Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-23T10:32:10.454Z Has data issue: false hasContentIssue false

4 - Cognitive development in adolescence: cerebral underpinnings, neural trajectories, and the impact of aberrations

Published online by Cambridge University Press:  04 August 2010

Stephen J. Wood
Affiliation:
University of Melbourne, Melbourne, Australia
Cinzia R. De Luca
Affiliation:
University of Melbourne, Melbourne, Australia
Vicki Anderson
Affiliation:
University of Melbourne, Melbourne, Australia
Christos Pantelis
Affiliation:
University of Melbourne, Melbourne, Australia
Matcheri S. Keshavan
Affiliation:
University of Pittsburgh
James L. Kennedy
Affiliation:
Clarke Institute of Psychiatry, Toronto
Robin M. Murray
Affiliation:
Institute of Psychiatry, London
Get access

Summary

This chapter discusses the gains in function made during adolescence, a time of major upheaval in behavioral and social domains. It reviews the structural brain changes that occur during this time and explores neuropsychological development, with a special focus on executive functions. The chapter discusses links between cognitive and cerebral development, with an emphasis on the impact of developmental lesions. Finally, it presents a hypothesis explaining the neuropsychological deficits in schizophrenia as an interaction between the timing of illness onset and the timing of normal cognitive development. Specifically, the chapter suggests that cognitive functions that mature around the time when the illness first presents, such as working memory, are more impaired than those functions that mature earlier. The study of cognitive development through adolescence is of great importance to the understanding of the neurobiology of disorders that first present at this time.
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, S. W., Bechara, A., Damasio, H., Tranel, D., Damasio, A. R. (1999). Impairment of social and moral behavior related to early damage in human prefrontal cortex. Nat Neurosci 2: 1032–1037CrossRefGoogle ScholarPubMed
Anderson, S. W., Damasio, H., Tranel, D., Damasio, A. R. (2000). Long-term sequelae of prefrontal cortex damage acquired in early childhood. Dev Neuropsychol 18: 281–296CrossRefGoogle ScholarPubMed
Anderson, V. (1988). Recovery of function in children: the myth of cerebral plasticity. In Brain Impairment. Proceedings from the Thirteenth Annual Brain Impairment Conference, ed. M. Matheson, H. Newman. Sydney: University of Sydney, pp. 223–247
Anderson, V. (1998). Assessing executive function in children: biological, psychological and developmental considerations. Neuropsychol Rehab 8: 319–349CrossRefGoogle Scholar
Anderson, V., Jacobs, R. (2004). Frontal lobe damage in children: interruptions to normal development. In Enfance and Neuropsychologie: Interface entre la Recherche et la Clinique, ed. J.-P. Laurent. Quebec: Quebec University Press, in press
Anderson, V., Lajoie, G., Bell, R. (1995). Neuropsychological Assessment of the School-aged Child. Department of Psychology, Melbourne: University of Melbourne
Anderson, V. A., Anderson, P., Northam, E., Jacobs, R., Catroppa, C. (2001a). Development of executive functions through late childhood and adolescence in an Australian sample. Dev Neuropsychol 20: 385–406CrossRefGoogle Scholar
Anderson, V., Northam, E., Hendy, J., Wrennall, J. (2001b). Developmental Neuropsychology. Hove, UK: Psychology Press
Ardila, A., Rosselli, M. (1994). Development of language, memory and visuospatial abilities in 5- to 12-year-old children using a neuropsychological battery. Dev Neuropsychol 10: 97–120CrossRefGoogle Scholar
Baddeley, A. (1998). Recent developments in working memory. Curr Opin Neurol 8: 234–238CrossRefGoogle ScholarPubMed
Barkley, R. A. (1996). Linkages between attention and executive functions. In Attention, Memory and Executive Function, ed. G. R. Lyon, A. Krasnegor. Baltimore, MD: Paul H. Brookes, pp. 307–326
Bedwell, J. S., Keller, K., Smith, A. K.et al. (1999). Why does postpsychotic IQ decline in childhood-onset schizophrenia?Am J Psychiatry 156: 1996–1997Google ScholarPubMed
Benes, F. M. (1989). Myelination of cortical–hippocampal relays during late adolescence. Schizophr Bull 15: 585–593CrossRefGoogle ScholarPubMed
Benes, F. M., Turtle, M., Khan, Y., Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence and adulthood. Arch Gen Psychiatry 51: 477–484CrossRefGoogle Scholar
Case, R. (1992). The role of the frontal lobes in the regulation of cognitive development. Brain Cognit 20: 51–73CrossRefGoogle ScholarPubMed
Casey, B. J., Giedd, J. N., Thomas, K. M. (2000). Structural and functional brain development and its relation to cognitive development. Biol Psychiatry 54: 241–257CrossRefGoogle ScholarPubMed
Chelune, G. J., Baer, R. (1986). Developmental norms of the Wisconsin Card Sorting Test. J Clin Exp Neuropsychol 8: 219–228CrossRefGoogle ScholarPubMed
Chugani, H., Phelps, M., Mazziotta, J. (1987). Positron emission tomography study of human brain functional development. Ann Neurol 22: 487–497CrossRefGoogle ScholarPubMed
Luca, C. R., Wood, S. J., Anderson, V.et al. (2003). Normative data from the CANTAB. I: Development of executive function over the lifespan. J Clin Exp Neuropsychol 25: 242–254CrossRefGoogle ScholarPubMed
Dubas, J. (1991). Cognitive abilities and physical maturation. In Encyclopedia of Adolescence, Vol. 1, ed. R. Lerner et al. New York: Garland Publishing, pp. 133–138
Elliott, R., Sahakian, B. J. (1995). The neuropsychology of schizophrenia: relations with clinical and neurobiological dimensions. Psychol Med 25: 581–594CrossRefGoogle ScholarPubMed
Eslinger, P. J., Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology 35: 1731–1741CrossRefGoogle ScholarPubMed
Eslinger, P. J., Grattan, L. M., Damasio, H., Damasio, A. R. (1992). Developmental consequences of childhood frontal lobe damage. Arch Neurol 49: 764–769CrossRefGoogle ScholarPubMed
Eslinger, P., Biddle, K., Grattan, L. (1997). Cognitive and social development in children with prefrontal cortex lesions. In Development of the Prefrontal Cortex: Evolution, Neurology, and Behavior, ed. P. S. Goldman-Rakic. Baltimore, MD: Brookes, pp. 295–336
Eslinger, P., Biddle, K., Pennington, B., Page, R. (1999). Cognitive and behavioral development up to 4 years after early right frontal lobe lesion. Dev Neuropsychol 15: 157–191CrossRefGoogle Scholar
Espy, K. (1997). The shape school: assessing executive function in preschool children. Dev Neuropsychol 13: 495–499CrossRefGoogle Scholar
Giedd, J. N., Blumenthal, J., Jeffries, N. O.et al. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci 2: 861–863CrossRefGoogle ScholarPubMed
Golden, C. (1981). Luria Nebraska Children's Battery: theory and formulation. In Neuropsychological Assessment of the School-aged Child, ed. G. W. Hynd, J. E. Obzut. London: Grune and Stratton, pp. 277–302
Goldman-Rakic, P. S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci 11: 137–156CrossRefGoogle ScholarPubMed
Happe, F., Frith, U. (1996). The neuropsychology of autism. Brain 119: 1377–1400CrossRefGoogle ScholarPubMed
Heilman, K., Valenstein, E., Watson, R. (1997). Disorders of attention. In Contemporary Behavioral Neurology, ed. M. Trimble, J. Cummings. London: Harcourt, pp. 127–138
Hitch, G. J. (2002). Developmental changes in working memory: a multicomponent view. In Lifespan Development of Human Memory, ed. P. Graf, N. Ohta. Cambridge, MA: MIT Press, pp. 15–38
Hitch, G. J., Towse, J., Hutton, U. (2001). What limits children's working memory span? Theoretical accounts and applications for scholastic development. J Exp Psychol Gen 130: 184–198CrossRefGoogle ScholarPubMed
Huttenlocher, P. (1984). Synapse elimination and plasticity in developing human cerebral cortex. Am J Ment Defic 88: 488–496Google ScholarPubMed
Hutton, S. B., Puri, B. K., Duncan, L.-J.et al. (1998). Executive function in first-episode schizophrenia. Psychol Med 28: 463–473CrossRefGoogle ScholarPubMed
Jacobs, R., Northam, E., Anderson, V. (2001). Cognitive outcome in children with myelomeningocele and perinatal hydrocephalus. J Dev Phys Disabil 13: 389–405CrossRefGoogle Scholar
Klingberg, T., Vaidya, C. J., Gabrieli, J. D. E., Moseley, M. E., Hedehus, M. (1999). Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10: 2817–2821CrossRefGoogle ScholarPubMed
Klingberg, T., Forssberg, H., Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J Cogn Neurosci 14: 1–10CrossRefGoogle ScholarPubMed
Koski, L., Petrides, M. (2002). Distractibility after unilateral resections from the frontal and anterior cingulate cortex in humans. Neuropsychologia 40: 1059–1072CrossRefGoogle ScholarPubMed
Kwon, H., Reiss, A. L., Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proc Natl Acad Sci USA 99: 13336–13341CrossRefGoogle ScholarPubMed
Leduc, M., Herron, J. E., Greenberg, D. R., Eslinger, P. J., Grattan, L. M. (1999). Impaired awareness of social and emotional competencies following orbital frontal lobe damage. Brain Cogn 40: 174–177Google Scholar
Levin, H. S., Culhane, K. A., Hartmann, J.et al. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Dev Neuropsychol 7: 377–395CrossRefGoogle Scholar
Lieberman, J. A. (1999). Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry 46: 729–739CrossRefGoogle ScholarPubMed
Luciana, M., Nelson, C. A. (1998). The functional emergence of prefrontally guided working memory systems in four- to eight-year-old children. Neuropsychologia 36: 273–293CrossRefGoogle ScholarPubMed
Luna, B., Sweeney, J. A. (2001). Studies of brain and cognitive maturation through childhood and adolescence: a strategy for testing neurodevelopmental hypotheses. Schizophr Bull 27: 443–455CrossRefGoogle ScholarPubMed
Luna, B., Thulborn, K. R., Munoz, D. P.et al. (2001). Maturation of widely distributed brain function subserves cognitive development. NeuroImage 13: 786–793CrossRefGoogle ScholarPubMed
Mahony, K., Pantelis, C., Proffitt, T.et al. (2001). Comparison of set-shifting ability in patients with first-episode psychosis and chronic schizophrenia. Schizophr Res 49: 114–115Google Scholar
Manly, T., Anderson, V., Nimmo-Smith, I.et al. (2001). The differential assessment of children's attention: The Test of Everyday Attention for Children (TEA-Ch). Normative sample and ADHD performance. J Child Psychol Psychiatry 42: 1065–1087CrossRefGoogle ScholarPubMed
Marlowe, W. B. (1992). The impact of a right prefrontal lesion on the developing brain. Brain Cogn 20: 205–213CrossRefGoogle ScholarPubMed
Mateer, C. A. (1990). Cognitive and behavioral sequalae of face and forehead injury in childhood. J Clin Exp Neuropsychol 12: 95Google Scholar
McKay, K., Halperin, J., Schwartz, S., Sharma, V. (1994). Developmental analysis of three aspects of information processing: sustained attention, selective attention and response organization. Dev Neuropsychol 10: 121–132CrossRefGoogle Scholar
Meltzoff, A., Moore, M. (1977). Imitation of facial and manual gestures by human neonates. Science 198: 74–78CrossRefGoogle ScholarPubMed
Murray, R. M., Lewis, S. (1987). Is schizophrenia a neurodevelopmental disorder? [Editorial]Br Med J 295: 681–682CrossRefGoogle Scholar
Nichelli, F., Bulgheroni, S., Riva, D. (2001). Developmental patterns of verbal and visuospatial spans. Neurol Sci 22: 377–384CrossRefGoogle ScholarPubMed
Owen, A. M., Roberts, A., Hodges, J.et al. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain 116: 1159–1175CrossRefGoogle ScholarPubMed
Pantelis, C., Barnes, T. R., Nelson, H. E.et al. (1997). Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120: 1823–1843CrossRefGoogle ScholarPubMed
Pantelis, C., Barber, F., Barnes, T. R.et al. (1999). Comparison of set-shifting ability in patients with chronic schizophrenia and frontal lobe damage. Schizophr Res 37: 251–270CrossRefGoogle ScholarPubMed
Pantelis, C., Yücel, M., Wood, S. J., McGorry, P. D., Velakoulis, D. (2001). The timing and functional consequences of structural brain abnormalities in schizophrenia. NeuroSci News 4: 36–46Google Scholar
Pantelis, C., Wood, S. J., Maruff, P. (2002). Schizophrenia. In Cognitive Deficits in Brain Disorders, ed. A. M. Owen, J. Harrison. London: Martin Dunitz, pp. 217–248
Pantelis, C., Yücel, M., Wood, S. J., McGorry, P. D., Velakoulis, D. (2003). Early and late neurodevelopmental disturbances in schizophrenia and their functional consequences. Aust NZ J Psychiatry 37: 399–406CrossRefGoogle ScholarPubMed
Paus, T., Zijdenbos, A., Worsley, K.et al. (1999). Structural maturation of neural pathways in children and adolescents: in vivo study. Science 283: 1908–1911CrossRefGoogle ScholarPubMed
Paus, T., Collins, D. L., Evans, A. C.et al. (2001). Maturation of white matter in the human brain: a review of magnetic resonance studies. Brain Res Bull 54: 255–266CrossRefGoogle ScholarPubMed
Pentland, L., Todd, J. A., Anderson, V. (1998). The impact of head injury severity on planning ability in adolescence: a functional analysis. Neuropsychol Rehab 8: 301–317CrossRefGoogle Scholar
Petersen, A. (1998). Adolescence. In Behavioral Medicine and Women: A Comprehensive Handbook, ed. E. Blechman, K. Brownell. New York: Guilford Press, pp. 45–50
Piaget, J. (1965). Moral Judgment of the Child. New York: Free Press
Price, B. H., Daffner, K. R., Stowe, R. M., Mesulam, M. M. (1990). The compartmental learning disabilities of early frontal lobe damage. Brain 113: 1383–1393CrossRefGoogle Scholar
Proffitt, T. (2001). The stability of spatial working memory and problem solving deficits in first-episode psychosis and established psychotic illness. Ph.D. Thesis, University of Melbourne, Melbourne
Rakic, P., Bourgeois, J.-P., Goldman-Rakic, P. S. (1994). Synaptic development of the cerebral cortex: implications for learning, memory and mental illness. In Progress in Brain Research, The Self-organizing Brain: From Growth Cones to Functional Networks, Vol. 102, ed. J. van Pelt, M. Corner, H. B. Uylings, F. Lopes de Silva. Amsterdam: Elsevier, pp. 227–243CrossRef
Rebok, G., Smith, C., Pascualvaca, D.et al. (1997). Developmental changes in attentional performance in urban children from eight to thirteen years. Child Neuropsychol 3: 47–60CrossRefGoogle Scholar
Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., Denckla, M. B. (1996). Brain development, gender and IQ in children: a volumetric imaging study. Brain 119: 1763–1774CrossRefGoogle ScholarPubMed
Rezai, K., Andreasen, N. C., Alliger, R. J.et al. (1993). The neuropsychology of the prefrontal cortex. Arch Neurol 50: 636–642CrossRefGoogle ScholarPubMed
Ridderinkhof, K., Molen, M. (1997). Mental resources, processing speed and inhibitory control: a developmental perspective. Biol Psychol 45: 241–261CrossRefGoogle ScholarPubMed
Roberts, A., Robbins, T. W., Weiskrantz, L. (1998). Discussions and conclusions. In The Prefrontal Cortex: Executive and Cognitive functions, ed. A. Roberts, T. W. Robbins, L. Weiskrantz. Oxford: Oxford University Press, pp. 221–242CrossRef
Rubia, K., Overmeyer, S., Taylor, E.et al. (2000). Functional frontalisation with age: mapping neurodevelopmental trajectories with fMRI. Neurosci Biobehav Rev 24: 13–19CrossRefGoogle ScholarPubMed
Shanab, M., Yasin, A. (1979). Intradimensional and extradimensional shifts by Jordanian students. J Gen Psychol 100: 199–213CrossRefGoogle Scholar
Shen, J., Petersen, K. F., Behar, K. L.et al. (1999). Determination of the rate of the glutamate/glutamine cycle in the human brain by in vivo13C NMR. Proc Natl Acad Sci USA 96: 8235–8340CrossRefGoogle Scholar
Sowell, E. R., Thompson, P. M., Holmes, C., Jernigan, T. L., Toga, A. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci 2: 859–861CrossRefGoogle ScholarPubMed
Sowell, E. R., Thompson, P. M., Tessner, K. D., Toga, A. (2001a). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. J Neurosci 21: 8819–8829CrossRefGoogle Scholar
Sowell, E. R., Delis, D., Stiles, J., Jernigan, T. L. (2001b). Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. J Int Neuropsychol Soc 7: 312–322CrossRefGoogle Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M.et al. (2003). Mapping cortical change across the human life span. Nat Neurosci 6: 309–315CrossRefGoogle ScholarPubMed
Spear, L. (2000). The adolescent brain and age-related behavioral manifestation. Neurosci Biobehav Rev 24: 417–463CrossRefGoogle Scholar
Stuss, D. T. (1992). Biological and psychological development of executive functions. Brain Cogn 20: 8–23CrossRefGoogle ScholarPubMed
Stuss, D. T., Benson, D. (1987). The frontal lobes and control of cognition and memory. In The Frontal Lobes Revisited, ed. E. Perecman. New York: Irbn Press, pp. 141–154
Travis, F. (1998). Cortical and cognitive development in 4th, 8th and 12th grade students: the contribution of speed of processing and executive function to cognitive development. Biol Psychol 48: 37–56CrossRefGoogle Scholar
Vaidya, C., Austin, G., Kirkorian, G.et al. (1998). Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci 95: 14494–14499CrossRefGoogle ScholarPubMed
Velakoulis, D., Wood, S. J., McGorry, P. D., Pantelis, C. (2000). Evidence for progression of brain structural abnormalities in schizophrenia: beyond the neurodevelopmental model. Aust NZ J Psychiatry 34(Suppl.): S113–S126CrossRefGoogle ScholarPubMed
Walker, E., Savoie, T., Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophr Bull 20: 441–451CrossRefGoogle ScholarPubMed
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44: 660–669CrossRefGoogle ScholarPubMed
Welsh, M. C., Pennington, B. F. (1988). Assessing frontal lobe functioning in children: views from developmental psychology. Dev Psychol 4: 199–230Google Scholar
Whitney, L., White, K. (1993). Dimensional shift and the transfer of attention. Q J Exp Psychol 46B: 225–252CrossRefGoogle Scholar
Wood, S. J., Pantelis, C. (2001). Does a neurodevelopmental lesion involving the hippocampus explain memory dysfunction in schizophrenia?Z Neuropsychol 12: 61–67CrossRefGoogle Scholar
Wood, S. J., Pantelis, C., Proffitt, T.et al. (2003). Spatial working memory ability is a marker of risk-for-psychosis. Psychol Med 33: 1239–1247CrossRefGoogle ScholarPubMed
Yakovlev, P., Lecours, A. (1967). The myelogenetic cycles of regional maturation of the brain. In Regional Development of the Brain in Early Life, ed. A. Minkowski. Oxford: Blackwell, pp. 3–70

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×