Skip to main content Accessibility help
×
Home
Nonequilibrium Gas Dynamics and Molecular Simulation
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 50
  • Export citation
  • Recommend to librarian
  • Buy the print book

Book description

This current and comprehensive book provides an updated treatment of molecular gas dynamics topics for aerospace engineers, or anyone researching high-temperature gas flows for hypersonic vehicles and propulsion systems. It demonstrates how the areas of quantum mechanics, kinetic theory, and statistical mechanics can combine in order to facilitate the study of nonequilibrium processes of internal energy relaxation and chemistry. All of these theoretical ideas are used to explain the direct simulation Monte Carlo (DSMC) method, a numerical technique based on molecular simulation. Because this text provides comprehensive coverage of the physical models available for use in the DSMC method, in addition to the equations and algorithms required to implement the DSMC numerical method, readers will learn to solve nonequilibrium flow problems and perform computer simulations, and obtain a more complete understanding of various physical modeling options for DSMC than is available in other texts.

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Send to Kindle
  • Send to Dropbox
  • Send to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abe, T. (1994). “Direct simulation Monte Carlo method for internaltranslational energy exchange in nonequilibrium flow.” Rarefied Gas Dynamics: Theory and Simulations. In Proceedings of the 18th International Symposium on Rarified Gas Dynamics, University of British Columbia, Vancouver, BC, Canada, 1994, pp. 103–113.
Alsmeyer, H. (1976). “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam.Journal of Fluid Mechanics 74(3), 497–513.
Annis, B., and Malinauskas, A. (1971). “Temperature dependence of rotational collision numbers from thermal transpiration.The Journal of Chemical Physics 54(11), 4763–4768.
Appleton, J., Steinberg, M., and Liquornik, D. (1968). “Shock-tube study of nitrogen dissociation using vacuum-ultraviolet light absorption.The Journal of Chemical Physics 48(2), 599–608.
Baker, L. L., and Hadjiconstantinou, N. G. (2005). “Variance reduction for Monte Carlo solutions of the Boltzmann equation.Physics of Fluids 17, 051703.
Bender, J. D., Valentini, P., Nompelis, I., Paukku, Y., Varga, Z., Truhlar, D. G., Schwartzentruber, T., and Candler, G. V. (2015). “An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions.The Journal of Chemical Physics 143(5), 054304.
Bergemann, F., and Boyd, I. D. (1994). “New discrete vibrational energy model for the direct simulation Monte Carlo Method.Progress in Astronautics and Aeronautics 158, 174–183.
Bertin, J. (1994). Hypersonic Aerothermodynamics. AIAA, Washington.
Bhathnagor, P., Gross, E. G., and Krook, M. (1954). “A model for collision processes in gases.” I. Small amplitude processes in charged and neutral onecomponent systems. Physical Review 94(3), 511–525.
Billing, G.D. and Wang, L. (1992). “Semiclassical calculations of transport coefficients and rotational relaxation of nitrogen at high temperatures.The Journal of Physical Chemistry 96(6), 2572–2575.
Bird, G. (1963). “Approach to translational equilibrium in a rigid sphere gas.Physics of Fluids (1958–1988) 6(10), 1518–1519.
Bird, G. (1994). Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, New York.
Bird, G. (2013). The DSMC method. CreateSpace Independent Publishing Platform.
Borgnakke, C., and Larsen, P. S. (1975). “Statistical collision model for monte carlo simulation of polyatomic gas mixture.” Journal of Computational Physics 18(4), 405–420.
Bose, D., and Candler, G. V. (1996). “Thermal rate constants of the N2 + O → NO + N reaction using ab initio 3A and 3A potential energy surfaces.The Journal of Chemical Physics 104(8), 2825–2833.
Bourgat, J.-F., Desvillettes, L., Le Tallec, P., and Perthame, B. (1994). “Microreversible collisions for polyatomic gases and Boltzmann's theorem.European Journal of Mechanics B: Fluids 13(2), 237–254.
Boyd, I. D. (1990a). “Analysis of rotational nonequilibrium in standing shock waves of nitrogen.AIAA Journal 28(11), 1997–1999.
Boyd, I. D. (1990b). “Rotational–translational energy transfer in rarefied nonequilibrium flows.Physics of Fluids A: Fluid Dynamics (1989–1993) 2(3), 447–452.
Boyd, I. D. (2007). “Modeling backward chemical rate processes in the direct simulation Monte Carlo Method.Physics of Fluids (1994–present) 19(12), 126103.
Boyd, I. D., Chen, G., and Candler, G.V. (1995). “Predicting failure of the continuum fluid equations in transitional hypersonic flows.”Physics of Fluids (1994– present) 7(1), 210–219.
Boyd, I. D., and Gokcen, T. (1994). “Computation of axisymmetric and ionized hypersonic flows using particle and continuum methods.AIAA Journal 32(9), 1828–1835.
Burt, J. M., and Josyula, E. (2014). “Efficient direct simulation Monte Carlo modeling of very low Knudsen number gas flows.” In 52nd Aerospace Sciences Meeting.
Burt, J. M., Josyula, E., and Boyd, I. D. (2011). “Techniques for reducing collision separation in direct simulation Monte Carlo calculations.” In 42nd AOAA Thermophysics Conference, Honolulu.
Burt, J. M., Josyula, E., and Boyd, I. D. (2012). “NovelCartesian implementation of the direct simulation Monte Carlo method.Journal of Thermophysics and Heat Transfer 262, 258–270.
Carnevale, E., Carey, C., and Larson, G. (1967). “Ultrasonic determination of rotational collision numbers and vibrational relaxation times of polyatomic gases at high temperatures.” The Journal of Chemical Physics 47(8), 2829–2835.
Chapman, S., and Cowling, T. G. (1952). The Mathematical Theory of Nonuniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion of Gases. Cambridge University Press, Cambridge.
Choquet, I. (1994). “Thermal nonequilibrium modeling using the direct simulation monte carlo method: Application to rotational energy.Physics of Fluids (1994–present) 6(12), 4042–4053.
Deschenes, T. R., and Boyd, I. D. (2011). “Extension of a modular particlecontinuum method to vibrationally excited, hypersonic flows.AIAA Journal 49(9), 1951–1959.
Dietrich, S., and Boyd, I. D. (1996). “Scalar and parallel optimized implementation of the direct simulation Monte Carlo Method.Journal of Computational Physics 126(2), 328–342.
Donev, A., Bell, J. B., Garcia, A. L., and Alder, B. J. (2010). “A hybrid particlecontinuum method for hydrodynamics of complex fluids.Multiscale Modeling and Simulation 8(3), 871–911.
Donev, A., Garcia, A. L., and Alder, B. J. (2008). “Stochastic event-driven molecular dynamics.Journal of Computational Physics 227(4), 2644–2665.
Fan, J. (2002). “A generalized soft-sphere model for Monte Carlo Simulation.Physics of Fluids (1994–present) 14(12), 4399–4405.
Farbar, E., and Boyd, I. D. (2014). “Subsonic flow boundary conditions for the direct simulation Monte Carlo method.Computers and Fluids 102, 99–110.
Galitzine, C., and Boyd, I. D. (2015). “An adaptive procedure for the numerical parameters of a particle simulation.Journal of Computational Physics 281, 449–472.
Ganzi, G., and Sandler, S. I. (1971). “Determination of thermal transport properties from thermal transpiration measurements.The Journal of Chemical Physics 55(1), 132–140.
Gao, D., Zhang, C., and Schwartzentruber, T. E. (2011). “Particle simulations of planetary probe flows employing automated mesh refinement.Journal of Spacecraft and Rockets 48(3), 397–405.
Garcia, A. L. (2000). Numerical Methods for Physics. Prentice Hall, Englewood Cliffs, NJ.
Garcia, A. (2007). “Estimating hydrodynamic quantities in the presence of microscopic fluctuations.Communications in AppliedMathematics and Computational Science 1(1), 53–78.
Garcia, A. L., and Alder, B. J. (1998). “Generation of the Chapman–Enskog distribution.Journal of Computational Physics 140(1), 66–70.
Gimelshein, N., Gimelshein, S., and Levin, D. (2002). “Vibrational relaxation rates in the direct simulation MonteCarlo method.” Physics of Fluids 14, 4452–4455.
Gmurczyk, A. S., Tarczynski, M., and Walenta, Z. A. (1979). “ShockWave Structure in the Binary Mixtures of Gases with Disparate MolecularMasses.” 11th International symposium on rarefied gas dynamics, edited by Campargue, R., Commissariat a l'Energie Atomique, Paris, Vol. 1, pp. 333–341.
Gombosi, T. (1994). Gaskinetic Theory. Cambridge University Press, New York.
Grad, H. (1963). “Asymptotic theory of the Boltzmann equation.Physics of Fluids (1958–1988) 6(2), 147–181.
Gross, E. P., and Jackson, E. A. (1959). “Kinetic models and the linearized boltzmann equation.Physics of Fluids (1958–1988) 2(4), 432–441.
Haas, B. L. and Boyd, I. D. (1993). “Models for direct Monte Carlo simulation of coupled vibration–dissociation.Physics of Fluids A: Fluid Dynamics (1989– 1993) 5(2), 478–489.
Haas, B. L., Hash, D. B., Bird, G. A., Lumpkin III, F. E., and Hassan, H. (1994). “Rates of thermal relaxation in direct simulation Monte Carlo methods.Physics of Fluids (1994–present) 6(6), 2191–2201.
Hanson, R., and Baganoff, D. (1972). “Shock tube study of nitrogen dissociation rates using pressure measurements.” AIAA Journal 10, 211–215.
Hassan, H., and Hash, D. B. (1993). “Ageneralized hard-sphere model for monte carlo simulation.” Physics of Fluids A: Fluid Dynamics (1989–1993) 5(3), 738– 744.
Healy, R., and Storvick, T. (1969). “Rotational collision number and eucken factors from thermal transpiration measurements.The Journal of Chemical Physics 50(3), 1419–1427.
Hirschfelder, J. O., Curtiss, C. F., Bird, R. B., and Mayer, M.G. (1954), Molecular Theory of Gases and Liquids. Wiley New York.
Homolle, T.M.M., and Hadjiconstantinou, N. G. (2007). “A low-variance deviational simulation Monte Carlo for the Boltzmann equation.Journal of Computational Physics 226, 2341–2358.
Hornung, H. (1972). “Induction time for nitrogen dissociation”, The Journal of Chemical Physics 56(6), 3172–3173.
Kannenberg, K. C., and Boyd, I. D. (2000). “Strategies for efficient particle resolution in the direct simulation Monte Carlo method.Journal of Computational Physics 157(2), 727–745.
Kennard, E. (1938). Kinetic Theory of Gases. McGraw-Hill, New York.
Kewley, D. and Hornung, H. (1974). “Free-piston shock-tube study of nitrogen dissociation.Chemical Physics Letters 25(4), 531–536.
Kim, J. G. and Boyd, I. D. (2013). “State-resolved master equation analysis of thermochemical nonequilibrium of nitrogen.Chemical Physics 415, 237–246.
Kistemaker, P., Tom, A. and De Vries, A. (1970). “Rotational relaxation numbers for the isotopic molecules of N2 and CO.Physica 48(3), 414–424.
Koshi, M., B. S., S.M. and Asaba, T. (1978). “Dissociation of nitric oxide in shock waves.” In Proceedings of the 17th Symposium (International) on Combustion Leeds, UK, 1, 553–562.
Koura, K. (1997). “Monte Carlo direct simulation of rotational relaxation of diatomic molecules using classical trajectory calculations: Nitrogen shock wave.Physics of Fluids (1994–present) 9(11), 3543–3549.
Koura, K. (1998). “Monte carlo direct simulation of rotational relaxation of nitrogen through high total temperature shock waves using classical trajectory calculations.Physics of Fluids (1994–present) 10(10), 2689–2691.
Koura, K., and Matsumoto, H. (1991). “Variable soft sphere molecular model for inverse-power-law or Lennard-Jones potential.Physics of Fluids A: Fluid Dynamics (1989–1993) 3(10), 2459–2465.
Koura, K., and Matsumoto, H. (1992). “Variable soft sphere molecular model for air species.Physics of Fluids A: Fluid Dynamics (1989–1993) 4(5), 1083– 1085.
Kunc, J., Hash, D., andHassan, H. (1995). “The ghs interaction model for strong attractive potentials.Physics of Fluids (1994–present) 7(5), 1173–1175.
Landau, L., and Teller, E. (1936). “Theory of sound dispersion.Physikalische Zeitschrift der Sowjet-Union 10, 34.
Lin, W., Varga, Z., Song, G., Paukku, Y., and Truhlar, D. G. (2016). “Global triplet potential energy surfaces for the N2 reaction.” The Journal of Chemical Physics 144(2), 024309.
Lordi, J. A., and Mates, R. E. (1970). “Rotational relaxation in nonpolar diatomic gases.Physics of Fluids (1958–1988) 13(2), 291–308.
Lumpkin III, F. E., Haas, B. L., and Boyd, I. D. (1991). “Resolution of differences between collision number definitions in particle and continuum simulations.Physics of Fluids A: Fluid Dynamics (1989–1993) 3(9), 2282–2284.
Magin, T. E., and Degrez, G. (2004a). “Transport algorithms for partially ionized and unmagnetized plasmas.Journal of Computational Physics 198(2), 424–449.
Magin, T. E., and Degrez, G. (2004b). “Transport properties of partially ionized and unmagnetized plasmas.Physical Review E 70(4), 046412.
Matsumoto, H., and Koura, K. (1991). “Comparison of velocity distribution functions in an argon shock wave between experiments and Monte Carlo calculations for Lennard-Jones Potential.Physics of Fluids A: Fluid Dynamics (1989–1993) 3(12), 3038–3045.
Millikan, R., and White, D. (1963). “Systematics of vibrational relaxation.” Journal of Chemical Physics 39, 3209–3213.
Nompelis, I., and Schwartzentruber, T. (2013). “Strategies for parallelization of the dsmc method. In –51st AIAA Aerospace Sciences Meeting.” Vol. AIAA, Paper 2013–1204, Grapevine, TX.
Norman, P., Valentini, P., and Schwartzentruber, T. (2013). “Gpu-accelerated classical trajectory calculation direct simulation Monte Carlo applied to shock waves.Journal of Computational Physics 247, 153–167.
Nyeland, C., and Billing, G.D. (1988). “Transport coefficients of diatomic gases: Internal-state analysis for rotational and vibrational degrees of freedom.The Journal of Physical Chemistry 92(7), 1752–1755.
Panesi, M., Jaffe, R. L., Schwenke, D. W., and Magin, T. E. (2013). “Rovibrational internal energy transfer and dissociation of N2 system in hypersonic flows.” The Journal of Chemical Physics 138(4), 044312.
Park, C. (1990). Nonequilibrium Hypersonic Aerothermodynamics. Wiley, New York.
Park, C. (1993). “Reviewof chemical-kinetic problems of futureNASA missions. I. Earth entries.Journal of Thermophysics and Heat Transfer 7(3), 385–398.
Parker, J. (1959). “Rotational and vibrational relaxation in diatomic gases.Physics of Fluids 2, 449–462.
Paukku, Y., Yang, K. R., Varga, Z., and Truhlar, D. G. (2013). “Global ab initio ground-state potential energy surface of N4.The Journal of Chemical Physics 139(4), 044309.
Pfeiffer, M., Nizenkov, P., Mirza, A., and Fasoulas, S. (2016). “Direct simulation Monte Carlo modeling of relaxation processes in polyatomic gases.” Physics of Fluids (1994–present), 28(2), 027103.
Poovathingal, S., Schwartzentruber, T. E., Murray, V., and Minton, T. K. (2015). Molecular simulations of surface ablation using reaction probabilities from molecular beam experiments and realistic microstructure. AIAA Paper 1449.
Poovathingal, S., Schwartzentruber, T. E., Murray, V. J., and Minton, T. K. (2016). “Molecular simulation of carbon ablation using beam experiments and resolved microstructure.AIAA Journal 54(1), 1–12.
Present, R. (1958). Kinetic Theory of Gases. McGraw-Hill, New York.
Ramshaw, J. D., and Chang, C. (1996). “Friction-weighted self-consistent effective binary diffusion approximation.” Journal of Non-Equilibrium Thermodynamics 21(3), 223–232.
Schwartzentruber, T. E., and Boyd, I. D. (2006). “A hybrid particlecontinuum method applied to shock waves.Journal of Computational Physics 215(2), 402–416.
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2007). “A modular particle–continuum numerical method for hypersonic non-equilibrium gas flows.Journal of Computational Physics 225(1), 1159–1174.
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2008a). “Hybrid particle-continuum simulations of hypersonic flow over a hollow-cylinderflare geometry.AIAA Journal 46(8), 2086–2095.
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2008b). “Hybrid particle-continuum simulations of nonequilibrium hypersonic blunt-body flowfields.Journal of Thermophysics and Heat Transfer 22(1), 29–37.
Schwartzentruber, T. E., Scalabrin, L. C., and Boyd, I. D. (2008c). “Multiscale particle-continuum simulations of hypersonic flow over a planetary probe.Journal of Spacecraft and Rockets 45(6), 1196–1206.
Stephani, K., Goldstein, D., and Varghese, P. (2013). “A non-equilibrium surface reservoir approach for hybrid dsmc/Navier–Stokes particle generation.Journal of Computational Physics 232(1), 468–481.
Tysanner, M. W., and Garcia, A. L. (2004). “Measurement bias of fluid velocity in molecular simulations.Journal of Computational Physics 196(1), 173–183.
Tysanner, M. W., and Garcia, A. L. (2005). “Non-equilibrium behaviour of equilibrium reservoirs in molecular simulations.International Journal for Numerical Methods in Fluids 48(12), 1337–1349.
Valentini, P., and Schwartzentruber, T. E. (2009a). “A combined eventdriven/ time-driven molecular dynamics algorithm for the simulation of shock waves in rarefied gases.Journal of Computational Physics 228(23), 8766–8778.
Valentini, P., and Schwartzentruber, T. E. (2009b). “Large-scale molecular dynamics simulations of normal shock waves in dilute argon.Physics of Fluids (1994–present) 21(6), 066101.
Valentini, P., Schwartzentruber, T. E., Bender, J. D., and Candler, G. V. (2016). “Dynamics of nitrogen dissociation from direct molecular simulation”, Physical Review Fluids 1, 043402.
Valentini, P., Schwartzentruber, T. E., Bender, J. D., Nompelis, I., and Candler, G. V. (2015). “Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface'.Physics of Fluids (1994–present) 27(8), 086102.
Valentini, P., Tump, P. A., Zhang, C., and Schwartzentruber, T. E. (2013). “Molecular dynamics simulations of shock waves in mixtures of noble gases.Journal of Thermophysics and Heat Transfer 27(2), 226–234.
Valentini, P., Zhang, C., and Schwartzentruber, T. E. (2012). “Molecular dynamics simulation of rotational relaxation in nitrogen: Implications for rotational collision number models.Physics of Fluids (1994–present) 24(10), 106101.
Varga, Z., Meana-Paneda, R., Song, G., Paukku, Y., and Truhlar, D. G. (2016). “Potential energy surface of triplet N2O2.The Journal of Chemical Physics 144(2), 024310.
Venkattraman, A., and Alexeenko, A. A. (2012). “Binary scattering model for Lennard-Jones potential: Transport coefficients and collision integrals for non-equilibrium gas flow simulations.Physics of Fluids (1994–present) 24(2), 027101.
Vincenti, W., and Kruger, C. (1967). Introduction to Physical Gas Dynamics. Wiley, New York.
Wadsworth, D. C., and Wysong, I. J. (1997). “Vibrational favoring effect in dsmc dissociation models.Physics of Fluids (1994–present) 9(12), 3873–3884.
Wagner, W. (1992). “A convergence proof for bird's direct simulation Monte Carlo method for the Boltzmann equation.” Journal of Statistical Physics 66(3–4), 1011–1044.
Wang, W.-L., and Boyd, I. D. (2003). “Predicting continuum breakdown in hypersonic viscous flows.Physics of Fluids (1994–present) 15(1), 91–100.
Wray, K. L. (1962). “Shock-tube study of the coupling of the O2–Ar rates of dissociation and vibrational relaxation.The Journal of Chemical Physics 37(6), 1254–1263.
Wright, M. J., Bose, D., Palmer, G. E., and Levin, E. (2005). “Recommended collision integrals for transport property computations. Part 1: Air species.AIAA Journal 43(12), 2558–2564.
Wright, M. J., Hwang, H. H., and Schwenke, D. W. (2007). “Recommended collision integrals for transport property computations, Part ii: Mars and Venus entries.AIAA Journal 45(1), 281–288.
Wysong, I. J., and Wadsworth, D. C. (1998). “Assessment of direct simulation Monte Carlo phenomenological rotational relaxation models.Physics of Fluids (1994–present) 10(11), 2983–2994.
Zhang, C., and Schwartzentruber, T. E. (2012). “Robust cut-cell algorithms for dsmc implementations employing multi-level Cartesian grids.Computers and Fluids 69, 122–135.
Zhang, C., and Schwartzentruber, T. E. (2013). “Inelastic collision selection procedures for direct simulation Monte Carlo calculations of gas mixtures.Physics of Fluids (1994–present) 25(10), 106105.
Zhang, C., Valentini, P., and Schwartzentruber, T. E. (2014). “Nonequilibriumdirection- dependent rotational energy model for use in continuum and stochastic molecular simulation.AIAA Journal 52(3), 604–617.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.