Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: February 2018

19 - On the quasi-isometric classification of locally compact groups

[1] H., Abels. Specker-Kompaktifizierungen von lokal kompakten topologischen Gruppen. (German) Math. Z. 135 (1973/74), 325–361.
[2] H., Abels. On a problem of Freudenthal's. Comp. Math. 35(1977), no. 1, 39–47.
[3] S., Antonyan. Characterizing maximal compact subgroups. Arch. Math. 98 (2012), no. 6, 555–560.
[4] H., Bass and R., Kulkarni. Uniform tree lattices. J. Amer. Math. Soc. 3 (1990), 843–902.
[5] B., Bekka, P., de la Harpe and A., Valette. Kazhdan's Property (T). New Math. Monographs 11, Cambridge Univ. Press, Cambridge, 2008.
[6] S., Buyalo and V., Schroeder. Elements of asymptotic geometry. European Math. Soc. 2007.
[7] P-E., Caprace, Y., Cornulier, N., Monod and R., Tessera. Amenable hyperbolic groups. J. Eur. Math. Soc. (JEMS) 17 (2015), no. 11, 2903–2947.
[8] M., Carette. Commability of groups quasi-isometric to trees. ArXiv math/1312.0278 (2013).
[9] M., Carrasco Piaggio. Orlicz spaces and the large scale geometry of Heintze groups. Math. Ann. 368 (2017), no. 1-2, 433–481.
[10] A., Casson and D., Jungreis. Convergence groups and Seifert fibered 3-manifolds. Inv. Math. 118 (1994), no. 1, 441–456.
[11] R., Chow. Groups quasi-isometric to complex hyperbolic space. Trans. Amer. Math. Soc. 348 (1996), 1757–1770.
[12] Y., Cornulier. Dimension of asymptotic cones of Lie groups. Journal of Topology 1 (2008), 342–361.
[13] Y., Cornulier. Commability and focal locally compact groups. Indiana Univ. Math. J. 64(1) (2015), 115–150.
[14] Y., Cornulier and P., de la Harpe. Metric geometry of locally compact groups. EMS Tracts in Mathematics, 25. European Mathematical Society (EMS), Zürich, 2016.
[15] Y., Cornulier and R., Tessera. Contracting automorphisms and Lp-cohomology in degree one. Ark. Mat. 49 (2011), no. 2, 295–324.
[16] W., Dicks and M., Dunwoody. Groups acting on graphs. Cambridge University Press, Cambridge, 1989.
[17] M.J., Dunwoody. The accessibility of finitely presented groups. Inventiones Mathematicae 81 (1985), no. 3, 449–457.
[18] M.J., Dunwoody. An inaccessible group. Geometric group theory, Vol. 1 (Sussex, 1991), pp. 75–78, London Math. Soc. Lecture Note Ser., 181, Cambridge University Press, Cambridge, 1993.
[19] T., Dymarz. Quasisymmetric maps of boundaries of amenable hyperbolic groups. Indiana Univ. Math. J. 63(2), (2014), 329–343.
[20] B., Farb and L., Mosher. Problems on the geometry of finitely generated solvable groups. In “Crystallographic Groups and their Generalizations (Kortrijk, 1999)”, Cont. Math. 262, Amer. Math. Soc. (2000).
[21] K., Fujiwara and K., Whyte. A note on spaces of asymptotic dimension one. Algebr. Geom. Topol. 7 (2007), 1063–1070.
[22] D., Gabai. Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992), no. 3, 447–510.
[23] C. S., Gordon and E. N., Wilson. Isometry groups of Riemannian solvmanifolds. Trans. Amer. Math. Soc. 307 (1988), no. 1, 245–269.
[24] W., de Graaf. Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. Journal of Algebra 309 (2007), 640–653.
[25] M., Gromov. Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, (1987), 75–263.
[26] U., Hamenstädt. Theorie von Carnot-Carathéodory Metriken und ihren Anwendungen, Dissertation, Rheinische Friedrich-Wilhelms-Univ. Bonn, 1986. Bonner Mathematische Schriften 180, 1987.
[27] E., Heintze. On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23–34.
[28] A., Hinkkanen. The structure of certain quasisymmetric groups. Mem. Amer. Math. Soc. 83 (1990), no. 422.
[29] C.H., Houghton. Ends of locally compact groups and their coset spaces. J. Australian Math. Soc. 17, 274–284.
[30] I., Kapovich and N., Benakli. Boundaries of hyperbolic groups. In: Combinatorial and geometric group theory (New York, 2000/Hoboken, NJ, 2001), 39–93, Contemp. Math. 296, Amer. Math. Soc., Providence, RI, 2002.
[31] B., Kleiner and B., Leeb. Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings. Publ. Math. IHES 86 (1997), no. 1, 115–197.
[32] B., Kleiner and B., Leeb. Induced quasi-actions: A remark. Proc. Amer. Math. Soc. 137 (2009), 1561–1567.
[33] J-L., Koszul. Lectures on group of transformations. Tata Institute of Fundamental Research, 1965.
[34] B., Krön and R., Möller. Analogues of Cayley graphs for topological groups. Math. Z. 258 (2008), no. 3, 637–675.
[35] V., Losert. On the structure of groups with polynomial growth. Math. Z. 195 (1987), 109–117.
[36] L., Magnin. Adjoint and trivial cohomologies of nilpotent complex Lie algebras of dimension ≤ 7. Int. J. Math. Math. Sci. 2008, Art. ID 805305, 12 pp.
[37] N., Monod. Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, vol. 1758, Springer-Verlag, Berlin, 2001.
[38] D., Montgomery and L., Zippin, Topological transformation groups, New York, Interscience Publishers, Inc., 1955.
[39] L., Mosher, M., Sageev and K., Whyte. Maximally symmetric trees. Geom. Dedicata 92(1) (2002), 195–233.
[40] L., Mosher, M., Sageev and K., Whyte. Quasi-actions on trees I. Bounded valence. Ann. of Math. 158 (2003), 115–164.
[41] L., Mosher, M., Sageev and K., Whyte. Quasi-actions on trees II: Finite depth Bass–Serre trees. Mem. Amer. Math. Soc. 214 (2011), no. 1008.
[42] G., Mostow. Self-adjoint groups. Ann. of Math. 62(1) (1955), 44–55.
[43] G., Mostow. Quasi-conformal mappings in n-space and the rigidity of the hyperbolic space forms. Publ. Math. IHES 34 (1968), 53–104.
[44] P., Pansu. Croissance des boules et des géodésiques fermées dans les nilvariétés. Ergodic Theory Dynam. Systems 3 (1983), no. 3, 415–445.
[45] P., Pansu. Dimension conforme et sph`ere à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), no. 2, 177–212.
[46] P., Pansu. Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (1989), 1–60.
[47] P., Pansu. Cohomologie Lp en degré 1 des espaces homog`enes. Potential Anal. 27 (2007), 151–165.
[48] J., Roe. Coarse cohomology and index theory on complete manifolds. Mem. Amer. Math. Soc. 104, 1993.
[49] R., Sauer. Homological invariants and quasi-isometry. Geom. Funct. Anal. 16(2) (2006), 476–515.
[50] J-P., Serre, Arbres, amalgames, SL2. Astérisque 46, Soc. Math. France 1977.
[51] Y., Shalom. Harmonic analysis, cohomology, and the large-scale geometry of amenable groups. Acta Math. 192 (2004), 119–185.
[52] N., Shanmugalingam and Xiangdong, Xie. A rigidity property of some negatively curved solvable Lie groups. Comment. Math. Helv. 87(4) (2012), 805–823.
[53] E., Specker. Endenverbande von Raumen und Gruppen. Math. Ann. 122 (1950), 167–174.
[54] J., Stallings. On torsion free groups with infinitely many ends. Ann. of Math. 88 (1968) 312–334.
[55] R., Tessera. Large scale Sobolev inequalities on metric measure spaces and applications. Rev. Mat. Iberoam. 24 (2008), no. 3, 825–864.
[56] R., Tessera. Vanishing of the first reduced cohomology with values in a Lprepresentation. Ann. Inst. Fourier 59 no. 2 (2009), 851–876.
[57] C., Thomassen and W., Woess. Vertex-transitive graphs and accessibility. J. Combin. Theory, Ser. B 58 (1993), no. 2, 248–268.
[58] P., Tukia. On quasiconformal groups. Journal d'Analyse Mathématique 46 (1986), no. 1, 318–346.
[59] P., Tukia. Homeomorphic conjugates of Fuchsian groups. Journal für die reine und angewandte Mathematik (Crelles Journal) 391 (1988), 1–54.
[60] K., Whyte. Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture. Duke Math. J. 99 (1999), no. 1, 93–112.
[61] K., Whyte. The large scale geometry of the higher Baumslag–Solitar groups. Geom. Funct. Anal. 11(6) (2001), 1327–1343.
[62] Xiangdong, Xie. Quasisymmetric maps on the boundary of a negatively curved solvable Lie group. Math. Ann. 353(3) (2012), 727–746.
[63] Xiangdong, Xie. Large scale geometry of negatively curved RnR. Geom. Topol. 18 (2014), 831–872.