Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-24T01:05:35.928Z Has data issue: false hasContentIssue false

13 - Applications of local and global uniqueness and stability criteria to non-associative elastoplasticity

Published online by Cambridge University Press:  05 August 2012

Davide Bigoni
Affiliation:
Università degli Studi di Trento, Italy
Get access

Summary

Applications of the local and global criteria for uniqueness and stability are presented for elastoplastic solids with non-associative flow law. We begin with the simple case of the small strain theory, and subsequently, we treat the problem of uniaxial tension and compression of a non-associative elastoplastic cylinder subjected to finite strains. We fully develop the comparison theorem analysis, including also local criteria. Finally, an example of flutter instability occurring in an elastoplastic material with non-associative flow rule is presented.

Local and global uniqueness and stability criteria were introduced in Chapters 10 and 11, with reference to non-associative elastoplasticity (Chapter 8). The incremental non-linearity of the rate-constitutive equations of plasticity and the lack of symmetry connected to the flow-rule non-associativity strongly complicate the bifurcation and instability analyses with respect to the case of incremental elasticity. Therefore, despite interest in the applications to bifurcation problems for geological and quasibrittle materials, there have been only a few attempts to apply the comparison solids methodology to bifurcation problems (Bruhns and Raniecki, 1982; Kleiber, 1984; 1986; Tomita et al., 1988; Bigoni, 2000), so our interest in this chapter is to provide examples of the methodologies explained in Chapters 10 and 11. We will use the simplest constitutive setting, which is that of small strain Drucker-Prager elastoplasticity with deviatoric associativity, a context in which we will limit examples to local stability criteria, whereas the use of Raniecki comparison solids will be presented for a simple elastoplastic non-associative model at large strain.

Type
Chapter
Information
Nonlinear Solid Mechanics
Bifurcation Theory and Material Instability
, pp. 385 - 402
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×