Skip to main content Accessibility help
Nonparametric Estimation under Shape Constraints
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 21
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Among the topics treated are current status and interval censoring models, competing risk models, and deconvolution. Methods of order restricted inference are used in computing maximum likelihood estimators and developing distribution theory for inverse problems of this type. The authors have been active in developing these tools and present the state of the art and the open problems in the field. The earlier chapters provide an introduction to the subject, while the later chapters are written with graduate students and researchers in mathematical statistics in mind. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.


‘Shape constraints arise naturally in many statistical applications and are becoming increasingly popular as a means of combining the best of the parametric and nonparametric worlds. This book, written by two experts in the field, gives a detailed treatment of many of their attractive features. I have no doubt it will be a valuable resource for researchers, students, and others interested in learning about this fascinating area.’

Richard Samworth - University of Cambridge

‘I recommend this impressive book very enthusiastically to both young and senior researchers interested in shape-restricted nonparametric estimation. Closing an important gap in the literature, it contains not only classical material on nonparametric estimation of monotone functions in a series of application fields but also an introduction to advanced themes that are the topic of active ongoing research - in particular, estimation of convex functions, interval censoring, higher dimensional models, and other complex models in order-restricted inference. Interesting and enjoyable, the book clearly motivates models and methods by illustrative data examples and intuitive heuristic explanations of the necessary asymptotic mathematical theory, accompanied by clear and detailed proofs of the theory.’

Enno Mammen - Institute of Applied Mathematics, Heidelberg University

‘A comprehensive study of the state of the art in nonparametric shape-restricted inference by two experts in the field. A clear-cut cogent presentation style, along with a careful exposition of the mathematics as well as the algorithmic aspects of the optimization problems involved, makes this a very well-rounded text that should prove an asset to both mathematically trained scientists seeking a rigorous exposure to the field and statistical researchers interested in the ‘current status’ of affairs in shape-restricted inference.’

Moulinath Banerjee - University of Michigan, Ann Arbor

'The book provides an up-to-date comprehensive review of both classical and new methods for shape constrained estimators. It does so in a clear and well-explained manner, including many real-world examples to motivate the methodology and theory. As such it contains a nice mix of theory and applications, and so should be of interest to both students and researchers. … I thoroughly enjoyed reading this book: it gives a detailed treatment of most relevant features of shape constrained estimation, and does so in a manner that makes it immensely readable, whether you are a novice or an expert in the area.'

Dennis Kristensen Source: MathSciNet Mathematical Reviews (

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.


Albers, M.G. 2012. Boundary Estimation of Densities with Bounded Support. Master's thesis. ETH Zürich.
Andersen, P.K., and Rønn, B.B. 1995. Anonparametric test for comparing two samples where all observations are either left- or right-censored. Biometrics, 51, 323–329.
Andersen, P.K., Borgan, O., Gill, R.D., and Keiding, N. 1993. Statistical models based on counting processes. New York: Springer.
Anevski, D. 2003. Estimating the derivative of a convex density. Statistica neerlandica, 57(2), 245–257.
Anevski, D. 2007. Interarrival times in a counting process and bird watching. Statistica Neerlandica, 61, 198–208.
Ayer, M., Brunk, H.D., Ewing, G.M., Reid, W.T., and Silverman, E. 1955. An empirical distribution function for sampling with incomplete information. Ann. Math. Statist., 26, 641–647.
Balabdaoui, F., and Wellner, J.A. 2007. Estimation of a k-monotone density: limit distribution theory and the spline connection. Ann. Statist., 35, 2536–2564.
Balabdaoui, F., Rufibach, K., and Wellner, J.A. 2009. Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Statist., 37, 1299–1331.
Ball, K., and Pajor, A. 1990. The entropy of convex bodies with “few” extreme points. Pages 25–32 of: Geometry of Banach spaces (Strobl, 1989). London Math. Soc. Lecture Note Ser., vol. 158. Cambridge: Cambridge Univ. Press.
Banerjee, M., and Wellner, J.A. 2001. Likelihood ratio tests for monotone functions. Ann. Statist., 29, 1699–1731.
Banerjee, M., and Wellner, J.A. 2005. Confidence intervals for current status data. Scand. J. Statist., 32, 405–424.
Barlow, R.E., Bartholomew, D.J., Bremner, J.M., and Brunk, H.D. 1972. Statistical inference under order restrictions. The theory and application of isotonic regression. John Wiley & Sons, London–New York–Sydney. Wiley Series in Probability and Mathematical Statistics.
Bazaraa, M.S., Sherali, H.D., and Shetty, C.M. 2006. Nonlinear programming. Third ed. Hoboken, NJ: Wiley-Interscience [John Wiley & Sons]. Theory and algorithms.
Bennett, C., and Sharpley, R.C. 1988. Interpolation of operators. Vol. 129. Access Online via Elsevier.
Betensky, R.A., and Finkelstein, D.M. 1999. A non-parametric maximum likelihood estimator for bivariate interval censored data. Statist. Med., 18, 3089–3100.
Bickel, P.J., Klaassen, C.A.J., Ritov, Y., and Wellner, J.A. 1998. Efficient and adaptive estimation for semiparametric models. New York: Springer-Verlag. Reprint of the 1993 original.
Billingsley, P. 1995. Probability and measure. Third ed. Wiley Series in Probability and Mathematical Statistics. New York: John Wiley & Sons. A Wiley-Interscience Publication.
Birgé, L. 1999. Interval censoring: a nonasymptotic point of view. Math. Methods Statist., 8, 285–298.
Birke, M., and Dette, H. 2007. Testing strict monotonicity in nonparametric regression. Math. Methods Statist., 16, 110–123.
Birman, M.Š., and Solomjak, M.Z. 1967. Piecewise polynomial approximations of functions of classesWpα. Mat. Sb. (N.S.), 73(115), 331–355.
Bogaerts, K., and Lesaffre, E. 2004. A new, fast algorithm to find the regions of possible support for bivariate interval-censored data. J. Comput. Graph. Statist., 13, 330–340.
Böhning, D. 1982. Convergence of Simar's algorithm for finding the maximum likelihood estimate of a compound Poisson process. Ann. Statist., 10, 1006–1008.
Böhning, D. 1986. A vertex-exchange-method in D-optimal design theory. Metrika, 33, 337–347.
Carolan, C.A., and Dykstra, R.L. 1999. Asymptotic behavior of the grenander estimator at density flat regions. Canad. J. Statist., 27, pp. 557–566.
Chernoff, H. 1964. Estimation of the mode. Ann. Inst. Statist. Math., 16, 31–41.
Cule, M., Gramacy, R., and Samworth, R.J. 2009. LogConcDEAD: an R package for maximum likelihood estimation of a multivariate log-concave density. Journal of Statistical Software, 29(2).
Cule, M., and Samworth, R.J. 2010. Theoretical properties of the log-concave maximum likelihood estimator of a multidimensional density. Electron. J. Stat., 4, 254–270.
Cule, M., Samworth, R.J., and Stewart, M.I. 2010. Maximum likelihood estimation of a multi-dimensional log-concave density. J. Roy. Statist. Soc. Ser. B (Statistical Methodology), 72(5), 545–607.
Dabrowska, D.M. 1988. Kaplan-Meier estimate on the plane. Ann. Statist., 16, 1475–1489.
Daniels, H.E., and Skyrme, T.H.R. 1985. The maximum of a random walk whose mean path has a maximum. Adv. in Appl. Probab., 17, 85–99.
Dempster, A.P., Laird, N.M., and Rubin, D.B. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B, 39, 1–38. With discussion.
Dette, H., Neumeyer, N., and Pilz, K.F. 2006. A simple nonparametric estimator of a strictly monotone regression function. Bernoulli, 12, 469–490.
Dietz, K., and Schenzle, D. 1985. Proportionate mixing models for age-dependent infection transmission. J. Math. Biol., 22, 117–120.
Donoho, D.L., and Liu, R.C. 1991. Geometrizing rates of convergence. II, III. Ann. Statist., 19, 633–667, 668–701.
Dümbgen, L., and Rufibach, K. 2009. Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli, 15, 40–68.
Dümbgen, L., and Rufibach, K. 2011. logcondens: computations related to univariate log-concave density estimation. Journal of Statistical Software, 39, 1–28.
Durot, C. 2007. On the Lp-error of monotonicity constrained estimators. Ann. Statist., 35, 1080–1104.
Durot, C. 2008. Testing convexity or concavity of a cumulated hazard rate. IEEE Trans. on Rel., 57, 465–473.
Durot, C., Kulikov, V.N., and Lopuhaä, H.P. 2012. The limit distribution of the L∞-error of Grenander-type estimators. Ann. Statist., 40(3), 1578–1608.
Durot, C., Groeneboom, P., and Lopuhaä, H.P. 2013. Testing equality of functions under monotonicity constraints. J. Nonparametr. Stat., 25, 939–970.
Eggermont, P.P.B., and LaRiccia, V.N. 2000. Maximum likelihood estimation of smooth monotone and unimodal densities. Annals of statistics, 922–947.
Eggermont, P.P.B., and LaRiccia, VN. 2001a. Maximum penalized likelihood estimation: density estimation. Vol. 1. New York: Springer.
Eggermont, P.P.B., and LaRiccia, V.N. 2001b. Maximum penalized likelihood estimation: regression. Vol. 2. New York: Springer.
Fan, J. 1993. Local linear regression smoothers and their minimax efficiencies. Ann. Statist., 21, 196–216.
Fedorov, V.V. 1971. Experimental design under linear optimality criteria. Teor. Verojatnost. i Primenen., 16, 189–195.
Feuerverger, A., and Hall, P. 2000. Methods for density estimation in thick-slice versions of Wicksell's problem. J. Amer. Statist. Assoc., 95(450), 535–546.
Feuerverger, A., Kim, P.T., and Sun, J. 2008. On optimal uniform deconvolution. J. Stat. Theory Pract., 2, 433–451.
Fleming, T.R., and Harrington, D.P. 2011. Counting processes and survival analysis. Wiley.
Fougères, A.-L. 1997. Estimation de densites unimodales. Canadian Journal of Statistics, 25(3), 375–387.
Gentleman, R., and Vandal, A.C. 2002. Nonparametric estimation of the bivariate CDF for arbitrarily censored data. Canad. J. Statist., 30, 557–571.
Geskus, R.B. 1997. Estimation of Smooth Functionals with Interval Censored Data. Ph.D. thesis. Delft University of Technology.
Geskus, R.B., and Groeneboom, P. 1996. Asymptotically optimal estimation of smooth functionals for interval censoring. I. Statist. Neerlandica, 50, 69–88.
Geskus, R.B., and Groeneboom, P. 1997. Asymptotically optimal estimation of smooth functionals for interval censoring. II. Statist. Neerlandica, 51, 201–219.
Geskus, R.B., and Groeneboom, P. 1999. Asymptotically optimal estimation of smooth functionals for interval censoring, case 2. Ann. Statist., 27, 627–674.
Gijbels, I., and Heckman, N.E. 2004. Nonparametric testing for a monotone hazard function via normalized spacings. J. Nonparametr. Stat., 16, 463–477.
Gill, R.D., and Levit, B.Y. 1995. Applications of the Van Trees inequality: a Bayesian Cramér-Rao bound. Bernoulli, 1, 59–79.
Giné, E., and Guillou, A. 2002. Rates of strong uniform consistency for multivariate kernel density estima-tors. Ann. Inst. H. Poincare Probab. Statist., 38, 907–921. En l'honneur de J. Bretagnolle, D. Dacunha-Castelle, I. Ibragimov.
Good, I.J., and Gaskins, R.A. 1971. Nonparametric roughness penalties for probability densities. Biometrika, 58, 255–277.
Grenander, U. 1956. On the theory of mortality measurement. II. Skand. Aktuarietidskr., 39, 125–153 (1957).
Groeneboom, P. 1983. The concave majorant of Brownian motion. Ann. Probab., 11, 1016–1027.
Groeneboom, P. 1985. Estimating a monotone density. Pages 539–555 of: Proceedings of the Berkeley conference in honor of Jerzy Neyman and Jack Kiefer, Vol. II (Berkeley, Calif., 1981). Wadsworth Statist./Probab. Ser. Belmont, CA: Wadsworth.
Groeneboom, P. 1989. Brownian motion with a parabolic drift and Airy functions. Probab. Theory Related Fields, 81, 79–109.
Groeneboom, P. 1996. Lectures on inverse problems. Pages 67–164 of: Lectures on probability theory and statistics (Saint-Flour, 1994). Lecture Notes in Math., vol. 1648. Berlin: Springer.
Groeneboom, P. 2010. The maximum of Brownian motion minus a parabola. Electron. J. Probab., 15, no. 62, 1930–1937.
Groeneboom, P. 2011. Vertices of the least concave majorant of Brownian motion with parabolic drift. Electron. J. Probab., 16, no. 84, 2234–2258.
Groeneboom, P. 2012a. Convex hulls of uniform samples from a convex polygon. Adv. in Appl. Probab., 44, 330–342.
Groeneboom, P. 2012b. Likelihood ratio type two-sample tests for current status data. Scand. J. Statist., 39, 645–662.
Groeneboom, P. 2013a. The bivariate current status model. Electron. J. Stat., 7, 1797–1845.
Groeneboom, P. 2013b. Nonparametric (smoothed) likelihood and integral equations. J. Statist. Plann. Inference, 143, 2039–2065.
Groeneboom, P. 2014. Maximum smoothed likelihood estimators for the interval censoring model. Ann. Statist., 42, 2092–2137.
Groeneboom, P., and Jongbloed, G. 2003. Density estimation in the uniform deconvolution model. Statist. Neerlandica, 57, 136–157.
Groeneboom, P., and Jongbloed, G. 2012. Isotonic L2-projection test for local monotonicity of a hazard. J. Statist. Plann. Inference, 142, 1644–1658.
Groeneboom, P., and Jongbloed, G. 2013a. Smooth and non-smooth estimates of a monotone hazard. Volume in the IMS Lecture Notes Monograph Series in honor of the 65th birthday of Jon Wellner. IMS.
Groeneboom, P., and Jongbloed, G. 2013b. Smooth and non-smooth estimates of a monotone hazard. Pages 174–196 of: From Probability to Statistics and Back: High-Dimensional Models and Processes–A Festschrift in Honor of Jon A. Wellner. Institute of Mathematical Statistics.
Groeneboom, P., and Jongbloed, G. 2013c. Testing monotonicity of a hazard: asymptotic distribution theory. Bernoulli, 19, 1965–1999.
Groeneboom, P., and Jongbloed, G. 2014. Nonparametric confidence intervals for monotone functions.
Groeneboom, P., and Ketelaars, T. 2011. Estimators for the interval censoring problem. Electron. J. Stat., 5, 1797–1845.
Groeneboom, P., and Lopuhaä, H.P. 1993. Isotonic estimators of monotone densities and distribution func-tions: basic facts. Statist. Neerlandica, 47, 175–183.
Groeneboom, P., and Pyke, R. 1983. Asymptotic normality of statistics based on the convex minorants of empirical distribution functions. Ann. Probab., 11, 328–345.
Groeneboom, P., and Temme, N.M. 2011. The tail of the maximum of Brownian motion minus a parabola. Electron. Commun. Probab., 16, 458–466.
Groeneboom, P., and Wellner, J.A. 1992. Information bounds and nonparametric maximum likelihood estimation. DMV Seminar, vol. 19. Basel: Birkhauser Verlag.
Groeneboom, P., and Wellner, J.A. 2001. Computing Chernoff's distribution. J. Comput. Graph. Statist., 10, 388–400.
Groeneboom, P., Hooghiemstra, G., and Lopuhaä, H.P. 1999. Asymptotic normality of the L1 error of the Grenander estimator. Ann. Statist., 27, 1316–1347.
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2001a. Estimation of a convex function: characterizations and asymptotic theory. Ann. Statist., 29, 1653–1698.
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2001b. A canonical process for estimation of convex functions: the “invelope” of integrated Brownian motion +t4. Ann. Statist., 29, 1620–1652.
Groeneboom, P., Jongbloed, G., and Wellner, J.A. 2008. The support reduction algorithm for computing non-parametric function estimates in mixture models. Scand. J. Statist., 35, 385–399.
Groeneboom, P., Maathuis, M.H., and Wellner, J.A. 2008a. Current status data with competing risks: consistency and rates of convergence of the MLE. Ann. Statist., 36, 1031–1063.
Groeneboom, P., Maathuis, M.H., and Wellner, J.A. 2008b. Current status data with competing risks: limiting distribution of the MLE. Ann. Statist., 36, 1064–1089.
Groeneboom, P., Jongbloed, G., and Witte, B.I. 2010. Maximum smoothed likelihood estimation and smoothed maximum likelihood estimation in the current status model. Ann. Statist., 38, 352–387.
Groeneboom, P., Jongbloed, G., and Michael, S. 2012. Consistency of maximum likelihood estimators in a large class of deconvolution models. Canad. J. Statist.
Groeneboom, P., Jongbloed, G., and Witte, B.I. 2012. A maximum smoothed likelihood estimator in the current status continuous mark model. J. Nonparametr. Stat., 24, 85–101.
Groeneboom, P., Lalley, S.P., and Temme, N.M. 2013. Chernoff's distribution and differential equations of parabolic and Airy type. Submitted.
Hall, P. 1984. Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Anal., 14, 1–16.
Hall, P. 1992. Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist., 20, 675–694.
Hall, P., and Horowitz, J.L. 2013. A simple bootstrap method for constructing nonparametric confidence bands for functions. Ann. Statist., 41, 1892–1921.
Hall, P., and Smith, R.L. 1988. The kernel method for unfolding sphere size distributions. J. Comput. Phys., 74, 409–421.
Hall, P., and Van Keilegom, I. 2005. Testing for monotone increasing hazard rate. Ann. Statist., 33, 1109–1137.
Hampel, F.R. 1987. Design, modelling, and analysis of some biological datasets. Pages 111–115 of: Design, data and analysis, by some friends of Cuthbert Daniel. New York: Wiley.
Hansen, B.E. 1991. Nonparametric estimation of functionals for interval censored observations. Master's thesis. Delft University of Technology.
Hanson, D.L., and Pledger, G. 1976. Consistency in Concave Regression. Ann. Statist., 4, 1038–1050.
Hoel, D.G., and Walburg, H.E. 1972. Statistical analysis of survival experiments. Journal of the National Cancer Institute, 49, 361–372.
Huang, J., and Wellner, J.A. 1995. Asymptotic normality of the NPMLE of linear functionals for interval censored data, case 1. Statist. Neerlandica, 49, 153–163.
Huang, Y., and Louis, T.A. 1998. Nonparametric estimation of the joint distribution of survival time and mark variables. Biometrika, 85, 7856–7984.
Hudgens, M.G., Satten, G.A., and Longini, Jr., I.M. 2001. Nonparametric maximum likelihood estimation for competing risks survival data subject to interval censoring and truncation. Biometrics, 57, 74–80.
Hudgens, M.G., Maathuis, M.H., and Gilbert, P.B. 2007. Nonparametric estimation of the joint distribution of a survival time subject to interval censoring and a continuous mark variable. Biometrics, 63, 372–380.
Ibragimov, I.A., and Linnik, Yu.V. 1971. Independent and stationary sequences of random variables. Wolters-Noordhoff Publishing, Groningen. With a supplementary chapter by I. A. Ibragimov and V. V. Petrov, Translation from the Russian edited by J. F. C. Kingman.
Janson, S. 2013. Moments of the location of the maximum of Brownian motion with parabolic drift. Electron. Commun. Probab., 18, no. 15, 1–8.
Janson, S., Louchard, G., and Martin-Löf, A. 2010. The maximum of Brownian motion with parabolic drift. Electron. J. Probab., 15, no. 61, 1893–1929.
Jewell, N.P. 1982. Mixtures of exponential distributions. Ann. Statist, 10, 479–484.
Jewell, N.P., and Kalbfleisch, J.D. 2004. Maximum likelihood estimation of ordered multinomial parameters. Biostatistics, 5, 291–306.
Jewell, N.P., van der Laan, M.J., and Henneman, T. 2003. Nonparametric estimation from current status data with competing risks. Biometrika, 90, 183–197.
Johnstone, I.M., and Raimondo, M. 2004. Periodic boxcar deconvolution and Diophantine approximation. Ann. Statist., 32, 1781–1804.
Jongbloed, G. 1998a. Exponential deconvolution: two asymptotically equivalent estimators. Statist. Neerlandica, 52, 6–17.
Jongbloed, G. 1998b. The iterative convex minorant algorithm for nonparametric estimation. J. Comput. Graph. Statist., 7, 310–321.
Jongbloed, G. 2001. Sieved maximum likelihood estimation in Wicksell's problem and related deconvolution problems. Scand. J. Statist., 28, 161–183.
Jongbloed, G. 2009. Consistent likelihood-based estimation of a star-shaped distribution. Metrika, 69, 265–282.
Jongbloed, G., and van der Meulen, F.H. 2009. Estimating a concave distribution function from data corrupted with additive noise. Ann. Statist., 37, 782–815.
Kaipio, J.P., and Somersalo, E. 2005. Statistical and computational inverse problems. Vol. 160. New York: Springer.
Keiding, N. 1991. Age-specific incidence and prevalence: a statistical perspective. J. Roy. Statist. Soc. Ser. A, 154(3), 371–412. With discussion.
Keiding, N., Begtrup, K., Scheike, T.H., and Hasibeder, G. 1996. Estimation from Current Status Data in Continuous Time. Lifetime Data Anal., 2, 119–129.
Keiding, N., Højbjerg Hansen, O.K., Sørensen, D.N., and Slama, R. 2012. The current duration approach to estimating time to pregnancy. Scand. J. Statist., 39, 185–204.
Kim, J.K., and Pollard, D. 1990. Cube root asymptotics. Ann. Statist., 18, 191–219.
Kitayaporn, D., Vanichseni, S., Mastro, T.D., Raktham, S., Vaniyapongs, T., Des Jarlais, D.C., Wasi, C., Young, N.L., Sujarita, S., Heyward, W.L., and Esparza, J. 1998. Infection with HIV-1 subtypes B and E in injecting drug users screened for enrollment into a prospective cohort in Bangkok, Thailand. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol., 19, 289–295.
Klein, J.P., and Moeschberger, M.L. 2003. Survival Analysis: Techniques for Censored and Truncated Data. Statistics for Biology and Health. New York: Springer.
Komlós, J., Major, P., and Tusnády, G. 1975. An approximation of partial sums of independent RV's and the sample DF. I. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 32, 111–131.
Kosorok, M.R. 2008a. Bootstrapping the Grenander estimator. Pages 282–292 of: Beyond parametrics in interdisciplinary research: Festschrift in honor of Professor Pranab K. Sen. Inst. Math. Stat. Collect., vol. 1. Beachwood, OH: Inst. Math. Statist.
Kosorok, M.R. 2008b. Introduction to empirical processes and semiparametric inference. NewYork: Springer.
Kress, R. 1989. Linear integral equations. Applied Mathematical Sciences, vol. 82. Berlin: Springer-Verlag.
Kulikov, V.N. 2003. Direct and Indirect Use of Maximum Likelihood. Ph.D. thesis. Delft University of Technology.
Lesperance, M.L., and Kalbfleisch, J.D. 1992. An algorithm for computing the nonparametric MLE of a mixing distribution. J. Amer. Statist. Assoc., 87, 120–126.
Li, C., and Fine, J.P. 2013. Smoothed nonparametric estimation for current status competing risks data. Biometrika, 100, 173–187.
Lindsay, B.G. 1995. Mixture models: theory, geometry and applications. Pages i–163 of: NSF-CBMSregional conference series in probability and statistics. JSTOR.
Loève, M. 1963. Probability theory. Third ed. Princeton, NJ–Toronto–London: D. Van Nostrand Co.
Maathuis, M.H. 2005. Reduction algorithm for the NPMLE for the distribution function of bivariate interval-censored data. J. Comput. Graph. Statist., 14, 352–362.
Maathuis, M.H., and Hudgens, M.G. 2011. Nonparametric inference for competing risks current status data with continuous, discrete or grouped observation times. Biometrika, 98, 325–340.
Maathuis, M.H., and Wellner, J.A. 2008. Inconsistency of the MLE for the joint distribution of interval censored survival times and continuous marks. Scand. J. Statist., 35, 83–103.
Mackowiak, P.A., Wasserman, S.S., and Levine, M.M. 1992. A critical appraisal of 98.6 degrees F, the upper limit of the normal body temperature, and other legacies of Carl Reinhold August Wunderlich. Journal of the American Medical Association, 268, 1578–1580.
Mammen, E. 1991. Nonparametric regression under qualitative smoothness assumptions. Ann. Statist., 19, 741–759.
Marshall, A.W. 1969. Discussion on Barlow and van Zwets paper. Pages 174–176 of: Nonparametric Techniques in Statistical Inference. Proceedings of the First International Symposium on Nonparametric Techniques held at Indiana University, June.
Marshall, A.W., and Proschan, F. 1965. Maximum likelihood estimation for distributions with monotone failure rate. Ann. Math. Statist, 36, 69–77.
McGarrity, K.S., Sietsma, J., and Jongbloed, G. 2014. Nonparametric inference in a stereological model with oriented cylinders applied to dual phase steel. Submitted for publication.
McLachlan, G.J., and Krishnan, T. 2007. The EM algorithm and extensions. Vol. 382. Hoboken, NJ: John Wiley & Sons.
Meister, A. 2009. Deconvolution problems in nonparametric statistics. Lecture Notes in Statistics, vol. 193. Berlin: Springer-Verlag.
Meyer, M.C. 2008. Inference using shape-restricted regression splines. Ann. Appl. Stat., 2, 1013–1033.
Nane, G.F. 2013. Shape Constrained Nonparametric Estimation in the Cox Model. Ph.D. thesis. Delft University of Technology.
Neuhaus, G. 1993. Conditional rank tests for the two-sample problem under random censorship. Ann. Statist., 21, 1760–1779.
Newcomb, S. 1886. A generalized theory of the combination of observations so as to obtain the best result. American Journal of Mathematics, 343–366.
Ohser, J., and Mücklich, F. 2000. Statistical analysis of microstructures in materials science. New York: John Wiley.
Pal, J.K. 2008. Spiking problem in monotone regression: Penalized residual sum of squares. Statist. Probab. Lett., 78, 1548–1556.
Patil, G.P., and Rao, C.R. 1978. Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics, 34, 179–189.
Peto, R., and Peto, J. 1972. Asymptotically efficient rank invariant test procedures. J.R. Statist. Soc. Series A, 135, 184–207.
Pimentel, L.P.R. 2014. On the location of the maximum of a continuous stochastic process. J. Appl. Prob., 51, 152–161.
Pitman, J.W. 1983. Remarks on the convex minorant of Brownian motion. Pages 219–227 of: Seminar on stochastic processes, 1982 (Evanston, Ill., 1982). Progr. Probab. Statist., vol. 5. Boston, MA: Birkhauser Boston.
Politis, D.N., Romano, J.P., and Wolf, M. 1999. Subsampling. Springer Series in Statistics. New York: Springer-Verlag.
Pollard, D. 1984. Convergence of stochastic processes. Springer Series in Statistics. New York: Springer-Verlag.
Prakasa Rao, B.L.S. 1969. Estimation of a unimodal density. Sankhyā Ser. A, 31, 23–36.
Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J.Q.G. 2008. Luminescence dating: basics, methods and applications. Quaternary Science Journal, 57, 95–149.
Proschan, F., and Pyke, R. 1967. Tests for monotone failure rate. Pages 293–312 of: Proc. Fifth Berkeley Sympos. Mathematical Statistics and Probability (Berkeley, Calif., 1965/66), Vol. III: Physical Sciences. Berkeley, CA: University of California Press.
R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ramsay, J.O. 1998. Estimating smooth monotone functions. J. R. Statist. Soc.: Series B (Statistical Methodology), 60, 365–375.
Rebolledo, R. 1980. Central limit theorems for local martingales. Z. Wahrsch. Verw. Gebiete, 51, 269–286.
Robertson, T., Wright, F.T., and Dykstra, R.L. 1988. Order restricted statistical inference. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Chichester: John Wiley & Sons.
Rosenblatt, M. 1956a. A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. U.S.A., 42, 43–47.
Rosenblatt, M. 1956b. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27, 832–837.
Ross, S.M. 2010. Introduction to probability models. Tenth ed. Burlington, MA: Harcourt/Academic Press.
Ruppert, D., Wand, M.P., and Carroll, R.J. 2003. Semiparametric regression. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 12. Cambridge: Cambridge University Press.
Schoemaker, A.L. 1996. What's normal? Temperature, gender, and heart rate. Journal of Statistics Education, 4.
Schuhmacher, D., Hüsler, A., and Dümbgen, L. 2011. Multivariate log-concave distributions as a nearly parametric model. Statistics & Risk Modeling with Applications in Finance and Insurance, 28(3), 277–295.
Schuster, E.F. 1985. Incorporating support constraints into nonparametric estimators of densities. Comm. Statist. A-Theory Methods, 14, 1123–1136.
Sen, B., Banerjee, M., and Woodroofe, M.B. 2010. Inconsistency of bootstrap: the Grenander estimator. Ann. Statist., 38, 1953–1977.
Silvapulle, M.J., and Sen, P.K. 2005. Constrained statistical inference: inequality, order and shape constraints. Hoboken, NJ: Wiley.
Silverman, B.W. 1978. Weak and strong uniform consistency of the kernel estimate of a density and its derivatives. Ann. Statist., 6, 177–184.
Silverman, B.W. 1986. Density estimation for statistics and data analysis. Vol. 26. Boca Raton, FL: CRC press.
Simar, L. 1976. Maximum likelihood estimation of a compound Poissonprocess. Ann. Statist., 4, 1200–1209.
Slama, R., Højbjerg Hansen, O.K., Ducot, B., Bohet, A., Sørensen, D., Allemand, L., Eijkemans, M.J., Rosetta, L., Thalabard, J.C., Keiding, N., et al. 2012. Estimation of the frequency of involuntary infertility on a nation-wide basis. Human reproduction, 27, 1489–1498.
Song, S. 2001. Estimation with Bivariate Interval Censored data. Ph.D. diss. University of Washington.
Sparre Andersen, E. 1954. On the fluctuations of sums of random variables. II. Math. Scand., 2, 195–223.
Steinsaltz, D., and Orzack, S.H. 2011. Statistical methods forpaleodemography on fossil assemblages having small numbers of specimens: an investigation of dinosaur survival rates. Paleobiology, 37, 113–125.
Sun, J. 2006. The statistical analysis of interval-censored failure time data. Statistics for Biology and Health. New York: Springer.
Talagrand, M. 1994. Sharper bounds for Gaussian and empirical processes. Ann. Probab., 22, 28–76.
Talagrand, M. 1996. New concentration inequalities in product spaces. Invent. Math., 126, 505–563.
Temme, N.M. 1985. A convolution integral equation solved by Laplace transformations. Pages 609–613 of: Proceedings of the international conference on computational and applied mathematics (Leuven, 1984), vol. 12/13.
Tsai, W.-Y., Leurgans, S.E., and Crowley, J.J. 1986. Nonparametric estimation of a bivariate survival function in the presence of censoring. Ann. Statist., 14, 1351–1365.
Tsybakov, A.B., and Zaiats, V. 2009. Introduction to nonparametric estimation. Vol. 11. New York: Springer.
Van de Geer, S.A. 1996. Rates of convergence for the maximum likelihood estimator in mixture models. J. Nonparametr. Statist., 6, 293–310.
Van de Geer, S.A. 2000. Applications of empirical process theory. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 6. Cambridge: Cambridge University Press.
Van der Laan, M.J. 1996. Efficient estimation in the bivariate censoring model and repairing NPMLE. Ann. Statist., 24, 596–627.
Van der Vaart, A.W. 1991. On differentiable functionals. Ann. Statist., 19, 178–204.
Van der Vaart, A.W., and Van der Laan, M.J. 2003. Smooth estimation of a monotone density. Statistics: A Journal of Theoretical and Applied Statistics, 37, 189–203.
Van der Vaart, A.W., and Wellner, J.A. 1996. Weak convergence and empirical processes. Springer Series in Statistics. New York: Springer-Verlag.
Van Eeden, C. 1956. Maximum likelihood estimation of ordered probabilities. Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math., 18, 444–455.
Van Es, A.J., and Hoogendoorn, A.W. 1990. Kernel estimation in Wicksell's corpuscle problem. Biometrika, 77, 139–145.
Van Es, A.J., and van Zuijlen, M.C.A. 1996. Convex minorant estimators of distributions in non-parametric deconvolution problems. Scand. J. Statist., 23, 85–104.
Van Es, A.J., Jongbloed, G., and van Zuijlen, M.C.A. 1998. Isotonic inverse estimators for nonparametric deconvolution. Ann. Statist., 26, 2395–2406.
Van Trees, H.L. 1968. Detection, estimation, and modulation theory. New York: Wiley.
Vanichseni, S., Kitayaporn, D., Mastro, T.D., Mock, P.A., Raktham, S., D.C., Des Jarlais, Sujarita, S., Srisuwanvilai, L.O., Young, N.L., Wasi, C., Subbarao, S., Heyward, W.L., Esparza, J., and Choopanya, K. 2001. Continued high HIV-1 incidence in a vaccine trial preparatory cohort of injection drug users in Bangkok, Thailand. AIDS, 15, 397–405.
Vardi, Y. 1982. Nonparametric estimation in the presence of length bias. Ann. Statist., 10, 616–620.
Walther, G. 2001. Multiscale maximum likelihood analysis of a semiparametric model, with applications. Ann. Statist., 29, 1297–1319.
Wand, M.P., and Jones, M.C. 1995. Kernel smoothing. Vol. 60. Boca Raton, FL: Crc Press.
Watson, G.S. 1971. Estimating functionals of particle size distributions. Biometrika, 58, 483–490.
Wellner, J.A. 1995. Interval censoring, case 2: alternative hypotheses. Pages 271–291 of: Analysis of censored data (Pune, 1994/1995). IMS Lecture Notes Monogr. Ser., vol. 27. Hayward, CA: Inst. Math. Statist.
Wellner, J.A., and Zhan, Y. 1997. A hybrid algorithm for computation of the nonparametric maximum likelihood estimator from censored data. J. Amer. Statist. Assoc., 92, 945–959.
Wicksell, S.D. 1925. The corpuscle problem. Biometrika, 17, 84–99.
Wicksell, S.D. 1926. The corpuscle problem: second memoir: case of ellipsoidal corpuscles. Biometrika, 18, 151–172.
Woodroofe, M.B., and Sun, J. 1993. A penalized maximum likelihood estimate of f(0+) when f is nonincreasing. Statist. Sinica, 3, 501–515.
Wright, S.J. 1997. Primal-dual interior-point methods. Vol. 54. Philadelphia, PA: Siam.
Wu, C.-F.J. 1983. On the convergence properties of the EM algorithm. Ann. Statist., 11, 95–103.
Wynn, H.P. 1970. The sequential generation of D-optimum experimental designs. Ann. Math. Statist., 41, 1655–1664.
Yu, B. 1997. Assouad, Fano, and Le Cam. Pages 423–435 of: Festschrift for Lucien Le Cam. Springer.
Zeidler, E. 1985. Nonlinear functional analysis and its applications. III. Variational methods and optimization. Translated from the German by Leo F. Boron. New York: Springer-Verlag.
Zhang, S., Karunamuni, R.J., and Jones, M.C. 1999. An improved estimator of the density function at the boundary. J. Amer. Statist. Assoc., 94, 1231–1240.
Zhang, Y. 2006. Nonparametric k-sample tests with panel count data. Biometrika, 93, 777–790.
Zhang, Y., Liu, W., and Zhan, Y. 2001. A nonparametric two-sample test of the failure function with interval censoring case 2. Biometrika, 88, 677–686.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed