Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T16:15:42.188Z Has data issue: false hasContentIssue false

2 - Long-Term Potentiation in the Amygdala: Implications for Memory

Published online by Cambridge University Press:  13 October 2009

Get access

Summary

SUMMARY

Since the discovery that neurons connect to each other via synapses, it has been hypothesized that experience leads to modifications in these connections, and that memory is embodied in these changes. Application of the cellular-connection approach to the study of the plasticity of defense responses to sensory cues has proved to be a particularly fruitful means of studying the relation of learning to changes in synaptic transmission – first in Aplysia, and, more recently, in studies of classical fear conditioning in the rodent. The discovery of artificial means of inducing neural plasticity (longterm potentiation, LTP) has added an important tool for the examination of plasticity mechanisms in specific pathways identified through the successful application of the cellular-connection approach. The demonstration that sensory pathways to the amygdala critical for fear conditioning are susceptible to LTP induction has led to examination of the mechanisms underlying LTP in the amygdala, the ability of these mechanisms to modulate sensory transmission, and their relation to the learning-induced changes in sensoryevoked neural activity that accompany fear conditioning.

Introduction

Learning refers to the acquisition of new information about the world and memory to the storage of that information over time. In his Croonian lecture to the Royal Society in 1894, Ramon y Cajal suggested that learning involves alterations in the strength of connections between neurons, and that these alterations in synaptic strength might persist and underlie memory storage. Although subsequent demonstrations that certain synapses are capable of undergoing functional modification were not uncommon (e.g., Eccles, 1964), such changes were short lasting and not clearly related to the acquisition and storage of information.

Type
Chapter
Information
Neuronal Mechanisms of Memory Formation
Concepts of Long-term Potentiation and Beyond
, pp. 58 - 76
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×