Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T14:28:24.348Z Has data issue: false hasContentIssue false

10 - Central nervous system controls of adipose tissue apoptosis

Published online by Cambridge University Press:  15 September 2009

Mary Anne Della-Fera
Affiliation:
University of Georgia, 444, Animal Science Complex, Athens, GA 30602–2771, USA
Mark W. Hamrick
Affiliation:
Medical College of Georgia, Augusta, GA 30912–2000, USA
Clifton A. Baile
Affiliation:
University of Georgia, 444, Animal Science Complex, Athens, GA 30602–2771, USA
Jenni Harvey
Affiliation:
University of Dundee
Dominic J. Withers
Affiliation:
Imperial College of Science, Technology and Medicine, London
Get access

Summary

Background

Increased adipose tissue mass is a common denominator in both obesity and osteoporosis. Obesity is characterized by increased fat storage in subcutaneous and visceral adipose depots resulting from an imbalance between energy intake and energy expenditure, whereas osteoporosis is associated with increased adipocyte production in bone marrow and is not necessarily associated with increased overall adiposity. In obesity a reduction of adipose tissue mass is accompanied by amelioration of the pathophysiological effects. There are currently no therapies that specifically reduce bone marrow adipocyte populations. However, bone formation decreases with increasing proportion of marrow adipocytes (Verma et al., 2002); thus, it is likely that reversal or prevention of bone marrow adiposity may improve bone quality.

In the USA, the prevalence of overweight among adults increased by 61% from 1991 to 2000; currently, more than half of all adults are considered overweight and approximately 20% are extremely overweight or obese (Flegal et al., 1998). Obesity is not just a cosmetic problem – there is much evidence indicating that higher levels of body fat are associated with an increased risk for the development of numerous adverse health consequences (Visscher & Seidell, 2001). There is also a tremendous economic burden associated with the recent rise in prevalence of obesity. The economic costs of obesity are estimated to be ∼7% of total healthcare costs in the USA (Colditz, 1999).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akune, T., Ohba, S., Kamekura, S.et al. (2004). PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest. 113, 846–55.CrossRefGoogle ScholarPubMed
Alberts, B. (2002). Programmed cell death (apoptosis). In Molecular Biology of the Cell, 4th edn, pp. 1010–14. New York: Garland Science.Google Scholar
Bartness, T. J. & Bamshad, M. (1998). Innervation of mammalian white adipose tissue: implications for the regulation of total body fat. Am. J. Physiol. 275, R1399–411.Google ScholarPubMed
Choi, Y. H., Li, C., Page, K.et al. (2003). Melanocortin receptors mediate leptin effects on feeding and body weight but not adipose apoptosis. Physiol. Behav. 79, 795–801.CrossRefGoogle Scholar
Colditz, G. A. (1999). Economic costs of obesity and inactivity. Med. Sci. Sports Exercise 31, S663–7.CrossRefGoogle ScholarPubMed
Collins, S. & Surwit, R. S. (2001). The beta-adrenergic receptors and the control of adipose tissue metabolism and thermogenesis. Recent Prog. Horm. Res. 56, 309–28.CrossRefGoogle ScholarPubMed
Commons, G. W., Halperin, B. & Chang, C. C. (2001). Large-volume liposuction: a review of 631 consecutive cases over 12 years. Plast Reconstr Surg. 108, 1753–63; discussion 1764–7.CrossRefGoogle ScholarPubMed
D'Andrea, F., Grella, R., Rizzo, M. R.et al. (2005). Changing the metabolic profile by large-volume liposuction: a clinical study conducted with 123 obese women. Aesthetic Plast. Surg. 29, 472–8.CrossRefGoogle ScholarPubMed
Dall Vechia, S., Lambert, P. D., Couceyro, P. C., Kuhar, M. J. & Smith, Y. (2000). CART peptide immunoreactivity in the hypothalamus and pituitary in monkeys: analysis of ultrastructural features and synaptic connections in the paraventricular nucleus. J. Comp. Neurol. 416, 291–308.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Della-Fera, M. A., Qian, H. & Baile, C. A. (2001). Adipocyte apoptosis in the regulation of body fat mass by leptin. Diabetes Obes. Metab. 3, 299–310.CrossRefGoogle ScholarPubMed
Della-Fera, M. A., Choi, Y. -H., Hamrick, M. W., Hartzell, D. L., Pennington, C. & Baile, C. A. (2005). Leptin injected into the ventromedial hypothalamus (VMH) reduces food intake (FI), body weight (BW) and bone marrow adiposity and increases apoptosis of adipose tissue and bone marrow. FASEB J. 19, A1135.Google Scholar
Dowell, P., Flexner, C., Kwiterovich, P. O. & Lane, M. D. (2000). Suppression of preadipocyte differentiation and promotion of adipocyte death by HIV protease inhibitors. J. Biol. Chem. 275, 41 325–32.CrossRefGoogle ScholarPubMed
Ducy, P., Amling, M., Takeda, S.et al. (2000). Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100, 197–207.CrossRefGoogle ScholarPubMed
Duff, E., Li, C. L., Hartzell, D. L., Choi, Y. H., Della-Fera, M. A. & Baile, C. A. (2004). Ciliary neurotrophic factor injected icv induces adipose tissue apoptosis in rats. Apoptosis 9, 629–34.CrossRefGoogle ScholarPubMed
Dunbar, J. C., Hu, Y. & Lu, H. (1997). Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes 46, 2040–3.CrossRefGoogle ScholarPubMed
Elefteriou, F., Ahn, J. D., Takeda, S.et al. (2005). Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514–20.CrossRefGoogle Scholar
Elias, C. F., Lee, C., Kelly, J.et al. (1998). Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21, 1375–85.CrossRefGoogle ScholarPubMed
Evans, M., Geigerman, C., Cook, J., Curtis, L., Kuebler, B. & McIntosh, M. (2000). Conjugated linoleic acid suppresses triglyceride accumulation and induces apoptosis in 3T3-L1 preadipocytes. Lipids 35, 899–910.CrossRefGoogle ScholarPubMed
Felmer, R., Cui, W. & Clark, A. J. (2002). Inducible ablation of adipocytes in adult transgenic mice expressing the E. coli nitroreductase gene. J. Endocrinol. 175, 487–98.CrossRefGoogle ScholarPubMed
Flegal, K. M., Carroll, M. D., Kuczmarski, R. J. & Johnson, C. L. (1998). Overweight and obesity in the United States: prevalence and trends, 1960–1994. Int. J. Obes. Rel. Metab. Dis. 22, 39–47.CrossRefGoogle Scholar
Fried, S. K., Bunkin, D. A. & Greenberg, A. S. (1998). Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrin. Metab. 83, 847–50.Google ScholarPubMed
Gautvik, K. M., Lecea, L., Gautvik, V. T.et al. (1996). Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl. Acad. Sci. USA 93, 8733–8.CrossRefGoogle ScholarPubMed
Geloen, A., Roy, P. E. & Bukowiecki, L. J. (1989). Regression of white adipose tissue in diabetic rats. Am. J. Physiol. 257, E547–53.Google ScholarPubMed
Giugliano, G., Nicoletti, G., Grella, E.et al. (2004). Effect of liposuction on insulin resistance and vascular inflammatory markers in obese women. Br. J. Plast. Surg. 57, 190–4.CrossRefGoogle ScholarPubMed
Gloaguen, I., Costa, P., Demartis, A.et al. (1997). Ciliary neurotrophic factor corrects obesity and diabetes associated with leptin deficiency and resistance. Proc. Natl. Acad. Sci. USA 94, 6456–61.CrossRefGoogle ScholarPubMed
Gong, H. X., Guo, X. R., Fei, L., Guo, M., Liu, Q. Q. & Chen, R. H. (2003). Lipolysis and apoptosis of adipocytes induced by neuropeptide Y-Y5 receptor antisense oligodeoxynucleotides in obese rats. Acta Pharmacol. Sin. 24, 569–75.Google ScholarPubMed
Gullicksen, P. S., Della-Fera, M. A. & Baile, C. A. (2003). Leptin-induced adipose apoptosis: implications for body weight regulation. Apoptosis 8, 327–35.CrossRefGoogle ScholarPubMed
Gupta, S. (2001). Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci. 69, 2957–64.CrossRefGoogle Scholar
Hamrick, M., Della-Fera, M. A., Hartzell, D. L., Choi, Y. -H. & Baile, C. A. (2005a). Central control of bone marrow adipocyte populations by leptin. J. Bone Miner. Res. 20, S368.Google Scholar
Hamrick, M. W., Della-Fera, M. A., Choi, Y. H., Pennington, C., Hartzell, D. & Baile, C. A. (2005b). Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin-deficient ob/ob mice. J. Bone Miner. Res. 20, 994–1001.CrossRefGoogle Scholar
Hansen, M. J., Schioth, H. B. & Morris, M. J. (2005). Feeding responses to a melanocortin agonist and antagonist in obesity induced by a palatable high-fat diet. Brain Res. 1039, 137–45.CrossRefGoogle ScholarPubMed
Hargrave, K. M., Li, C., Meyer, B. J.et al. (2002). Adipose depletion and apoptosis induced by trans-10, cis-12 conjugated linoleic acid in mice. Obes. Res. 10, 1284–90.CrossRefGoogle ScholarPubMed
Hargrave, K. M., Meyer, B. J., Li, C., Azain, M. J., Baile, C. A. & Miner, J. L. (2004). Influence of dietary conjugated linoleic acid and fat source on body fat and apoptosis in mice. Obes. Res. 12, 1435–44.CrossRefGoogle ScholarPubMed
Haynes, W. G., Sivitz, W. I., Morgan, D. A., Walsh, S. A. & Mark, A. L. (1997). Sympathetic and cardiorenal actions of leptin. Hypertension 30, 619–23.CrossRefGoogle ScholarPubMed
Hengartner, M. O. (2000). The biochemistry of apoptosisNature 407, 770–6.CrossRefGoogle Scholar
Inui, A. (1999). Feeding and body-weight regulation by hypothalamic neuropeptides – mediation of the actions of leptin. Trends Neurosci. 22, 62–7.CrossRefGoogle ScholarPubMed
Ip, N. Y. & Yancopoulos, G. D. (1996). The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu. Rev. Neurosci. 19, 491–515.CrossRefGoogle ScholarPubMed
Jang, M., Mistry, A., Swick, A. G. & Romsos, D. R. (2000). Leptin rapidly inhibits hypothalamic neuropeptide Y secretion and stimulates corticotropin-releasing hormone secretion in adrenalectomized mice. J. Nutr. 130, 2813–20.CrossRefGoogle ScholarPubMed
Jilka, R. L. (2002). Osteoblast progenitor fate and age-related bone loss. J. Musculoskelet. Neuronal Interact. 2, 581–3.Google ScholarPubMed
Justesen, J., Stenderup, K., Ebbesen, E. N., Mosekilde, L., Steiniche, T. & Kassem, M. (2001). Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2, 165–71.CrossRefGoogle ScholarPubMed
Kajkenova, O., Lecka-Czernik, B., Gubrij, I.et al. (1997). Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J. Bone Miner. Res. 12, 1772–9.CrossRefGoogle ScholarPubMed
Kalra, S. P., Xu, B., Dube, M. G., Moldawer, L. L., Martin, D. & Kalra, P. S. (1998). Leptin and ciliary neurotropic factor (CNTF) inhibit fasting-induced suppression of luteinizing hormone release in rats: role of neuropeptide Y. Neurosci. Lett. 240, 45–9.CrossRefGoogle ScholarPubMed
Kaufmann, S. C. & Hengartner, M. O. (2001). Programmed cell death: alive and well in the new millennium. Trends Cell Biol. 11, 526–34.CrossRefGoogle ScholarPubMed
Kellenberger, S., Muller, K., Richener, H. & Bilbe, G. (1998). Formoterol and isoproterenol induce c-fos gene expression in osteoblast-like cells by activating beta2-adrenergic receptors. Bone 22, 471–8.CrossRefGoogle ScholarPubMed
Kim, H. -K., Nelson-Dooley, C., Della-Fera, M. A.et al. (2006). Genistein decreases food intake, body weight and fat pad weight and causes adipose tissue apoptosis in ovariectomized female mice. J. Nutr. 136, 409–14.CrossRefGoogle ScholarPubMed
Kokoeva, M. V., Yin, H. & Flier, J. S. (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science 310, 679–83.CrossRefGoogle ScholarPubMed
Kolonin, M. G., Saha, P. K., Chan, L., Pasqualini, R. & Arap, W. (2004). Reversal of obesity by targeted ablation of adipose tissue. Nat. Med. 10, 625–32.CrossRefGoogle ScholarPubMed
Kotz, C. M., Briggs, J. E., Pomonis, J. D., Grace, M. K., Levine, A. S. & Billington, C. J. (1998). Neural site of leptin influence on neuropeptide Y signaling pathways altering feeding and uncoupling protein. Am. J. Physiol. 275, R478–84.Google ScholarPubMed
Koylu, E. O., Couceyro, P. R., Lambert, P. D., Ling, N. C., DeSouza, E. B. & Kuhar, M. J. (1997). Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol. 9, 823–33.CrossRefGoogle ScholarPubMed
Koylu, E. O., Couceyro, P. R., Lambert, P. D. & Kuhar, M. J. (1998). Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 391, 115–32.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Kristensen, P., Judge, M. E., Thim, L.et al. (1998). Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72–6.CrossRefGoogle ScholarPubMed
Kurabayashi, T., Tomita, M., Matsushita, H., Honda, A., Takakuwa, K. & Tanaka, K. (2001). Effects of a beta 3 adrenergic receptor agonist on bone and bone marrow adipocytes in the tibia and lumbar spine of the ovariectomized rat. Calcif Tissue Int. 68, 248–54.CrossRefGoogle Scholar
Lagathu, C., Bastard, J. P., Auclair, M.et al. (2004). Antiretroviral drugs with adverse effects on adipocyte lipid metabolism and survival alter the expression and secretion of proinflammatory cytokines and adiponectin in vitro. Antivir. Ther. 9, 911–20.Google ScholarPubMed
Lagathu, C., Kim, M., Maachi, M.et al. (2005). HIV antiretroviral treatment alters adipokine expression and insulin sensitivity of adipose tissue in vitro and in vivo. Biochimie 87, 65–71.CrossRefGoogle ScholarPubMed
Lambert, P. D., Couceyro, P. R., McGirr, K. M., Dall Vechia, S. E., Smith, Y. & Kuhar, M. J. (1998). CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse 29, 293–8.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Lambert, P. D., Anderson, K. D., Sleeman, M. W.et al. (2001). Ciliary neurotrophic factor activates leptin-like pathways and reduces body fat, without cachexia or rebound weight gain, even in leptin-resistant obesity. Proc. Natl. Acad. Sci. USA 98, 4652–7.CrossRefGoogle ScholarPubMed
Laroche, M. (2002). Intraosseous circulation from physiology to disease. Joint Bone Spine 69, 262–9.CrossRefGoogle ScholarPubMed
Larsen, P. J., Vrang, N., Petersen, P. C. & Kristensen, P. (2000). Chronic intracerebroventricular administration of recombinant CART(42-89) peptide inhibits and causes weight loss in lean and obese Zucker (fa/fa) rats. Obes. Res. 8, 590–6.CrossRefGoogle ScholarPubMed
Lin, J., Della-Fera, M. A. & Baile, C. A. (2005). Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res. 13, 982–90.CrossRefGoogle ScholarPubMed
Loftus, T. M., Kuhajda, F. P. & Lane, M. D. (1998). Insulin depletion leads to adipose-specific cell death in obese but not lean mice. Proc. Natl. Acad. Sci. USA 95, 14 168–72.CrossRefGoogle Scholar
Lorentzon, R., Alehagen, U. & Boquist, L. (1986). Osteopenia in mice with genetic diabetes. Diabetes Res. Clin. Pract. 2, 157–63.CrossRefGoogle ScholarPubMed
Ma, Y. C. & Huang, X. Y. (2002). Novel signaling pathway through the beta-adrenergic receptor. Trends Cardiovasc Med. 12, 46–9.CrossRefGoogle ScholarPubMed
Manthorpe, M., Louis, J. C., Hagg, T. & Varon, S. (1993) Ciliary neurotrophic factor. In Neurotrophic Factors, ed. Loughlin, S. E. & Fallon, J. H., pp. 443–73. San Diego: Academic Press.Google Scholar
Margareto, J., Aguado, M., Oses-Prieto, J. A.et al. (2000). A new NPY-antagonist strongly stimulates apoptosis and lipolysis on white adipocytes in an obesity model. Life Sci. 68, 99–107.CrossRefGoogle Scholar
Margareto, J., Larrarte, E., Marti, A. & Martinez, J. A. (2001). Up-regulation of a thermogenesis-related gene (UCP1) and down-regulation of PPARgamma and aP2 genes in adipose tissue: possible features of the antiobesity effects of a beta3-adrenergic agonist. Biochem. Pharmacol. 61, 1471–8.CrossRefGoogle ScholarPubMed
Marsh, D. J., Hollopeter, G., Huszar, D.et al. (1999). Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat Genet. 21, 119–22.CrossRefGoogle ScholarPubMed
Martin, A., Vittoris, R., David, V.et al. (2005). Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 146, 3652–9.CrossRefGoogle ScholarPubMed
Maurin, A. C., Chavassieux, P. M., Frappart, L., Delmas, P. D., Serre, C. M. & Meunier, P. J. (2000). Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone 26, 485–9.CrossRefGoogle ScholarPubMed
Mayer, B. & Oberbauer, R. (2003). Mitochondrial regulation of apoptosis. News Physiol Sci. 18, 89–94.Google ScholarPubMed
Meunier, P., Aaron, J., Edouard, C. & Vignon, G. (1971). Osteoporosis and the replacement of cell populations of the marrow by adipose tissue. A quantitative study of 84 iliac bone biopsies. Clin. Orthop. 80, 147–54.CrossRefGoogle ScholarPubMed
Narbro, K., Jonsson, E., Larsson, B., Waaler, H., Wedel, H. & Sjostrom, L. (1996). Economic consequences of sick-leave and early retirement in obese Swedish women. Int. J. Obes. Rel. Metab. Dis. 20, 895–903.Google ScholarPubMed
National Heart Lung and Blood Institute (1998). Clinical Guidelines of the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. Bethesda, MD: National Institutes of Health.
Nuttall, M. E. & Gimble, J. M. (2004). Controlling the balance between osteoblastogenesis and adipogenesis and the consequent therapeutic implications. Curr. Opin. Pharmacol. 4, 290–4.CrossRefGoogle ScholarPubMed
Page, K. A., Hartzell, D. L., Li, C.et al. (2004). Beta-adrenergic receptor agonists increase apoptosis of adipose tissue in mice. Domest. Anim. Endocrinol. 26, 23–31.CrossRefGoogle ScholarPubMed
Pajvani, U. B., Trujillo, M. E., Combs, T. P.et al. (2005). Fat apoptosis through targeted activation of caspase 8; a new mouse model of inducible and reversible lipoatrophy. Nat. Med. 11, 797–803.CrossRefGoogle ScholarPubMed
Pierroz, D. D. (2004). β1β2-adrenergic receptor mice have decreased total body and cortical bone mass despite increased trabecular bone number. J. Bone Miner. Res. 19, 1121.Google Scholar
Prins, J. B. & O'Rahilly, S. (1997). Regulation of adipose cell number in man. Clin. Sci. (Lond). 92, 3–11.CrossRefGoogle ScholarPubMed
Prins, J. B., Walker, N. I., Winterford, C. M. & Cameron, D. P. (1994). Human adipocyte apoptosis occurs in malignancy. Biochem. Biophys. Res. Commun. 205, 625–30.CrossRefGoogle ScholarPubMed
Prins, J. B., Niesler, C. U., Winterford, C. M.et al. (1997). Tumor necrosis factor-alpha induces apoptosis of human adipose cells. Diabetes 46, 1939–44.CrossRefGoogle ScholarPubMed
Sleeman, M. W., Anderson, K. D., Lambert, P. D., Yancopoulos, G. D. & Wiegand, S. J. (2000). The ciliary neurotrophic factor and its receptor, CNTFR alpha. Pharm. Acta. Helv. 74, 265–72.CrossRefGoogle ScholarPubMed
Steppan, C. M., Crawford, D. T., Chidsey-Frink, K. L., Ke, H. & Swick, A. G. (2000). Leptin is a potent stimulator of bone growth in ob/ob mice. Regul. Pept. 92, 73–8.CrossRefGoogle ScholarPubMed
Takeda, S., Elefteriou, F., Levasseur, R.et al. (2002). Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305–17.CrossRefGoogle ScholarPubMed
Tang-Christensen, M., Havel, P. J., Jacobs, R. R., Larsen, P. J. & Cameron, J. (1999). Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J. Clin. Endocrinol. Metab. 84, 711–17.Google ScholarPubMed
Trujillo, M. E., Pajvani, U. B. & Scherer, P. E. (2005). Apoptosis through targeted activation of caspase8 (“ATTAC-mice”): novel mouse models of inducible and reversible tissue ablation. Cell Cycle 4, 1141–5.CrossRefGoogle Scholar
Tsuboyama-Kasaoka, N., Takahashi, M., Tanemura, K.et al. (2000). Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 49, 1534–42.CrossRefGoogle ScholarPubMed
Dijk, G., Bottone, A. E., Strubbe, J. H. & Steffens, A. B. (1994). Hormonal and metabolic effects of paraventricular hypothalamic administration of neuropeptide Y during rest and feeding. Brain Res. 660, 96–103.CrossRefGoogle ScholarPubMed
Verma, S., Rajaratnam, J. H., Denton, J., Hoyland, J. A. & Byers, R. J. (2002). Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J. Clin. Pathol. 55, 693–8.CrossRefGoogle ScholarPubMed
Visscher, T. L. & Seidell, J. C. (2001). The public health impact of obesity. Annu. Rev. Pub. Health. 22, 355–75.CrossRefGoogle ScholarPubMed
Wadden, T. A. (1993). Treatment of obesity by moderate and severe caloric restriction. Results of clinical research trials. Ann. Internal Med. 119, 688–93.CrossRefGoogle ScholarPubMed
Warne, J. P. (2003). Tumour necrosis factor alpha: a key regulator of adipose tissue mass. J. Endocrinol. 177, 351–5.CrossRefGoogle ScholarPubMed
Xu, B., Dube, M. G., Kalra, P. S.et al. (1998). Anorectic effects of the cytokine, ciliary neurotropic factor, are mediated by hypothalamic neuropeptide Y: comparison with leptin. Endocrinology 139, 466–73.CrossRefGoogle ScholarPubMed
Yang, J. Y., Della-Fera, M. A., Nelson-Dooley, C. & Baile, C. A. (2005). Molecular mechanisms of apoptosis induced by ajoene in 3T3-L1 adipocytes. Obes. 14, 388–97.CrossRefGoogle Scholar
Yang, J. -Y., Della-Fera, M. A., Hartzell, D. L., Nelson-Dooley, C., Hausman, D. B. & Baile, C. A. (2006). Esculetin induces apoptosis and inhibits adipogenesis in 3T3-L1 cells. Obes. Res. 14, 1691–9.CrossRefGoogle ScholarPubMed
Yokosuka, M., Xu, B., Pu, S., Kalra, P. S. & Kalra, S. P. (1998). Neural substrates for leptin and neuropeptide Y (NPY) interaction: hypothalamic sites associated with inhibition of NPY-induced food intake. Physiol. Behav. 64, 331–8.CrossRefGoogle ScholarPubMed
Youngstrom, T. G. & Bartness, T. J. (1998). White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am. J. Physiol. 275, R1488–93.Google ScholarPubMed
Zeman, R. J., Hirschman, A., Hirschman, M. L., Guo, G. & Etlinger, J. D. (1991). Clenbuterol, a beta 2-receptor agonist, reduces net bone loss in denervated hindlimbs. Am. J. Physiol. 261, E285–9.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×