Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-20T02:48:43.166Z Has data issue: false hasContentIssue false

12 - Developmental Psychoneuroimmunology: The Role of Cytokine Network Activation in the Epigenesis of Developmental Psychopathology

Published online by Cambridge University Press:  10 August 2009

Douglas A. Granger
Affiliation:
Department of Biobehavioral Health, Pennsylvania State of University
Nancy A. Dreschel
Affiliation:
Department of Biobehavioral Health, Pennsylvania State of University
Elizabeth A. Shirtcliff
Affiliation:
Department of Biobehavioral Health, Pennsylvania State of University
Dante Cicchetti
Affiliation:
University of Rochester, New York
Elaine F. Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

The past three decades have witnessed exponential growth in our knowledge of the interactions among the central and peripheral nervous systems and the immune system (Ader, 1981, 2000; Ader, Felten, & Cohen, 1991). In particular, the signals and routes via which psychological and physical stressors lead to endocrine and immune responses have been studied extensively. A detailed picture of an intriguing puzzle has now begun to emerge. Theorists, applied researchers, and professionals are extrapolating these basic findings in order to consider how individual differences in psychological traits and states might be associated with immunity, illness susceptibility, and negative health outcomes (see Cohen & Herbert, 1996; Herbert & Cohen, 1993b; Kemeny & Gruenewald, 1999; Kemeny & Laudenslager, 1999; Kiecolt-Glaser & Glaser, 1995). Quite surprisingly, how such processes affect children's immunity has received scant empirical attention (e.g., Adamson-Macedo, 2000; Boyce et al., 1995; Coe, 1996, 1999). Although the field should be concerned with the ultimate impact of these phenomena for children's health, and additional research with that particular focus seems warranted, the focus of this chapter is on the implications of another leading edge of psychoneuroimmunologic research (e.g., Maier & Watkins, 1998a, b; Maier, Watkins, & Fleshner, 1994). Specifically, accumulated findings have sparked a scientific revolution regarding the direction of effects among the brain, behavior, and immunity (e.g., Blalock, 1994a; Dantzer, 2001).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, T. M. (1991a). Manual for the Youth Self-Report and 1991 profile. Burlington: University of Vermont, Department of Psychiatry
Achenbach, T. M. (1991b). Manual for the Child Behavior Checklist/4-18 and 1991 profile. Burlington: University of Vermont
Adamson-Macedo, E. N. (2000). Neonatal psychoneuroimmunology: emergence, scope and perspectives. Neuroendocrinol Lett, 21(3), 175–186Google Scholar
Ader, R. (1981). Psychoneuroimmunology. San Diego: Academic Press
Ader, R. (1996). Historical perspectives on psychoneuroimmunology. In H. Friedman, T. W. Klein, & A. L. Friedman (Eds.), Psychoneuroimmunology, stress and infection (pp. 1–24). New York: CRC Press
Ader, R. (2000). On the development of psychoneuroimmunology. Eur J Pharmacol, 405(1–3), 167–176CrossRefGoogle ScholarPubMed
Ader, R., Cohen, N., & Felten, D. (1995). Psychoneuroimmunology: interactions between the nervous system and the immune system. Lancet, 345(8942), 99–103CrossRefGoogle ScholarPubMed
Ader, R., Felten, D. L., & Cohen, D. J. (1991). Psychoneuroimmunology. San Diego: Academic Press
Altman, F. (1997). Where is the “neuro” in psychoneuroimmunology? A commentary on increasing research on the “neuro” component of psychoneuroimmunology. Brain Behav Immun, 11(1), 1–8CrossRefGoogle ScholarPubMed
Anderson, J. A., Lentsch, A. B., Hadjiminas, D. J., Miller, F. N., Martin, A. W., Nakagawa, K., & Edwards, M. J. (1996). The role of cytokines, adhesion molecules, and chemokines in interleukin-2-induced lymphocytic infiltration in C57BL/6 mice. J Clin Invest, 97(8), 1952–1959CrossRefGoogle ScholarPubMed
Aubert, A. (1999). Sickness and behaviour in animals: a motivational perspective. Neurosci Biobehav Rev, 23(7), 1029–1036CrossRefGoogle ScholarPubMed
Avitsur, R., & Yirmiya, R. (1999). The immunobiology of sexual behavior: gender differences in the suppression of sexual activity during illness. Pharmacol Biochem Behav, 64, 787–796CrossRefGoogle ScholarPubMed
Ban, E. M., Haour, F. G., & Lenstra, R. (1992). Brain interleukin-1 gene expression induced by peripheral lipopolysaccharide administration. Cytokine, 4, 48–54CrossRefGoogle ScholarPubMed
Baraff, L. J., Cherry, J. D., Cody, C. L., Marcy, S. M., & Manclark, C. R. (1985). DTP vaccine reactions: effect of prior reactions on rate of subsequent reactions. Dev Biol Stand, 61, 423–428Google ScholarPubMed
Benveniste, E. N. (1992a). Cytokines: Influence on glial cell gene expression and function. In J. E. Blalock (ed.), Neuroimmunoendocrinology, 2d ed. (pp. 106–153). New York: Karger
Benveniste, E. N. (1992b). Inflammatory cytokines within the central nervous system: Sources, function and mechanism of action. Cell Physiology, 32, 1–16Google Scholar
Berk, M., Wadee, A. A., Kuschke, R. H., & O'Neill-Kerr, A. (1997). Acute phase proteins in major depression. J Psychosom Res, 43(5), 529–534CrossRefGoogle ScholarPubMed
Berkenbosch, F., Goeij, D. E., Rey, A. D., & Besedovsky, H. O. (1989). Neuroendocrine, sympathetic and metabolic responses induced by interleukin-1. Neuroendocrinology, 50(5), 570–576CrossRefGoogle ScholarPubMed
Berkenbosch, F., Rijk, R., Del Rey, A., & Besedovsky, H. (1990). Neuroendocrinology of interleukin-1. Adv Exp Med Biol, 274, 303–314CrossRefGoogle ScholarPubMed
Berkenbosch, F., Van Dam, A.-M., DeRijk, R., & Schotanus, K. (1992). Role of the immune hormone interleukin-1 in brain adaptive responses to infection. In R. Kvetnansky, R. McCarty, & J. Axelrod (Eds.), Stress: neuroendocrine and molecular approaches (pp. 623–640). New York: Gordon and Breach Science
Besedovsky, H. O., & del Rey, A. (1989). Mechanism of virus-induced stimulation of the hypothalamus-pituitary-adrenal axis. J Steroid Biochem, 34(1–6), 235–239CrossRefGoogle ScholarPubMed
Besedovsky, H., del Rey, A., Sorkin, E., Da Prada, M., Burri, R., & Honegger, C. (1983). The immune response evokes changes in brain noradrenergic neurons. Science, 221(4610), 564–566CrossRefGoogle ScholarPubMed
Birmaher, B., Rabin, B. S., Garcia, M. R., Jain, U., Whiteside, T. L., Williamson, D. E., al-Shabbout, M., Nelson, B. C., Dahl, R. E., & Ryan, N. D. (1994). Cellular immunity in depressed, conduct disorder, and normal adolescents: role of adverse life events. J Am Acad Child Adolesc Psychiatry, 33(5), 671–678CrossRefGoogle ScholarPubMed
Black, P. H. (1995). Psychoneuroimmunology: brain and immunity. Scientific American Science and Medicine, 1, 16–25Google Scholar
Blalock, J. E. (1994). The immune system: our sixth sense. The Immunologist, 2, 8–15Google Scholar
Blalock, J. E. (1997). The syntax of immune-neuroendocrine communication. Immunology Today, 15, 504–511CrossRefGoogle Scholar
Blumberg, D. A., Lewis, K., Mink, C. M., Christenson, P. D., Chatfield, P., & Cherry, J. D. (1993). Severe reactions associated with diphtheria-tetanus-pertussis vaccine: detailed study of children with seizures, hypotonic-hyporesponsive episodes, high fevers, and persistent crying. Pediatrics, 91(6), 1158–1165Google ScholarPubMed
Blumberg, D. A., Morgan, C. A., Lewis, K., Leach, C., Holtzman, A., Levin, S. R., Baraff, L. J., & Cherry, J. D. (1988). An ongoing surveillance study of persistent crying and hypotonic-hyporesponsive episodes following routine DTP immunization: a preliminary report. Tokai J Exp Clin Med, 13(Suppl), 133–136Google ScholarPubMed
Bluthe, R. M., Crestani, F., Kelley, K. W., & Dantzer, R. (1992). Mechanisms of the behavioral effects of interleukin 1. Role of prostaglandins and CRF. Ann N Y Acad Sci, 650, 268–275CrossRefGoogle ScholarPubMed
Bluthe, R. M., Dantzer, R., & Kelley, K. W. (1992). Effects of interleukin-1 receptor antagonist on the behavioral effects of lipopolysaccharide in rat. Brain Res, 573(2), 318–320CrossRefGoogle ScholarPubMed
Bonneau, R. H., Sheridan, J. F., Feng, N., & Glaser, R. (1993). Stress-induced modulation of the primary cellular immune response to herpes simplex virus infection is mediated by both adrenal-dependent and independent mechanisms. J Neuroimmunol, 42(2), 167–176CrossRefGoogle ScholarPubMed
Borg, J. M. (1958). Neurological complications of pertussis immunization. British Medical Journal, 2, 24CrossRefGoogle Scholar
Boyce, W. T., Chesney, M., Alkon, A., Tschann, J. M., Adams, S., Chesterman, B., Cohen, F., Folkman, S., & Ward, M. (1995). Psychobiologic reactivity to stress and childhood respiratory illness: results of two prospective studies. Psychosomatic Medicine, 57, 411–426CrossRefGoogle ScholarPubMed
Brambilla, F., Bellodi, L., Perna, G., Battaglia, M., Sciuto, G., Diaferia, G., Petraglia, F., Panerai, A., & Sacerdote, P. (1992). Psychoimmunoendocrine aspects of panic disorder. Neuropsychobiology, 26(1–2), 12–22CrossRefGoogle ScholarPubMed
Brambilla, F., Bellodi, L., Perna, G., Bertani, A., Panerai, A., & Sacerdote, P. (1994). Plasma interleukin-1 beta concentrations in panic disorder. Psychiatry Res, 54(2), 135–142CrossRefGoogle ScholarPubMed
Cairns, R. B., Gariepy, J. L., & Hood, K. E. (1990). Development, microevolution, and social behavior. Psychol Rev, 97(1), 49–65CrossRefGoogle ScholarPubMed
Cairns, B. D., Hood, K., & Midlam, J. (1985). On fighting mice: Is there a sensitive period for isolation effects? Animal Behavior, 33, 166–180CrossRefGoogle Scholar
Capuron, L., Bluthe, R. M., & Dantzer, R. (2001). Cytokines in clinical psychiatry. Am J Psychiatry, 158(7), 1163–1164CrossRefGoogle ScholarPubMed
Capuron, L., Ravaud, A., & Dantzer, R. (2000). Early depressive symptoms in cancer patients receiving interleukin 2 and/or interferon alfa-2b therapy. J Clin Oncol, 18(10), 2143–2151CrossRefGoogle ScholarPubMed
Capuron, L., Ravaud, A., & Dantzer, R. (2001). Timing and specificity of the cognitive changes induced by interleukin-2 and interferon-alpha treatments in cancer patients. Psychosom Med, 63(3), 376–386CrossRefGoogle ScholarPubMed
Capuron, L., Ravaud, A., Gualde, N., Bosmans, E., Dantzer, R., Maes, M., & Neveu, P. J. (2001). Association between immune activation and early depressive symptoms in cancer patients treated with interleukin-2-based therapy. Psychoneuroendocrinology, 26(8), 797–808CrossRefGoogle ScholarPubMed
Carr, D. J., Radulescu, R. T., DeCosta, B. R., Rice, K. C., & Blalock, J. E. (1992). Opioid modulation of immunoglobulin production by lymphocytes isolated from Peyer's patches and spleen. Ann N Y Acad Sci, 650, 125–127CrossRefGoogle ScholarPubMed
Chensue, S. W., Shmyre-Forsch, C., Otterness, I. G., & Kunkel, S. L. (1989). The beta form is the dominant interleukin-1 released by peritoneal macrophages. Biochemical Biophysical Research Communications, 160, 404–408CrossRefGoogle ScholarPubMed
Chuluyan, H. E., Saphier, D., Rohn, W. M., & Dunn, A. J. (1992). Noradrenergic innervation of the hypothalamus participates in adrenocortical responses to interleukin-1. Neuroendocrinology, 56(1), 106–111CrossRefGoogle Scholar
Cicchetti, D., & Lynch, M. (1995). Failures in the expectable environment and their impact on individual development: The case of child maltreatment. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology (Vol 2. Risk, Disorder and Adaptation, pp. 32–71). New York: Wiley
Clough, N. C., & Roth, J. A. (1998). Understanding immunology. St. Louis, Mo.: Mosby-Year Book
Cody, C. L., Baraff, L. J., Cherry, J. D., Marcy, S. M., & Manclark, C. R. (1981). Nature and rates of adverse reactions associated with DTP and DT immunizations in infants and children. Pediatrics, 68, 650–659Google ScholarPubMed
Coe, C. L. (1996). Developmental psychoneuroimmunology revisited. Brain Behav Immun, 10(3), 185–187CrossRefGoogle ScholarPubMed
Coe, C. K. (1999). Psychosocial factors and psychoneuroimmunology within a lifespan perspective. In D. P. Keating & C. Hertzman (Eds.), Developmental health and the wealth of nations. New York: Guilford Press
Cohen, S., & Herbert, T. B. (1996). Health psychology: psychological factors and physical disease from the perspective of human psychoneuroimmunology. Annu Rev Psychol, 47, 113–142CrossRefGoogle ScholarPubMed
Cohen, S., Line, S., Manuck, S. B., Rabin, B. S., Heise, E., & Kaplan, J. R. (1997). Chronic stress, social status, and susceptibility to upper respiratory infections in nonhuman primates. Psychosomatic Medicine, 59, 213–221CrossRefGoogle ScholarPubMed
Connor, T. J., & Leonard, B. E. (1998). Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sciences, 62(7), 583–606CrossRefGoogle ScholarPubMed
Cotman, C. W., Brinton, R. E., Glaburda, A., McEwen, B. S., & Schneider, D. M. (1987). The neuro-immune-endocrine connection. New York: Raven Press
Crnic, L. S. (1991). Behavioral consequences of viral infection. In R. Ader, D. L. Felten, & N. Cohen (Eds.), Psychoneuroimmunology (2d ed., pp. 749–770). New York: Academic Press
Crnic, L. S., & Pizer, L. I. (1988). Behavioral effects of neonatal herpes simplex type 1 infection of mice. Neurotoxicol Teratol, 10(4), 381–386CrossRefGoogle ScholarPubMed
Cunningham, E. T., & Souza, E. B. (1993). Interleukin-1 receptors in the brain and endocrine tissues. Immunology Today, 14, 171–176Google ScholarPubMed
Dantzer, R. (2001). Cytokine-induced sickness behavior: where do we stand? Brain Behav Immun, 15(1), 7–24CrossRefGoogle ScholarPubMed
Dantzer, R., Bluth, R.-M., & Goodall, G. (1993). Behavioral effects of cytokines: An insight into mechanisms of sickness behavior. Methods in Neuroscience, 16, 130–150CrossRefGoogle Scholar
Dantzer, R., Bluthe, R. M., Gheusi, G., Cremona, S., Laye, S., Parnet, P., & Kelley, K. W. (1998). Molecular basis of sickness behavior. Ann N Y Acad Sci, 856, 132–138CrossRefGoogle ScholarPubMed
Dantzer, R., Bluthe, R. M., Laye, S., Bret-Dibat, J. L., Parnet, P., & Kelley, K. W. (1998). Cytokines and sickness behavior. Ann N Y Acad Sci, 840, 586–590CrossRefGoogle ScholarPubMed
Dantzer, R., Konsman, J. P., Bluthe, R. M., & Kelley, K. W. (2000). Neural and humoral pathways of communication from the immune system to the brain: parallel or convergent? Auton Neurosci, 85(1–3), 60–65CrossRefGoogle ScholarPubMed
Dantzer, R., Wollman, E., Vitkovic, L., & Yirmiya, R. (1999). Cytokines and depression: fortuitous or causative association? Mol Psychiatry, 4(4), 328–332CrossRefGoogle ScholarPubMed
Dinarello, C. A. (1984a). Interleukin 1 as mediator of the acute-phase response. Surv Immunol Res, 3(1), 29–33Google Scholar
Dinarello, C. A. (1984b). Interleukin-1. Rev Infect Dis, 6(1), 51–95CrossRefGoogle Scholar
Dinarello, C. A. (1988). Biology of interleukin 1. Faseb J, 2(2), 108–115CrossRefGoogle ScholarPubMed
Dinarello, C. A. (1992). The biology of interleukin-1. Chem Immunol, 51, 1–32Google ScholarPubMed
Dunn, A. J. (1988). Systemic interleukin-1 administration stimulates hypothalamic norepinephrine metabolism parallelling the increased plasma corticosterone. Life Sci, 43(5), 429–435CrossRefGoogle ScholarPubMed
Dunn, A. J. (1990). Interleukin-1 as a stimulator of hormone secretion. Progress in Neuroimmunology, 3, 26–34Google Scholar
Dunn, A. J. (1992a). Endotoxin-induced activation of cerebral catecholamine and serotonin metabolism: comparison with interleukin-1. J Pharmacol Exp Ther, 261(3), 964–969Google Scholar
Dunn, A. J. (1992b). The role of interleukin-1 and tumor necrosis factor alpha in the neurochemical and neuroendocrine responses to endotoxin. Brain Res Bull, 29(6), 807–812CrossRefGoogle Scholar
Dunn, A. J. (1996). Psychoneuroimmunology, stress and infection. In H. Friedman, T. W. Klein, & A. Friedman (Eds.), Psychoneuroimmunology, stress and infection (pp. 25–46). New York: CRC Press
Dunn, A. J., Antoon, M., & Chapman, Y. (1991). Reduction of exploratory behavior by intraperitoneal injection of interleukin-1 involves brain corticotropin-releasing factor. Brain Res Bull, 26(4), 539–542CrossRefGoogle ScholarPubMed
Dunn, A. J., & Wang, J. (1995). Cytokine effects on CNS biogenic amines. Neuroimmunomodulation, 2(6), 319–328CrossRefGoogle ScholarPubMed
Dunn, A. J., Wang, J., & Ando, T. (1999). Effects of cytokines on cerebral neurotransmission. Comparison with the effects of stress. Adv Exp Med Biol, 461, 117–127CrossRefGoogle ScholarPubMed
Felten, D. L., Ackerman, K. D., Wiegand, S. J., & Felten, S. Y. (1987). Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J Neurosci Res, 18(1), 28–36CrossRefGoogle ScholarPubMed
Felten, D. L., Livnat, S., Felten, S. Y., Carlson, S. L., Bellinger, D. L., & Yeh, P. (1984). Sympathetic innervation of lymph nodes in mice. Brain Res Bull, 13(6), 693–699CrossRefGoogle ScholarPubMed
Felten, D. L., Overhage, J. M., Felten, S. Y., & Schmedtje, J. F. (1981). Noradrenergic sympathetic innervation of lymphoid tissue in the rabbit appendix: further evidence for a link between the nervous and immune systems. Brain Res Bull, 7(5), 595–612CrossRefGoogle ScholarPubMed
Felten, S. Y., Felten, D. L., Bellinger, D. L., & Olschowka, J. A. (1992). Noradrenergic and peptidergic innervation of lymphoid organs. Chem Immunol, 52, 25–48Google ScholarPubMed
Gahtan, E., & Overmier, J. B. (2001). Performance more than working memory disrupted by acute systemic inflammation in rats in appetitive tasks. Physiol Behav, 73(1–2), 201–210CrossRefGoogle ScholarPubMed
Gariepy, J.-L., Nehrenberg, D., & Mills-Koonce, R. (2000). Maternal care and separation stress in high- and low-aggressive mice. Unpublished manuscript, Presented at the annual meeting of the International Society for Developmental Psychobiology, New Orleans, La
Garvey, M., Giedd, J., & Swedo, S. E. (1998). PANDAS: The search for environmental triggers of pediatric neuropsychiatric disorders. Lessons from rheumatic fever. Journal of Child Neurology, 13(9), 413–423CrossRefGoogle ScholarPubMed
Gatanaga, T., Hwang, C. D., Kohr, W., Cappuccini, F., Lucci, J. A., 3rd, Jeffes, E. W., Lentz, R., Tomich, J., Yamamoto, R. S., & Granger, G. A. (1990). Purification and characterization of an inhibitor (soluble tumor necrosis factor receptor) for tumor necrosis factor and lymphotoxin obtained from the serum ultrafiltrates of human cancer patients. Proc Natl Acad Sci U S A, 87(22), 8781–8784CrossRefGoogle ScholarPubMed
Gatanaga, T., Lentz, R., Masunaka, I., Tomich, J., Jeffes, E. W., 3rd, Baird, M., & Granger, G. A. (1990). Identification of TNF-LT blocking factor(s) in the serum and ultrafiltrates of human cancer patients. Lymphokine Res, 9(2), 225–229Google ScholarPubMed
Goldsby, R. A., Kindt, T. J., Osborne, B. A. (2000). Kuby immunology, 4th ed. New York: Freeman
Gottlieb, G. (1992). Individual development and evolution: the genesis of novel behavior. New York: Oxford University Press
Granger, D. A., Booth, A., & Johnson, D. (2000). Human aggression and enumerative measures of immunity. Psychosomatic Medicine, 62, 683–590CrossRefGoogle Scholar
Granger, D. A., Hood, K., & Banta, M. B. (unpublished). Individual differences in endotoxin effects on social behavior and interleukin-1b. Unpublished manuscript, manuscript submitted for publication
Granger, D. A., Hood, K., Ikeda, S., Reed, C., Jones, B. C., & Block, M. L. (1997). Effects of peripheral immune activation on social behavior and adrenocortical activity in aggressive mice. Aggressive Behavior, 23, 93–1053.0.CO;2-U>CrossRefGoogle Scholar
Granger, D. A., Hood, K. E., Dreschel, N. A., Sergeant, E., & Likos, A. (2001). Developmental effects of early immune stress on aggressive, socially reactive, and inhibited behaviors. Dev Psychopathol, 13(3), 599–610CrossRefGoogle ScholarPubMed
Granger, D. A., Hood, K. E., Ikeda, S. C., Reed, C. L., & Block, M. L. (1996). Neonatal endotoxin exposure alters the development of social behavior and the hypothalamic-pituitary-adrenal axis in selectively bred mice. Brain Behav Immun, 10(3), 249–259CrossRefGoogle ScholarPubMed
Granger, D. A., Ikeda, S., & Block, M. B. (1997). Developmental, psychoneuroimmunology: integrating effects of environmental, biological, and behavioral processes on child development. Unpublished manuscript, Presented at the Annual Meeting of the Society for Research in Child Development, Washington, D.C.
Granger, G. A., & Williams, T. W. (1968). Lymphocyte cytotoxicity in vitro: activation and release of a cytotoxic factor. Nature, 218(148), 1253–1254CrossRefGoogle ScholarPubMed
Gutterman, J. U., Fein, S., Quesacia, J., Hornings, S. J., Levine, J. F., Alexanian, R., Bernhardt, L., Kramer, M., Spiegal, H., Colburn, W., Trown, P., Merigan, T., & Dziewanowski, Z. (1982). Recombinant leukocyte A interferon: Pharmacokinetics, single dose tolerance, and biological effects in cancer patients. Annals of Internal Medicine, 96, 549–556CrossRefGoogle ScholarPubMed
Haack, M., Hinze-Selch, D., Fenzel, T., Kraus, T., Kuhn, M., Schuld, A., & Pollmacher, T. (1999). Plasma levels of cytokines and soluble cytokine receptors in psychiatric patients upon hospital admission: effects of confounding factors and diagnosis. J Psychiatr Res, 33(5), 407–418CrossRefGoogle ScholarPubMed
Harbuz, M. S., & Lightman, S. L. (1992). Stress and the hypothalamic-pituitary-adrenal axis: Acute, chronic and immunological activation. Journal of Endocrinology, 134, 327–339CrossRefGoogle Scholar
Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neurosci Biobehav Rev, 12(2), 123–137CrossRefGoogle ScholarPubMed
Herbert, T. B., & Cohen, S. (1993a). Depression and immunity: a meta-analytic review. Psychol Bull, 113(3), 472–486CrossRefGoogle Scholar
Herbert, T. B., & Cohen, S. (1993b). Stress and immunity in humans: a meta-analytic review. Psychosom Med, 55(4), 364–379CrossRefGoogle Scholar
Hessinger, D. A., Daynes, R. A., & Granger, G. A. (1973). Binding of human lymphotoxin to target-cell membranes and its relation to cell-mediated cytodestruction. Proc Natl Acad Sci U S A, 70(11), 3082–3086CrossRefGoogle ScholarPubMed
Heyes, M. P. (1992). Quinolinic acid in culture media used for in vitro neurotoxicology studies. Neurosci Lett, 145(2), 234–235CrossRefGoogle ScholarPubMed
Heyes, M. P., Brew, B. J., Saito, K., Quearry, B. J., Price, R. W., Lee, K., Bhalla, R. B., Der, M., & Markey, S. P. (1992). Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and beta 2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients. J Neuroimmunol, 40(1), 71–80CrossRefGoogle ScholarPubMed
Heyes, M. P., Quearry, B. J., & Markey, S. P. (1989). Systemic endotoxin increases L-tryptophan, 5-hydroxyindoleacetic acid, 3-hydroxykynurenine and quinolinic acid content of mouse cerebral cortex. Brain Res, 491(1), 173–179CrossRefGoogle ScholarPubMed
Heyes, M. P., Saito, K., Crowley, J. S., Davis, L. E., Demitrack, M. A., Der, M., Dilling, L. A., Elia, J., Kruesi, M. J., Lackner, A., & et al. (1992). Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain, 115(Pt 5), 1249–1273CrossRefGoogle ScholarPubMed
Hofer, M. A. (1994). Early relationships as regulators of infant physiology and behavior. Acta Paediatrica Supplement, 397, 9–18CrossRefGoogle ScholarPubMed
Hood, K., & Cairns, R. B. (1989). A developmental-genetic analysis of aggressive behavior in mice. IV. Genotype-environment interaction. Aggressive Behavior, 15, 361–3803.0.CO;2-6>CrossRefGoogle Scholar
Hood, K. E., & Cairns, R. B. (1988). A developmental-genetic analysis of aggressive behavior in mice. II. Cross-sex inheritance. Behav Genet, 18(5), 605–619CrossRefGoogle ScholarPubMed
Hood, K. E., Dreschel, N. A., & Granger, D. A. (2003). Maternal behavior changes after immune challenge of neonates with developmental effects on adult social behavior. Developmental Psychobiology, 42, 17–34CrossRefGoogle ScholarPubMed
Howson, C. P., Howe, C. J., & Fineberg, H. V. (1991). Adverse effects of pertussis and rubella vaccines: A report of the committee to review the adverse consequences of pertussis and rubells vaccines. Unpublished manuscript. Washington, D.C.: National Academy Press
Janeway, C. A., Jr. (2001). How the immune system works to protect the host from infection: a personal view. Proc Natl Acad Sci U S A, 98(13), 7461–7468CrossRefGoogle ScholarPubMed
Kelly, R. H., Ganguli, R., & Rabin, B. S. (1987). Antibody to discrete areas of the brain in normal individuals and patients with schizophrenia. Biological Psychiatry, 22, 1488–1491CrossRefGoogle ScholarPubMed
Kemeny, M. E., & Gruenewald, T. L. (1999). Psychoneuroimmunology update. Semin Gastrointest Dis, 10(1), 20–29Google ScholarPubMed
Kemeny, M. E., & Laudenslager, M. L. (1999). Introduction beyond stress: the role of individual difference factors in psychoneuroimmunology. Brain Behav Immun, 13(2), 73–75CrossRefGoogle ScholarPubMed
Kent, S., Rodriguez, F., Kelley, K. W., & Dantzer, R. (1994). Reduction in food and water intake induced by microinjection of interleukin-1 beta in the ventromedial hypothalamus of the rat. Physiol Behav, 56(5), 1031–1036CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., & Glaser, R. (1988). Methodological issues in behavioral immunology research with humans. Brain Behav Immun, 2(1), 67–78CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., & Glaser, R. (1989). Psychoneuroimmunology: past, present, and future. Health Psychol, 8(6), 677–682CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., & Glaser, R. (1995). Psychoneuroimmunology and health consequences: data and shared mechanisms. Psychosom Med, 57(3), 269–274CrossRefGoogle ScholarPubMed
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., Malarkey, W. B., & Sheridan, J. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proc Natl Acad Sci U S A, 93(7), 3043–3047CrossRefGoogle ScholarPubMed
Kluger, M. J. (1979). Fever: Its biology, evolution, and function. Princeton, N.J.: Princeton University Press
Kopeloff, N., Kopeloff, L. M., & Raney, M. E. (1933). The nervous system and antibody production. Psychiatry Quarterly, 7, 84CrossRefGoogle Scholar
Kovacs, M. (1983). The Children's Depression Inventory: A self-rated depression scale for school-aged youngsters. Unpublished manuscript, University of Pittsburgh, School of Medicine
Krasnegor, N. A., & Bridges, R. S. (1990). Mammalian parenting: biochemical, neurological, and behavioral determinants. New York: Oxford University Press
Kreuger, J. M., Walter, J., Dinarello, C. A., Wolff, S. M., & Chedid, L. (1984). Sleep promoting effects of endogenous pyrogen (IL-1). American Journal of Physiology, 246, 9994–9999Google Scholar
Kronfol, Z. (1999). Depression and immunity: The role of cytokines. In N. P. Plotnikoff, R. E. Faith, A. J., Murgo, & R. A. Good (Eds.), Cytokines: Stress and immunit (pp. 51–60), New York: CRC Press
Kronfol, Z., Tandon, R., & Nair, M. (1990). Natural and lymphokine-activated killer cell activities in schizophrenia. Biological Psychiatry, 27, 41–179Google Scholar
Kronfol, Z., & Remick, D. G. (2000). Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry, 157(5), 683–694CrossRefGoogle ScholarPubMed
Laye, S., Parnet, P., Goujon, E., & Dantzer, R. (1994). Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res, 27(1), 157–162CrossRefGoogle Scholar
Leonard, H. L., Swedo, S. E., Garvey, M., Beer, D., Perlmutter, S., Lougee, L., Karitani, M., & Dubbert, B. (1999). Postinfectious and other forms of obsessive-compulsive disorder. Child and Adolescent Psychiatric Clinics of North America, 8(3), 497–511Google ScholarPubMed
Line, S., Kaplan, J. R., Heise, E., Hilliard, J. K., Cohen, S., & Rabin, B. S. (1996). Effects of social reorganization on cellular immunity in male cynomolgus monkeys. American Journal of Primatology, 39, 235–2493.0.CO;2-#>CrossRefGoogle Scholar
Liu, D., Dioria, J., Tannenbaum, B., Caldji, C., Francis, D., Freedom, A., Sharma, S., Pearson, D., Plotsky, P. M., & Meaney, M. J. (1997). Maternal care, hippocampal, glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662CrossRefGoogle ScholarPubMed
Long, S. A., DeForest, A., Smith, D. G., Lazaro, C., & Wassilak, S. G. F. (1990). Longitudinal study of adverse reactions following Diptheria-tetanus-pertusis vaccine in infancy. Pediatrics, 85, 294–302Google Scholar
Maes, M., Bosmans, E., Meltzer, H. Y., Scharpe, S., & Suy, E. (1993). Interleukin-1 beta: a putative mediator of HPA axis hyperactivity in major depression? American Journal of Psychiatry, 150, 1189–1193Google ScholarPubMed
Maes, M., Meltzer, H. Y., & Bosmans, E. (1994a). Psychoimmune investigation in obsessive-complusive disorder: Assays of plasma transferrin, IL-2 and IL-6 receptor, and IL-1β and IL-6 concentrations. Neuropsychobiology, 30, 57CrossRefGoogle Scholar
Maes, M., Meltzer, H. Y., & Bosmans, E. (1994b). Immune-inflammatory markers in schizophrenia: comparison to normal controls and effects of clozapine. Acta Psychiatr Scand, 89(5), 346–351CrossRefGoogle Scholar
Maes, M., Meltzer, H. Y., Bosmans, E., Bergmans, R., Vandoolaeghe, E., Ranjan, R., & Desnyder, R. (1995). Increased plasma concentrations of interleukin-6, soluble interleukin-6, soluble interleukin-2 and transferrin receptor in major depression. J Affect Disord, 34(4), 301–309CrossRefGoogle ScholarPubMed
Maier, S. F., & Watkins, L. R. (1998a). Bidirectional communication between the brain and the immune system: implications for behavior. Animal Behaviour, 57, 741–751CrossRefGoogle Scholar
Maier, S. F., & Watkins, L. R. (1998b). Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev, 105(1), 83–107CrossRefGoogle Scholar
Maier, S. F., Watkins, L. R., & Fleshner, M. (1994). Psychoneuroimmunology. The interface between behavior, brain, and immunity. Am Psychol, 49(12), 1004–1017CrossRefGoogle ScholarPubMed
Mannering, G. J., & Deloria, L. B. (1986). The pharmacology and toxicity of the interferones: An overview. Annual Review of Pharmacology and Toxicology, 26, 455–515CrossRefGoogle Scholar
Meaney, M. J., Aitken, D. H., Bhatnagar, S., Berkel, C., & Sapolsky, R. M. (1988). Postnatal handling attenuates neuroendocrine, anatomical, and cognitive impairments related to the aged hippocampus. Science, 238, 766–768CrossRefGoogle Scholar
Mittleman, B. B., Castellanos, F. S., Jacobsen, L. K., Rapoport, J. L., Swedo, S. E., & Shearer, G. M. (1997). Cerebrospinal fluid cytokines in pediatric neuropsychiatric disease. Journal of Immunology, 159(6), 2994–2999Google ScholarPubMed
Moldawer, L. L., Andersson, C., Gelin, J., & Lundholm, K. G. (1988). Regulation of food intake and hepatic protein synthesis by recombinant-derived cytokines. Am J Physiol, 254(3 Pt 1), G450–456Google ScholarPubMed
Morag, M., Yirmiya, R., Lerer, B., & Morag, A. (1998). Influence of socioeconomic status on behavioral, emotional and cognitive effects of rubella vaccination: a prospective, double blind study. Psychoneuroendocrinology, 23(4), 337–351CrossRefGoogle ScholarPubMed
Musselman, D. L., Miller, A. H., Porter, M. R., Manatunga, A., Gao, F., Penna, S., Pearce, B. D., Landry, J., Glover, S., McDaniel, J. S., & Nemeroff, C. B. (2001). Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am J Psychiatry, 158(8), 1252–1257CrossRefGoogle ScholarPubMed
O'Grady, M. P., & Hall, N. R. S. (1990). Postnatal exposure to Newcastles Disease virus alters endocrine development. Teratology, 41, 623–624Google Scholar
O'Grady, M. P., & Hall, N. R. S. (1991). Long-term effects of neuroendocrine-immune interactions during early development. In R. Ader, D. L. Felten, & N. Cohen (Eds.), Psychoneuroimmunology 2d ed. (pp. 561–572)CrossRef
O'Grady, M. P., Hall, N. R. S., & Goldstein, A. L. (1987). Developmental consequences of prenatal exposure to thymosin: long term changes in immune and endocrine parameters. Society for Neuroscience, 13, 1380Google Scholar
Opp, M. R., Orbal, F., & Kreuger, J. M. (1991). Interleukin-1 alters rat sleep: Temporal and dose-related effects. American Journal of Physiology, 260, 52–58Google ScholarPubMed
Owen, B. M., Eccleston, D., Ferrier, I. N., & Young, A. H. (2001). Raised levels of plasma interleukin-1 beta in major and postviral depression. Acta Psychiatr Scand, 103(3), 226–228CrossRefGoogle ScholarPubMed
Pettito, J. M., Gariepy, J., Gendreau, P. L., Rodriguiz, R., Lewis, M., & Lysle, D. T. (1999). Differences in NK cell function in mice bred for high and low aggression: Genetic linkage between complex behavior and immunological traits? Brain, Behavior, and Immunity, 13, 175–186CrossRefGoogle Scholar
Pettito, J. M., Lysle, D. T., Gariepy, J., Clubb, P. H., Cairns, B. D., & Lewis, M. (1994). Genetic differences in social behavior and cellular immune responsiveness: effects of social experience. Brain, Behavior, and Immunity, 8, 111–112CrossRefGoogle Scholar
Pettito, J. M., Lysle, D. T., Gariepy, J., & Lewis, M. (1992). The expression of genetic differences in social behavior in ICR mice correlates with differences in cellular immune responsiveness. Clinical Neuropharmacology, 15, 658–659CrossRefGoogle Scholar
Pettito, J. M., Lysle, D. T., Gariepy, J., & Lewis, M. (1994). Association of genetic differences in social behavior and cellular immune responsiveness. Brain, Behavior, and Immunity, 8, 111–112CrossRefGoogle Scholar
Quan, N., Sundar, S. K., & Weiss, J. M. (1994). Induction of interleukin-1 in various brain regions after peripheral and central injections of lipopolysaccharide. J Neuroimmunol, 49(1–2), 125–134CrossRefGoogle ScholarPubMed
Rapaport, M. H., & Stein, M. B. (1994). Serum cytokine and soluble interleukin-2 receptors in patients with panic disorder. Anxiety, 1(1), 22–25CrossRefGoogle ScholarPubMed
Reichenberg, A., Yirmiya, R., Schuld, A., Kraus, T., Haack, M., Morag, A., & Pollmacher, T. (2001). Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry, 58(5), 445–452CrossRefGoogle ScholarPubMed
Renault, P. F., Hoofnagle, J. H., Parky, Y., Mullen, K. D., Peters, M., Jones, D., Rustigi, V., & Jones, F. A. (1987). Psychiatric complications of long-term interferon-alpha therapy. Archives of Internal Medicine, 147, 1577–1580CrossRefGoogle Scholar
Saito, K., Markey, S. P., et al. (1992). Effects of immune activation on quinolinic acid and neuroactive kynurenines in the mouse. Neuroscience, 15, 25–39CrossRefGoogle Scholar
Sameroff, A. J. (1983). Developmental systems: context and evolution. In W. Kessen (Ed.), History, theory, and methods (Vol. 1). In P. H. Mussen (Ed.), Handbook of child psychology. New York: Wiley
Sapolsky, R., Rivier, C., Yamamoto, G., Plotsky, P., & Vale, W. (1987). Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science, 238(4826), 522–524CrossRefGoogle ScholarPubMed
Segall, M. A., & Crnic, L. S. (1990). An animal model for the behavioral effects of interferon. Behav Neurosci, 104(4), 612–618CrossRefGoogle ScholarPubMed
Shanks, N., Larocque, S., & Meaney, M. J. (1995). Neonatal endotoxin exposure alters the development of the hypothalamic-pituitary-adrenal axis: early illness and later responsivity to stress. J Neurosci, 15(1, Pt 1), 376–384CrossRefGoogle ScholarPubMed
Smith, A., Tyrell, D., Coyle, K., & Higgins, P. (1988). Effects of Interferon alpha on performance in man: A preliminary report. Psychopharmacology, 96, 414–416CrossRefGoogle ScholarPubMed
Smith, A. P., Tyrell, D. A., Al-Nakib, W., Coyle, K. B., Donovan, C. B., Higgins, P. G., & Willman, J. S. (1987). Effects of experimentally induced respiratory virus infection and illness on psychomotor performance. Neuropsychobiology, 18, 144–148CrossRefGoogle ScholarPubMed
Smith, E. (1992). Hormonal effects of cytokines. In J. E. Blalock (Ed.), Neuroimmunoendocrinology (pp. 154–169). New York: Krager
Smith, R. W., Tyrell, D., Coyle, K., & Willman, J. S. (1987). Selective effects of minor illnesses on human performance. British Journal of Psychology, 78, 183–188CrossRefGoogle ScholarPubMed
Solomon, G. F. (1969). Emotions, stress, the central nervous system, and immunity. Ann N Y Acad Sci, 164(2), 335–343CrossRefGoogle ScholarPubMed
Solomon, G. F., Amkraut, A. A., & Kasper, P. (1974). Immunity, emotions and stress. With special reference to the mechanisms of stress effects on the immune system. Ann Clin Res, 6(6), 313–322Google ScholarPubMed
Solomon, G. F., & Moos, R. H. (1965). Psychologic aspects of response to treatment in rheumatoid arthritis. Gp, 32(6), 113–119Google ScholarPubMed
Sparado, F., & Dunn, A. J. (1990). Intracerebrovascular administration of interleukin-1 to mice alters investigation of stimulus in a novel environment. Brain, Behavior, and Immunity, 4, 308–322Google Scholar
Spivak, B., Shohat, B., Mester, R., Avraham, S., Gil-Ad, I., Bleich, A., Valevski, A., & Weizman, A. (1997). Elevated levels of serum interleukin-1 beta in combat-related posttraumatic stress disorder. Biol Psychiatry, 42(5), 345–348CrossRefGoogle ScholarPubMed
Swedo, S. E., Leonard, H. L., Garvey, M., Mittleman, B. B., Allen, A. J., Perlmutter, S., Dow, S., Zamkoff, B. A., Dubbert, B. K., & Lougee, L. (1998). Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. American Journal of Psychiatry, 155(2), 264–271Google Scholar
Takao, T., Tracy, D. E., Mitchell, W. M., & Souza, E. B. (1990). Interleukin-1 receptors in the mouse brain-characterization and neuronal localization. Endocrinology, 127, 3070–3078CrossRefGoogle ScholarPubMed
Thomson, A. (1998). The cytokine handbook, 3rd ed. San Diego: Academic Press
Tilders, F. J. H., DeRuk, R. H., VanDam, A.-M., Vincent, V. A. M., Schotanus, K., & Persoons, J. H. A. (1994). Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: Routes and intermediate signals. Psychoneuroendocrinology, 19, 209–232CrossRefGoogle ScholarPubMed
Vedhara, K., Fox, J. D., & Wang, E. C. (1999). The measurement of stress-related immune dysfunction in psychoneuroimmunology. Neurosci Biobehav Rev, 23(5), 699–715CrossRefGoogle ScholarPubMed
Vilcek, J. (1998). The cytokines: An overview. In A. W. Thomson (Ed.), The cytokine handbook (pp. 1–20). San Diego: Academic Press
Wadhwa, M., & Thorpe, R. (1998). Assays for cytokines. In A. W. Thomson (Ed.), The cytokine handbook (pp. 856–884). San Diego: Academic Press
Watson, J. B., Mednick, S. A., Huttunen, M., & Wang, X. (1999). Prenatal teratogens and the development of adult mental illness. Development and Psychopathology, 11, 457–466CrossRefGoogle ScholarPubMed
Weiss, J. M., Quan, N., & Sundar, S. K. (1994). Widespread activation and consequences of interleukin-1 in the brain. Annals of the New York Academy of Sciences, 741, 338–357CrossRefGoogle Scholar
Weizman, R., Laor, N., Wiener, Z., Wolmer, L., & Bessler, H. (1999). Cytokine production in panic disorder patients. Clin Neuropharmacol, 22(2), 107–109CrossRefGoogle ScholarPubMed
Williams, J. M., Peterson, R. G., Shea, P. A., Schmedtje, J. F., Bauer, D. C., & Felten, D. L. (1981). Sympathetic innervation of murine thymus and spleen: evidence for a functional link between the nervous and immune systems. Brain Res Bull, 6(1), 83–94CrossRefGoogle ScholarPubMed
Woolski, B. M. R. N. J., Smith, E., Meyer, W. J., Fuller, G. M., & Blalock, J. E. (1985). Corticotrophin-releasing activity of monokines. Science, 230, 1035–1037CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×