Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T06:14:40.788Z Has data issue: false hasContentIssue false

4 - High-throughput multiplexed mitogenomics for Metazoa: prospects and limitations

from Part I - Next Generation Phylogenetics

Published online by Cambridge University Press:  05 June 2016

Peter G. Foster
Affiliation:
The Natural History Museum, London, UK
Maria A. Stalteri
Affiliation:
The Natural History Museum, London, UK
Andrea Waeschenbach
Affiliation:
The Natural History Museum, London, UK
D. Timothy J. Littlewood
Affiliation:
The Natural History Museum, London, UK
Peter D. Olson
Affiliation:
Natural History Museum, London
Joseph Hughes
Affiliation:
University of Glasgow
James A. Cotton
Affiliation:
Wellcome Trust Sanger Institute, Cambridge
Get access

Summary

Introduction

Mitochondrial gene markers have been used in molecular systematics for well over 25 years and they have an established role in resolving phylogenetic and ecological patterns in a multitude of phyla and across a range of taxonomic levels (Randi 2000; Avise 2004). However, there are some problems and limitations in their use; in-depth studies over the last three decades have shown that mitochondrial DNA (mtDNA) is not always inherited clonally through the maternal line, nor is it evolving neutrally (Ballard and Whitlock 2004; Galtier et al. 2009). Also, PCR-based approaches can inadvertently amplify nuclear copies of mitochondrial genes (NUMTs) thus introducing non-homologous signal to datasets (Bensasson et al. 2001). However, for the molecular taxonomist and systematist ‘mtDNA is the most convenient and cheapest solution when a new species has to be genetically explored in the wild’ (Galtier et al. 2009, p. 4541).

Meanwhile, the use of entire mitochondrial genomes (mitogenomes) in systematics has had a varied history since they became available as a tractable source of phylogenetic data. Often met with either enthusiasm or hostility it is clear that their reliability as accurate estimators of species trees has been dependent upon our knowledge of the mitogenomes themselves and how to model the evolutionary signal contained within while accounting for lineage-specific differences in rate heterogeneity and nucleotide composition. Only through denser taxonomic sampling across the Metazoa have mitogenomes become better understood, easier to characterize, and more attractive as a source of homologous markers across multiple levels of organization; from nucleotides to amino acids, from gene content to genetic code and gene order. In order to expand on the known mitogenomes, NGS techniques offer a diversity of methods for fast characterization of novel mitogenomes but, depending on the starting material and the NGS platform, there remain barriers as to which techniques might be most cost-effective and reliable. Here we review recent published studies, report on unpublished work of our own, provide empirical evidence from simulations and cast a critical eye over the prospects and limitations we currently see for reliable use of NGS and high-throughput mitogenome sequencing in the context of systematics and biodiversity studies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abascal, F., Posada, D. and Zardoya, R. (2007). MtArt, a new model of amino acid replacement for Arthropoda. Molecular Biology and Evolution, 24, 1–5.Google ScholarPubMed
Adams, K. L. and Palmer, J. D. (2003). Evolution of mitochondrial gene content, gene loss and transfer to the nucleus. Molecular Phylogenetics and Evolution, 29, 380–95.CrossRefGoogle ScholarPubMed
Arnason, U., Adegoke, J. A., Bodin, K., et al. (2002). Mammalian mitogenomic relationships and the root of the eutherian tree. Proceedings of the National Academy of Sciences of the United States of America, 99, 8151–6.CrossRefGoogle ScholarPubMed
Avise, J. C. (2004). Molecular Markers, Natural History, and Evolution, edn. Sunderland, MA, Sinauer Associates.Google Scholar
Ballard, J. W. O. and Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–44.CrossRefGoogle ScholarPubMed
Balzer, S., Malde, K., Lanzén, A., Sharma, A. and Jonassen, I. (2010). Characteristics of 454 pyrosequencing data: enabling realistic simulation with flowsim. Bioinformatics, 26, i420–5.CrossRefGoogle ScholarPubMed
Bensasson, D., Zhang, D., Hartl, D. L. and Hewitt, G. M. (2001). Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology and Evolution, 16, 314–21.CrossRefGoogle ScholarPubMed
Bernt, M., Braband, A., Schierwater, B. and Stadler, P.F. (2013). Genetic aspects of mitochondrial genome evolution. Molecular Phylogenetics and Evolution, 69, 328–38.CrossRefGoogle ScholarPubMed
Bernt, M., Donath, A, Jühling, F., et al. (2012). MITOS, Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69, 313–9.Google ScholarPubMed
Bernt, M., Merkle, D., Ramsch, K., et al. (2007). CREx, inferring genomic rearrangements based on common intervals. Bioinformatics, 23, 2957–8.CrossRefGoogle ScholarPubMed
Blanchette, M., Kunisawa, T. and Sankoff, D. (1999). Gene order breakpoint evidence in animal mitochondrial phylogeny. Journal of Molecular Evoution, 49, 193–203.Google ScholarPubMed
Boore, J. L. (2006). The use of genome-level characters for phylogenetic reconstruction. Trends in Ecology and Evolution, 21, 439–46.CrossRefGoogle ScholarPubMed
Boore, J. L. and Brown, W. M. (1998). Big trees from little genomes, mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics and Development, 8, 668–74.CrossRefGoogle ScholarPubMed
Breton, S., Stewart, D.T. and Hoeh, W.R. (2010). Characterization of a mitochondrial ORF from the gender-associated mtDNAs of Mytilus spp. (Bivalvia, Mytilidae), identification of the missing ATPase 8 gene. Marine Genomics, 3, 11–18.CrossRefGoogle Scholar
Briggs, A. W., Good, J. M., Green, R. E., et al. (2009). Targeted retrieval and analysis of five neandertal mtDNA genomes. Science, 325, 318–21.CrossRefGoogle ScholarPubMed
Camacho, C., Coulouris, G., Avagyan, V., et al. (2009). BLAST+, architecture and applications. BMC Bioinformatics, 10, 421.CrossRefGoogle ScholarPubMed
Cameron, S. L., Yoshizawa, K., Mizukoshi, A., Whiting, M. F. and Johnson, K. P. (2011). Mitochondrial genome deletions and mini-circles are common in lice (Insecta, Phthiraptera). BMC Genomics, 12, 394.CrossRefGoogle Scholar
Chevreux, B., Wetter, T. and Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology, Proceedings of the German Conference on Bioinformatics (GCB), 99, 45–56.Google Scholar
Collins, R. A. and Cruickshank, R. H. (2013). The seven deadly sins of DNA barcoding. Molecular Ecology Resources, 13, 969–75.Google ScholarPubMed
Cronn, R., Liston, A., Parks, M., et al. (2008). Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Research, 36, e122.CrossRefGoogle ScholarPubMed
de Meo, P. D., D'Antonio, M., Griggio, F., et al. (2012). MitoZoa 2.0, a database resource and search tools for comparative and evolutionary analyses of mitochondrial genomes in Metazoa. Nucleic Acids Research, 40, D1168–D1172.Google Scholar
Dunn, K. A., Jiang, W., Field, C. and Bielawski, J. P. (2013). Improving evolutionary models for mitochondrial protein data with site-class specific amino acid exchangeability matrices. PLoS One, 8, e55816.CrossRefGoogle ScholarPubMed
Foster, P. G., Jermiin, L. S. and Hickey, D. A. (1997). Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. Journal of Molecular Evolution, 44, 282–8.CrossRefGoogle ScholarPubMed
Galtier, N., Nabholz, B., Glémin, S. and Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity, a reappraisal. Molecular Ecology, 18, 4541–50.CrossRefGoogle ScholarPubMed
Groenenberg, D. S. J., Pirovano, W., Gittenberger, E. and Schilthuizen, M. (2012). The complete mitogenome of Cylindrus obtusus (Helicidae, Ariantinae) using Illumina next generation sequencing. BMC Genomics, 13, 114.CrossRefGoogle ScholarPubMed
Hancock-Hanser, B. L., Frey, A., Leslie, M. S., et al. (2013). Targeted multiplex next-generation sequencing: advances in techniques of mitochondrial and nuclear DNA sequencing for population genomics. Molecular Ecology Resources, 13, 254–68.CrossRefGoogle ScholarPubMed
Haran, J., Timmermans, M. J. T. N. and Vogler, A. P. (2013). Mitogenome sequences stabilize the phylogenetics of weevils (Curculionoidea) and establish the monophyly of larval ectophagy. Molecular Phylogenetics and Evolution, 67, 156–66.CrossRefGoogle ScholarPubMed
Hu, M., Jex, A. R., Campbell, B. E. and Gasser, R. B. (2007). Long PCR amplification of the entire mitochondrial genome from individual helminths for direct sequencing. Nature Protocols, 2, 2339–44.CrossRefGoogle ScholarPubMed
Huang, X. and Madan, A. (1999). CAP3, A DNA sequence assembly program. Genome Research, 9, 868–77.CrossRefGoogle ScholarPubMed
Iwasaki, W., Fukunaga, T., Isagozawa, R., et al. (2013). MitoFish and MitoAnnotator, a mitochondrial genome database of fish with an accurate and automatic annotation pipeline. Molecular Biology and Evolution, 30, 2531–40.CrossRefGoogle ScholarPubMed
Jex, A. R., Hall, R. S., Littlewood, D. T. J. and Gasser, R. B. (2010a). An integrated pipeline for next-generation sequencing and annotation of mitochondrial genomes. Nucleic Acids Research, 38, 522–33.CrossRefGoogle ScholarPubMed
Jex, A. R., Hu, M., Littlewood, D. T. J., Waeschenbach, A. and Gasser, R. B. (2008). Using 454 technology for long-PCR based sequencing of the complete mitochondrial genome from single Haemonchus contortus (Nematoda). BMC Genomics, 9, 11.CrossRefGoogle Scholar
Jex, A. R., Littlewood, D. T. J. and Gasser, R. B. (2010b). Toward next-generation sequencing of mitochondrial genomes: focus on parasitic worms of animals and biotechnological implications. Biotechnology Advances, 28, 151–9.Google ScholarPubMed
Jia, W.-Z., Yan, H.-B., Guo, A.-J., et al. (2010). Complete mitochondrial genomes of Taenia multiceps, T. hydatigena and T. pisiformis, additional molecular markers for a tapeworm genus of human and animal health significance. BMC Genomics, 11, 447.CrossRefGoogle Scholar
Jia, W., Yan, H., Lou, Z., et al. (2012). Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Tropica, 123, 154–63.CrossRefGoogle ScholarPubMed
Kilpert, F., Held, C. and Podsiadlowski, L. (2012). Multiple rearrangements in mitochondrial genomes of Isopoda and phylogenetic implications. Molecular Phylogenetics and Evolution, 64, 106–17.CrossRefGoogle ScholarPubMed
Lavrov, D. V. and Lang, B. F. (2005). Poriferan mtDNA and animal phylogeny based on mitochondrial gene arrangements. Systematic Biology, 54, 651–9.CrossRefGoogle ScholarPubMed
Le, T. H., Blair, D., Agatsuma, T., et al. (2000). Phylogenies inferred from mitochondrial gene orders: a cautionary tale from the parasitic flatworms. Molecular Biology and Evolution, 17, 1123–5.CrossRefGoogle ScholarPubMed
Lloyd, R. E., Foster, P. G., Guille, M. and Littlewood, D. T. J. (2012). Next generation sequencing and comparative analyses of Xenopus mitogenomes. BMC Genomics, 13, 496.CrossRefGoogle ScholarPubMed
Lupi, R., de Meo, P. D., Picardi, E., et al. (2010). MitoZoa, a curated mitochondrial genome database of metazoans for comparative genomics studies. Mitochondrion, 10, 192–9.CrossRefGoogle ScholarPubMed
Margulies, M., Egholm, M., Altman, W. E., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–80.CrossRefGoogle ScholarPubMed
Maricic, T., Whitten, M. and Pääbo, S. (2010). Multiplexed DNA sequence capture of mitochondrial genomes using PCR products. PLoS One, 5, e14004.CrossRefGoogle ScholarPubMed
Meyer, C. P. and Paulay, G. (2005). DNA barcoding, error rates based on comprehensive sampling. PLoS Biol, 3, e422.CrossRefGoogle ScholarPubMed
Meyer, M., Stenzel, U., Myles, S., et al. (2007). Targeted high-throughput sequencing of tagged nucleic acid samples. Nucleic Acids Research, 35, e97.CrossRefGoogle ScholarPubMed
Mikkelsen, M., Rockenbauer, E., Wächter, A., et al. (2009). Application of full mitochondrial genome sequencing using 454 GS FLX pyrosequencing. Forensic Science International Genetics Supplement Series, 2, 518–19.CrossRefGoogle Scholar
Miya, M. and Nishida, M. (1999). Organization of the mitochondrial genome of a deep-sea fish Gonostoma gracile (Teleostei, Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Marine Biotechnology, 1, 41626.CrossRefGoogle ScholarPubMed
Miya, M., Takeshima, H., Endo, H., et al. (2003). Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 26, 121–38.CrossRefGoogle ScholarPubMed
Nagarajan, N. and Pop, M. (2013). Sequence assembly demystified. Nature Reviews Genetics, 14, 157–67.CrossRefGoogle ScholarPubMed
Pacheco, M. A., Battistuzzi, F. U., Lentino, M., et al. (2011). Evolution of modern birds revealed by mitogenomics, timing the radiation and origin of major orders. Molecular Biology and Evolution, 28, 1927–42.CrossRefGoogle ScholarPubMed
Perseke, M., Golombek, A., Schlegel, M. and Struck, T. H. (2013). The impact of mitochondrial genome analyses on the understanding of deuterostome phylogeny. Molecular Phylogenetics and Evolution, 66, 898–905.CrossRefGoogle ScholarPubMed
Philippe, H. and Roure, B. (2011). Difficult phylogenetic questions, more data, maybe; better methods, certainly. BMC Biology, 9, 91.CrossRefGoogle ScholarPubMed
Piry, S., Guivier, E., Realini, A. and Martin, J.-F. (2012). |SE|S|AM|E| Barcode, NGS-oriented software for amplicon characterization: application to species and environmental barcoding. Molecular Ecology Resources, 12, 1151–7.CrossRefGoogle ScholarPubMed
Podsiadlowski, L., Braband, A., Struck, T. H., von Döhren, J. and Bartolomaeus, T. (2009). Phylogeny and mitochondrial gene order variation in Lophotrochozoa in the light of new mitogenomic data from Nemertea. BMC Genomics, 10, 364.CrossRefGoogle ScholarPubMed
Quince, C., Lanzen, A., Davenport, R. J. and Turnbaugh, P. J. (2011). Removing noise from pyrosequenced amplicons. BMC Bioinformatics, 12, 38.CrossRefGoogle ScholarPubMed
Randi, E. (2000). Mitochondrial DNA. In Molecular Methods in Ecology, ed. Baker, A. J.. London, Blackwell Science; pp. 136–67.Google Scholar
Rota-Stabelli, O., Yang, Z. and Telford, M. J. (2009). MtZoa, a general mitochondrial amino acid substitutions model for animal evolutionary studies. Molecular Phylogenetics and Evolution, 52, 268–72.CrossRefGoogle ScholarPubMed
Rubinoff, D., Cameron, S. and Will, K. (2006). A genomic perspective on the shortcomings of mitochondrial DNA for “barcoding” identification. Journal of Heredity, 97, 581–94.CrossRefGoogle ScholarPubMed
Rubinstein, N.D., Feldstein, T., Shenkar, N., et al. (2013). Deep sequencing of mixed total DNA without barcodes allows efficient assembly of highly plastic ascidian mitochondrial genomes. Genome Biology and Evolution, 5, 1185–99.CrossRefGoogle ScholarPubMed
Shao, Z., Graf, S., Chaga, O. Y. and Lavrov, D. V. (2006). Mitochondrial genome of the moon jelly Aurelia aurita (Cnidaria, Scyphozoa): a linear DNA molecule encoding a putative DNA-dependent DNA polymerase. Gene, 381, 92–101.CrossRefGoogle ScholarPubMed
Shen, H., Braband, A. and Scholtz, G. (2013). Mitogenomic analysis of decapod crustacean phylogeny corroborates traditional views on their relationships. Molecular Phylogenetics and Evolution, 66, 776–89.CrossRefGoogle ScholarPubMed
Smith, D. R., Kayal, E., Yanagihara, A. A., et al. (2012). First complete mitochondrial genome sequence from a box jellyfish reveals a highly fragmented linear architecture and insights into telomere evolution. Genome Biology and Evolution, 4, 52–8.CrossRefGoogle ScholarPubMed
Stöger, I. and Schrödl, M. (2012). Mitogenomics does not resolve deep molluscan relationships (yet?). Molecular Phylogenetics and Evolution, 69, 376–92.Google Scholar
Suga, K., Welch, D. B. M., Tanaka, Y., Sakakura, Y. and Hagiwara, A. (2008). Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis.Molecular Biology and Evolution, 25, 1129–1137.CrossRefGoogle ScholarPubMed
Telford, M. J., Herniou, E. A., Russell, R. B. and Littlewood, D. T. J. (2000). Changes in mitochondrial genetic codes as phylogenetic characters, two examples from the flatworms. Proceedings of the National Academy of Sciences of the United States of America, 97, 11359–64.CrossRefGoogle ScholarPubMed
Timmermans, M. J., Dodsworth, S., Culverwell, C., et al. (2010). Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics. Nucleic Acids Research, 38, e197–e197.CrossRefGoogle ScholarPubMed
Waeschenbach, A., Porter, J. S. and Hughes, R. N. (2012). Molecular variability in the Celleporella hyalina (Bryozoa; Cheilostomata) species complex: evidence for cryptic speciation from complete mitochondrial genomes. Molecular Biology Reports, 39, 8601–14.CrossRefGoogle ScholarPubMed
Watanabe, K. I., Bessho, Y., Kawasaki, M. and Hori, H. (1999). Mitochondrial genes are found on minicircle DNA molecules in the mesozoan animal Dicyema. Journal of Molecular Biology, 286, 645–50.CrossRefGoogle ScholarPubMed
Webster, B. L. and Littlewood, D. T. J. (2012). Mitochondrial gene order change in Schistosoma (Platyhelminthes, Digenea, Schistosomatidae). International Journal of Parasitology, 42, 313–21.CrossRefGoogle Scholar
Wey-Fabrizius, A. R., Podsiadlowski, L., Herlyn, H. and Hankeln, T. (2012). Platyzoan mitochondrial genomes. Molecular Phylogenetics and Evolution, 69, 365–75.Google ScholarPubMed
Wyman, S. K., Jansen, R. K. and Boore, J. L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics, 20, 3252–5.CrossRefGoogle ScholarPubMed
Yang, C.-H., Chang, H.-W., Ho, C.-H., Chou, Y.-C. and Chuang, L.-Y. (2011). Conserved PCR primer set designing for closely-related species to complete mitochondrial genome sequencing using a sliding window-based PSO algorithm. PLoS One, 6, e17729.CrossRefGoogle ScholarPubMed
Yang, Z., Nielsen, R. and Hasegawa, M. (1998). Models of amino acid substitution and applications to mitochondrial protein evolution. Molecular Biology and Evolution, 15, 1600–11.CrossRefGoogle ScholarPubMed
Zhang, W., Cui, H. and Wong, L.-J. C. (2012). Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clinical Chemistry, 58, 1322–31.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×