (V. I., Arnold and S. P., Novikov, eds.), Part 2, Chapter 2, Springer-Verlag, Berlin Heidelberg, 1994.
[Ro] H. L., Royden, Real Analysis, 3rd Edition, Prentice Hall, Englewood Cliffs, 1988.
[Sc] J., Schwarz, von, Das Delaunaysche Problem der Variationsrechung in kanonischen Koordinaten, Math. Ann. 110 (1934), 357–389.
[ShZ] C., Shabat and V., Zakharov, Exact theory of two dimensional self-focusing, and one dimensional self-modulation of waves in non-linear media, Sov. Phys. JETP 34 (1972), 62–69.
[Sh] R.W., Sharpe, Differential Geometry: Cartan's Generalization of Klein's Erlangen Program, Graduate Texts in Mathematics, Springer, New York, 1997.
[Sg1] C. L., Siegel, Symplectic Geometry, Amer. J. Math. 65 (1943), 1–86.
[Sg2] C. L., Siegel, Topics in Complex Function Theory, vol. 1: Elliptic Functions and Uniformization Theory, Tracts in Pure and Appl. Math. vol. 25, Wiley- Interscience, John Wiley and Sons, New York, 1969.
[Sg] E. D., Sontag, Mathematical Control Theory, Deterministic Finite-Dimensional Systems, Springer-Verlag, Berlin, 1990.
[So] J. M., Souriau, Structure des Systemes Dynamiques, Dunod, Paris, 1970.
[Sf] P., Stefan, Accessible sets, orbits and foliations with singularities, London Math. Soc. Proc., Ser. 3, 29 (1974), 699–713.
[St] S., Sternberg, Lectures on Differential Geometry, Prentice-Hall Inc, Englewood Cliffs, NJ, 1964.
[Sz] R., Strichartz, Sub-Riemannian Geometry, J. Diff. Geometry 24 (1986), 221–263.
[Sg] M., Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc. Japan, 11(4) (1959).
[Ss] H. J., Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc. 180 (1973), 171–188.
[Ss1] H. J., Sussmann, A cornucopia of four-dimensional abnormal sub-Riemannian minimizers, in Sub-Riemannian Geometry (A., Bellaïche and J. J., Risler, eds), Progress in Mathematics, vol. 144, Birkhäuser, 1996, 341–364.
[Ss3] H. J., Sussmann, Shortest 3-dimensional paths with a prescribed curvature bound, in Proc. 34th Conf. on Decision and Control, New Orleans, 1995, 3306–3311.
[Ss4] H. J., Sussmann, The Markov-Dubins problem with angular acceleration, in Proc. 36th IEEE Conf. on Decision and Control, San Diego, CA, 1997, 2639–2643.
[Sy] W., Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent. Math. 59 (1980), 13–53.
[To] M., Toda, Theory of Nonlinear Lattices, Springer, New York, 1981.
[Tr] E., Trelat, Some properties of the value function and its level sets for affine control systems with quadratic cost, J. Dyn. Contr. Syst. 6(4) (2000), 511–541.
[VS] J. von, Schwarz, Das Delaunische Problem der Variationsrechung in kanonischen Koordinaten, Math. Ann. 110 (1934), 357–389.
[W] K., Weierstrass, werke, Bd 7, Vorlesungen über Variationsrechung, Akadem. Verlagsges, Leipzig, 1927.
[Wl] A., Weil, Euler and the Jacobians of elliptic curves, in Arithmetic and Geometry (M., Artin and J., Tate, eds.), Progress in Mathematics, vol. 35, Birkhäuser, Boston, MA, 353–359.
[Wn] A., Weinstein, The local sructure of Poisson manifolds, J. Diff. Geom. 18 (1983), 523–557.
[Wh] E. T., Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 3rd edition, Cambridge Press, Cambridge, 1927.
[Wf] J. A., Wolf, Spaces of Constant Curvature, 4th edition, Publish or Perish, Inc, Berkeley, CA, 1977.
[Yo] K., Yosida, Functional Analysis, Springer-Verlag, Berlin, 1965.
[Yg] L. C., Young, Lectures in the Calculus of Variations and Optimal Control Theory, W.B., Saunders, Philadelphia, PA, 1969.
[Zg1] S. L., Ziglin, Branching of solutions and non-existence of first, integrals in Hamiltonian mechanics I, Funkts. Anal. Prilozhen 16(3) (1982), 30–41.
[Zg2] S.L., Ziglin, Branching of solutions and non-existence of first, integrals in Hamiltonian mechanics II, Funkts. Anal. Prilozhen 17(1) (1981), 8–23.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.