Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T22:42:56.696Z Has data issue: false hasContentIssue false

11 - Prospects and Problems in the Search for Genetic Influences on Neurodevelopment and Psychopathology: Application to Childhood Disruptive Disorders

Published online by Cambridge University Press:  10 August 2009

Irwin D. Waldman
Affiliation:
Department of Psychology, Emory University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

For some time, psychopathology researchers have attempted to disentangle genetic and environmental influences on psychopathology and to characterize the nature and magnitude of each of these influences. It is easy to lose sight of the fact that this represents considerable progress, as recognition of the contribution of behavior genetic approaches to understanding the etiology of psychopathology is a fairly recent event, and it was not that long ago that behavior genetic studies and findings were met with incredulity and opposition bordering on the fanatical. Nonetheless, the landmark adoption studies of the 1960s and 1970s, and the subsequent large-scale twin studies of the 1970s and 1980s, furnished strong evidence for substantial genetic influences on most forms of major adult psychopathology, including schizophrenia spectrum disorders (e.g., Kendler & Robinette, 1983; Kety, Rosenthal, Wender, & Schulsinger, 1968), bipolar and unipolar depression (Kendler et al., 1994; McGuffin, & Katz, 1989), and the anxiety disorders (Kendler et al., 1992a, 1992b). More recently, researchers have utilized molecular genetic approaches in a search for specific genes that contribute to the etiology of numerous forms of psychopathology. The recent sequencing of the human genome will only intensify this search, and brings with it considerable prospects and formidable problems.

In this chapter, I intend to briefly explicate a number of behavioral and molecular genetic research strategies that may aid in our understanding of the etiology and neurodevelopmental basis of psychopathology, particularly in the search for genetic influences and the characterization of these in terms of the neurodevelopmental mechanisms that they code for.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accili, D., Fishburn, C. S., Drago, J., Steiner, H., Lachowicz, J. E., Park, B. H., Gauda, E. B., Lee, E. J., Cool, M. H., Sibley, D. R., Gerfen, C. R., Westphal, H., & Fuchs, S. (1996). A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proceedings of the National Academy of Sciences, 93, 1945–1949CrossRefGoogle ScholarPubMed
Allison, D. B. (1997). Transmission Disequilibrium Tests for continuous variables. American Journal of Human Genetics, 60, 676–690Google Scholar
Arolt, V., Lencer, R., Nolte, A., Muller-Myhsok, B., Purmann, S., Schurmann, M., Leutelt, J., Pinnow, M., & Schwinger, E. (1996). Eye tracking dysfunction is a putative phenotypic susceptibility marker of schizophrenia and maps to a locus on chromosome 6p in families with multiple occurrence of the disease. American Journal of Medical Genetics, 67, 564–5793.0.CO;2-R>CrossRefGoogle ScholarPubMed
Barr, C. L., Xu, C., Kroft, J., Feng, Y., Wigg, K., Zai, G., Tannock, R., Schachar, R., Malone, M., Roberts, W., Nothen, M. M., Grunhage, F., Vandenbergh, D. J., Uhl, G., Sunohara, G., King, N., & Kennedy, J. L. (2001). Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder. Biological Psychiatry, 49, 333–339CrossRefGoogle ScholarPubMed
Barr, C. L., Wigg, K. G., Bloom, S., Schachar, R., Tannock, R., Roberts, W., Malone, M., & Kennedy, J. L. (2000). Further evidence from haplotype analysis for linkage of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder. American Journal of Medical Genetics, 96, 262–2673.0.CO;2-8>CrossRefGoogle ScholarPubMed
Bennett, S. T., & Todd, J. A. (1996). Human type 1 diabetes and the insulin gene: Principles of mapping polygenes. Annual Review of Genetics, 30, 343–370CrossRefGoogle ScholarPubMed
Biederman, J., & Spencer, T. (1999). Attention-deficit/hyperactivity disorder (ADHD) as a noradrenergic disorder. Biological Psychiatry, 46, 1234–1242CrossRefGoogle Scholar
Bryk, A., & Raudenbush, S. (1992). Hierarchical linear models for social and behavioral research: Applications and data analysis methods. Newbury Park, Calif.: Sage Publications
Brzustowicz, L. M., Honer, W. G., Chow, E. W., Hogan, J., Hodgkinson, K., & Bassett, A. S. (1997). Use of a quantitative trait to map a locus associated with severity of positive symptoms in familial schizophrenia to chromosome 6p. American Journal of Human Genetics, 61, 1388-1396CrossRefGoogle ScholarPubMed
Cardon, L. R., & Fulker, D. W. (1994). The power of interval mapping of quantitative trait loci, using selected sib pairs. American Journal of Human Genetics, 55, 825–833Google ScholarPubMed
Chakravarti, A. (1999). Population genetics – making sense out of sequence. Nature Genetics, 21, 56–60CrossRefGoogle ScholarPubMed
Cicchetti, D. (1993). Developmental psychopathology: Reactions, reflections, projections. Developmental Review, 13, 471–502CrossRefGoogle Scholar
Cicchetti, D., & Richters, J. E. (1993). Developmental considerations in the investigation of conduct disorder. Development and Psychopathology, 5, 331–344CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (1996). Equifinality and multifinality in developmental psychopathology. Development and Psychopathology, 8, 597–600CrossRefGoogle Scholar
Cicchetti, D., & Rogosch, F. A. (1999). Conceptual and methodological issues in developmental psychopathology research. In P. C. Kendall, J. N. Butcher, & G. N. Holmbeck (Eds.), Handbook of research methods in clinical psychology (pp. 433–465). New York: Wiley
Cicchetti, D., Rogosch, F. A., Lynch, M., & Holt, K. (1993). Resilience in maltreated children: Processes leading to adaptive outcome. Development and Psychopathology, 5, 629–647CrossRefGoogle Scholar
Cook, E. H.., Stein, M. A., Krasowski, M. D., Cox, N. J., Olkon, D. M., Kieffer, J. E., & Leventhal, B. L. (1995). Association of Attention-Deficit Disorder and the dopamine transporter gene. American Journal of Human Genetics, 56, 993–998Google ScholarPubMed
Cox, N. J., Frigge, M., Nicolae, D. L., Concannon, P., Hanis, C. L., Bell, G. I., & Kong, A. (1999). Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans. Nature Genetics, 21, 213–215CrossRefGoogle ScholarPubMed
Crowe, R. R. (1993). Candidate genes in psychiatry: an epidemiological perspective. American Journal of Medical Genetics, 48, 74–77CrossRefGoogle ScholarPubMed
Daly, G., Hawi, Z., Fitzgerald, M., & Gill, M. (1999). Mapping susceptibility loci in Attention Deficit Hyperactivity Disorder: Preferential transmission of parental alleles at DAT1, DBH, and DRD5 to affected children. Molecular Psychiatry, 4, 192–196CrossRefGoogle ScholarPubMed
Deater-Deckard, K., & Plomin, R. (1999). An adoption study of etiology of teacher and parent reports of externalizing behavior problems in middle childhood. Child Development, 70, 144–154CrossRefGoogle ScholarPubMed
Dolan, C. V., & Boomsma, D. I. (1998). Optimal selection of sib pairs from random samples for linkage analysis of a QTL using the EDAC test. Behavior Genetics, 28, 197–206CrossRefGoogle ScholarPubMed
Dulawa, S. C., Grandy, D. K., Low, M. J., Paulus, M. P., & Geyer, M. A. (1999). Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. Journal of Neuroscience, 19, 9550–9556CrossRefGoogle ScholarPubMed
Eaves, L. J., & Meyer, J. (1994). Locating human quantitative trait loci: Guidelines for the selection of sibling pairs for genotyping. Behavior Genetics, 24, 443–455CrossRefGoogle ScholarPubMed
Eaves, L. J., Silberg, J. L., Meyer, J. M., Maes, H. H., Simonoff, E., Pickles, A., Rutter, M., Neale, M. C., Reynolds, C. A., Erikson, M. T., Heath, A. C., Loeber, R., Truett, K. R., & Hewitt, J. K. (1997). Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development. Journal of Child Psychology and Psychiatry, 38, 965–980CrossRefGoogle ScholarPubMed
Falk, C. T., & Rubenstein, P. (1987). Haplotype relative risk: an easy reliable way to construct a proper control sample for risk calculations. Annals of Human Genetics, 51 227–233CrossRefGoogle ScholarPubMed
Faraone, S. V., Doyle, A. E., Mick, E., & Biederman, J. (2001). Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. American Journal of Psychiatry, 158, 1052–1057CrossRefGoogle ScholarPubMed
Ge, X., Conger, R. D., Cadoret, R. J., Neiderhiser, J. M., et al. (1996). The developmental interface between nature and nurture: A mutual influence model of child antisocial behavior and parent behaviors. Developmental Psychology, 32, 574–589CrossRefGoogle Scholar
Gill, M., Daly, G., Heron, S., Hawi, Z., & Fitzgerald, M. (1997). Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism. Molecular Psychiatry, 2, 311–313CrossRefGoogle Scholar
Giros, B., Jaber, M., Jones, S. R., Wightman, R. M., & Caron, M. G. (1996). Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature, 379, 606–612CrossRefGoogle ScholarPubMed
Gu, C., Todorov, A., & Rao, D. C. (1996). Combining extremely concordant sib pairs with extremely discordant sib pairs provides a cost effective way to perform linkage analysis of quantitative trait loci. Genetic Epidemiology, 13, 513–5333.0.CO;2-1>CrossRefGoogle Scholar
Jöreskog, K. G., & Sörbom, D. (1993). LISREL VIII: User's guide. Chicago: Scientific Software
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992a). Generalized anxiety disorder in women: A population-based twin study. Archives of General Psychiatry, 49, 267–272CrossRefGoogle Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1992b). The genetic epidemiology of phobias in women: The interrelationship of agoraphobia, situational phobia, and simple phobia. Archives of General Psychiatry, 49, 273–281CrossRefGoogle Scholar
Kendler, K. K., & Robinette, C. D. (1983). Schizophrenia in the National Academy of Sciences-National Research Council Twin Registry: A 16-year update. American Journal of Psychiatry, 140, 1551–1563Google ScholarPubMed
Kendler, K. S., Walters, E. E., Truett, K. R., Heath, A. C., Neale, M. C., Martin, N. G., & Eaves, L. J. (1994). Sources of individual differences in depressive symptoms: Analysis of two samples of twins and their families. American Journal of Psychiatry, 151, 1605–1614Google ScholarPubMed
Kety, S. S., Rosenthal, D., Wender, P. H., & Schulsinger, F. (1968). The types and prevalence of mental illness in the biological and adoptive families of adopted schizophrenics. Journal of Psychiatric Research, 6, 345–362CrossRefGoogle Scholar
Kidd, K. K. (1993). Associations of disease with genetic markers: deja vu all over again. American Journal of Medical Genetics, 48, 71–73CrossRefGoogle Scholar
Kuntsi, J., & Stevenson, J. (2001). Psychological mechanisms in hyperactivity: II. The role of genetic factors. Journal of Child Psychology and Psychiatry, 42, 211–219CrossRefGoogle ScholarPubMed
LaHoste, G. J., Swanson, J. M., Wigal, S. B., Glabe, C., Wigal, T., King, N., & Kennedy, J. L. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Molecular Psychiatry, 1, 121–124Google ScholarPubMed
Lander, E. S., & Schork, N. S. (1994). Genetic dissection of complex traits. Science, 265, 2037–2048CrossRefGoogle ScholarPubMed
Levy, F. (1991). The dopamine theory of attention deficit hyperactivity disorder (ADHD). Australian & New Zealand Journal of Psychiatry, 25, 277–283CrossRefGoogle Scholar
Levy, F., Hay, D., McStephen, M., Wood, C., & Waldman, I. D. (1997). Attention-deficit hyperactivity disorder: A category or a continuum? Genetic analysis of a large-scale twin study. Journal of the American Academy of Child and Adolescent Psychiatry, 36, 737–744CrossRefGoogle ScholarPubMed
Li, T., Ball, D., Zhao, J., Murray, R. M., Liu, X., Sham, P. C., & Collier, D. A. (2000). Family-based linkage disequilibrium mapping using SNP marker haplotypes: application to a potential locus for schizophrenia at chromosome 22q11. Molecular Psychiatry, 5, 77–84CrossRefGoogle ScholarPubMed
Loehlin, J. C. (1996). The Cholesky approach: A cautionary note. Behavior Genetics, 26, 65–69CrossRefGoogle Scholar
Masten, A., & Coatsworth, J. D. (1998). The development of competence in favorable and unfavorable environments: Lessons from research on successful children. American Psychologist, 53, 205–220CrossRefGoogle ScholarPubMed
McArdle, J. J. (1986). Latent variable growth within behavior genetic models. Behavior Genetics, 16, 163–200CrossRefGoogle ScholarPubMed
McGuffin, P., & Katz, R. (1989). The genetics of depression and manic-depressive illness. British Journal of Psychiatry, 155, 294–304CrossRefGoogle Scholar
Mill, J. S., Caspi, A., McClay, J., Sugden, K., Purcell, S., Asherson, P., Craig, I., McGuffin, P., Braithwaite, A., Poulton, R., & Moffitt, T. E. (2001). The dopamine D4 receptor and the hyperactivity phenotype: A developmental-epidemiological study. Manuscript submitted for publication
Morris, D. W., Robinson, L., Turic, D., Duke, M., Webb, V., Milham, C., Hopkin, E., Pound, K., Fernando, S., Easton, M., Hamshere, M., Williams, N., McGuffin, P., Stevenson, J., Krawczak, M., Owen, M. J., O'Donovan, M. C., & Williams, J. (2000). Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Human Molecular Genetics, 9, 843–848CrossRefGoogle ScholarPubMed
Nadder, T. S., Silberg, J. L., Eaves, L. J., Maes, H. H., & Meyer, J. M. (1998). Genetic effects on ADHD symptomatology: Results from a telephone survey. Behavior Genetics, 28, 83–99CrossRefGoogle ScholarPubMed
Neale, M. C. (1996). MX Software. Richmond: Virginia Commonwealth University
Neale, M. C., & Cardon, L. R. (1992). Methodology for genetic studies of twins and families. Dordrecht: Kluwer Academic Publishers
Nigg, J. T. (2001). Is ADHD an inhibitory disorder? Psychological Bulletin, 127, 571–598CrossRefGoogle ScholarPubMed
Nigg, J. T., Blaskey, L. G., Huang-Pollock, C. L., & Rappley, M. D. (in press). Neuropsychological executive functions and DSM-IV ADHD subtypes. Journal of the American Academy of Child and Adolescent PsychiatryGoogle Scholar
Pennington, B. F., & Ozonoff, S. (1996). Executive functions and developmental psychopathology. Journal of Child Psychology and Psychiatry, 37, 51–87CrossRefGoogle ScholarPubMed
Pliszka, S. R., McCracken, J. T., & Maas, J. W. (1996). Catecholamines in attention-deficit hyperactivity disorder: current perspectives. Journal of the American Academy of Child & Adolescent Psychiatry, 35, 264–272CrossRefGoogle ScholarPubMed
Plomin, R., & Crabbe, J. C. (2000). DNA. Psychological Bulletin, 126, 806–828CrossRefGoogle ScholarPubMed
Plomin, R., & Rutter, M. (1998). Child development, molecular genetics, and what to do with genes once they are found. Child Development, 69, 1223–1242CrossRefGoogle Scholar
Rabinowitz, D. (1997). A transmission/disequilibrium test for quantitative trait loci. Human Heredity, 47, 342–350CrossRefGoogle Scholar
Rende, R., & Plomin, R. (1995). Nature, nurture, and the development of psychopathology. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology: Vol. 1. Theory and methods (pp. 291–314). New York: Wiley
Rende, R. D., Plomin, R., Reiss, D., & Hetherington, E. M. (1993). Genetic and environmental influences on depressive symptomatology in adolescence: Individual differences and extreme scores. Journal of Child Psychology and Psychiatry, 34, 1387–1398CrossRefGoogle ScholarPubMed
Rhee, S. H., Feigon, S. A., Bar, J. L., Hadeishi, Y., & Waldman, I. D. (2001). Behavior genetic approaches to psychopathology. In Adams, H. (Ed.), Handbook of psychopathology, 3rd ed. New York: Wiley
Rhee, S. H., & Waldman, I. D. (2002). Genetic and environmental influences on antisocial behavior: A meta-analysis of twin and adoption studies. Psychological Bulletin, 128, 490–529CrossRefGoogle ScholarPubMed
Rhee, S. H., Waldman, I. D., Hay, D. A., & Levy, F. (1999). Sex differences in genetic and environmental influences on DSM-III-R Attention Deficit Hyperactivity Disorder (ADHD). Journal of Abnormal Psychology, 108, 24–41CrossRefGoogle Scholar
Rice, J. P., Neuman, R. J., Hoshaw, S. L., Daw, E. W., & Gu, C. (1995). TDT with covariates and genomic screens with Mod scores: Their behavior on simulated data. Genetic Epidemiology, 12, 659–664CrossRefGoogle ScholarPubMed
Rice, J. P., Rochberg, N., Neuman, R. J., Saccone, N. L., Liu, K-Y., Zhang, X., & Culverhouse, R. (1999). Covariates in linkage analysis. Genetic Epidemiology, 17, S691–S695CrossRefGoogle ScholarPubMed
Risch, N. J. (2000). Searching for genetic determinants in the new millennium. Nature, 405, 847–856CrossRefGoogle ScholarPubMed
Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516–1517CrossRefGoogle ScholarPubMed
Risch, N. J., & Zhang, H. (1996a). Mapping quantitative trait loci with extreme discordant sib pairs: Sampling considerations. American Journal of Human Genetics, 58, 836–843Google Scholar
Risch, N. J., & Zhang, H. (1996b). Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science, 268, 1584–1589CrossRefGoogle Scholar
Risch, N. J., & Zhang, H. (1995). Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science, 264, 1697–1733Google Scholar
Roberts, S. B., MacLean, C. J., Neale, M. C., Eaves, L. J., & Kendler, K. S. (1999). Replication of linkage studies of complex traits: An examination of variation in location estimates. American Journal of Human Genetics, 65, 876–884CrossRefGoogle ScholarPubMed
Robins, L. N., & Rutter, M. (Eds.) (1990). Straight and deviant pathways from childhood to adulthood. New York: Cambridge University Press
Rogosa, D. R. (1988). Myths about longitudinal research. In K. W. Schaie, R. T. Campbell, W. Meredith, & S. C. Rawlings (Eds.), Methodological issues in aging research (pp. 171–210). New York: Springer
Rolf, J., Masten, A. S., Cicchetti, D., Nuechterlein, K. H., & Weintraub, S. (Eds.) (1990). Risk and protective factors in the development of psychopathology. New York: Cambridge University Press
Rowe, D. C., Stever, C., Giedinghagen, L. N., Gard, J. M. C., Cleveland, H. H., Terris, S. T., Mohr, J. H., Sherman, S. L., Abramowitz, A., & Waldman, I. D. (1998). Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder. Molecular Psychiatry, 3, 419–426CrossRefGoogle ScholarPubMed
Rubinstein, M., Phillips, T. J., Bunzow, J. R., Falzone, T. L., Dziewczapolski, G., Zhang, G., Fang, Y., Larson, J. L., McDougall, J. A., Chester, J. A., Saez, C., Pugsley, T. A., Gershanik, O., Low, M. J., & Grandy, D. K. (1997). Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methylphenidate. Cell, 90, 991–1001CrossRefGoogle Scholar
Rutter, M., Dunn, J., Plomin, R., Simonoff, E., Pickles, A., Maugham, B., Ormel, H., Meyer, J., & Eaves, L. (1997). Integrating nature and nurture: Implications of person-environment correlations and interactions for developmental psychopathology. Development and Psychopathology, 9, 335–364CrossRefGoogle ScholarPubMed
Santangelo, S., Ashley-Koch, A., Pericak-Vance, M., Silverman, J., Smith, C. J., & Buxbaum, J. S. D. (2000). Combined analysis of data on chromosome 7q from three autism genome scans, American Journal of Medical Genetics, 96
Seeman, P. (1995). Dopamine receptors and psychosis. Scientific American: Science and Medicine, 28–37Google Scholar
Seeman, P., & Madras, B. K. (1998). Anti-hyperactivity medication: methylphenidate and amphetamine. Molecular Psychiatry, 3, 386–396CrossRefGoogle ScholarPubMed
Silberg, J., Rutter, M., Meyer, J., Maes, H., Hewitt, J., Simonoff, E., Pickles, A., Loeber, R., & Eaves, L. (1996). Genetic and environmental influences on the covariation between hyperactivity and conduct disturbance in juvenile twins. Journal of Child Psychology and Psychiatry, 37, 803–816CrossRefGoogle ScholarPubMed
Smalley, S. L., Bailey, J. N., Palmer, C. G., Cantwell, D. P., McGough, J. J., Del'Homme, M. A., Asarnow, J. R., Woodward, J. A., Ramsey, C., & Nelson, S. F. (1998). Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder. Molecular Psychiatry, 3, 427–430CrossRefGoogle ScholarPubMed
Solanto, M. V. (1984). Neuropharmacological basis of stimulant drug action in attention deficit disorder with hyperactivity: a review and synthesis. Psychological Bulletin, 95, 387–409CrossRefGoogle ScholarPubMed
Spielman, R., McGinnis, J., & Ewens, W. (1993). Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetics, 52, 506–516Google Scholar
Sroufe, L. A., & Rutter, M. (1984). The domain of developmental psychopathology. Child Development, 55, 17–29CrossRefGoogle ScholarPubMed
Stevenson, J. (1992). Evidence for a genetic etiology in hyperactivity in children. Behavior Genetics, 22, 337–344CrossRefGoogle ScholarPubMed
Suarez, B. K., Hampe, C. L., & Van Eerdewegh, P. (1994). Problems of replicating linkage claims in psychiatry. In E. S. Gershon & C. R. Cloninger (Eds.), Genetic approaches to mental disorders. Washington, D. C.: American Psychiatric Press
Sudbery, P. (1998). Human molecular genetics. Essex, UK: Longman
Swanson, J., Oosterlaan, J., Murias, M., Schuck, S., Flodman, P., Spence, M. A., Wasdell, M., Ding, Y., Chi, H. C., Smith, M., Mann, M., Carlson, C., Kennedy, J. L., Sergeant, J. A., Leung, P., Zhang, Y. P., Sadeh, A., Chen, C., Whalen, C. K., Babb, K. A., Moyzis, R., & Posner, M. I. (2000). Attention deficit/hyperactivity disorder children with a 7-repeat allele of the dopamine receptor D4 gene have extreme behavior but normal performance on critical neuropsychological tests of attention. Proceedings of the National Academy of Sciences, 97, 4754–4759CrossRefGoogle Scholar
Swanson, J. M., Sunohara, G. A., Kennedy, J. L., Regino, R., Fineberg, E., Wigal, T., Lerner, M., Williams, L., LaHoste, G. J., & Wigal, S. B. (1998). Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): A family-based approach. Molecular Psychiatry, 3, 38–41CrossRefGoogle ScholarPubMed
Tahir, E., Yazgan, Y., Cirakoglu, B., Ozbay, F., Waldman, I. D., & Asherson, P. J. (2000). Association and linkage of DRD4 and DRD5 with Attention Deficit Hyperactivity Disorder (ADHD) in a sample of Turkish children. Molecular Psychiatry, 5, 396–404CrossRefGoogle Scholar
Terwilliger, J. D., & Ott, J. (1992). A haplotype-based haplotype relative risk statistic. Human Heredity, 42, 337–346CrossRefGoogle Scholar
Waldman, I. D., & Rhee, S. H. (2002). Behavioral and molecular genetic studies of ADHD. In Sandberg, S. (Ed.), Hyperactivity and attention disorders in childhood, 2d ed. New York: Cambridge University Press
Waldman, I. D., Rhee, S. H., Levy, F., & Hay, D. A. (2001). Genetic and environmental influences on the covariation among symptoms of attention deficit hyperactivity disorder, oppositional defiant disorder, and conduct disorder. In D. A. Hay & F. Levy (Eds.), Attention, genes and ADHD. Hillsdale, NJ: Erlbaum
Waldman, I. D., Robinson, B. F., & Rowe, D. C. (1999). A logistic regression based extension of the TDT for continuous and categorical traits. Annals of Human Genetics, 63, 329–340CrossRefGoogle ScholarPubMed
Waldman, I. D., Rowe, D. C., Abramowitz, A., Kozel, S. T., Mohr, J. H., Sherman, S. L., Cleveland, H. H., Sanders, M. L., & Stever, C. (1998). Association and linkage of the dopamine transporter gene (DAT1) and Attention Deficit Hyperactivity Disorder in children. American Journal of Human Genetics, 63, 1767–1776CrossRefGoogle ScholarPubMed
Waldman, I. D., & Slutske, W. S. (2000). Antisocial behavior and alcoholism: A behavioral genetic perspective on comorbidity. Clinical Psychology Review, 20, 255–287CrossRefGoogle ScholarPubMed
Willcutt, E. G., Pennington, B. F., Chhabildas, N. A., Friedman, M. C., & Alexander, J. A. (1999). Psychiatric comorbidity associated with DSM-IV ADHD in a nonreferred sample of twins. Journal of the American Academy of Child and Adolescent Psychiatry, 38, 1355–1362CrossRefGoogle Scholar
Willett, J. B., & Sayer, A. G. (1994). Using covariance structure analysis to detect correlates and predictors of individual change over time. Psychological Bulletin, 116, 363–381CrossRefGoogle Scholar
Williams, J., McGuffin, P., Nothen, M., & Owen, M. J. (1997). Meta-analysis of association between the 5-HT2a receptor T102C polymorphism and schizophrenia. EMASS Collaborative Group. European Multicentre Association Study of Schizophrenia. Lancet, 349, 1221CrossRefGoogle Scholar
Williams, J., Spurlock, G., Holmans, P., Mant, R., Murphy, K., Jones, L., Cardno, A., Asherson, P., Blackwood, D., Muir, W., Meszaros, K., Aschauer, H., Mallet, J., Laurent, C., Pekkarinen, P., Seppala, J., Stefanis, C. N., Papadimitriou, G. N., Macciardi, F., Verga, M., Pato, C., Azevedo, H., Crocq, M. A., Gurling, H., & Owen, M. J. (1998). A meta-analysis and transmission disequilibrium study of association between the dopamine D3 receptor gene and schizophrenia. Molecular Psychiatry, 3, 141–149CrossRefGoogle Scholar
Zhao, H., Zhang, S., Merikangas, K. R., Trixler, M., Wildenauer, D. B., Sun, F., & Kidd, K. K. (2000). Transmission/disequilibrium tests using multiple tightly linked markers. American Journal of Human Genetics, 67, 936–946CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×