Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-25T03:52:25.642Z Has data issue: false hasContentIssue false

5 - Movement disorders

Published online by Cambridge University Press:  08 February 2010

Aage R. Møller
Affiliation:
University of Texas, Dallas
Get access

Summary

Introduction

The somatic motor system controls voluntary movement, locomotion and posture. The motor system is the output organ for all conscious communications. The motor system is complex and it includes sophisticated control systems with many loops, most of which are integrated with one another. The motor system includes a large degree of redundancy, and it has a high degree of plasticity. Therefore, motor systems can be reorganized through expression of neural plasticity, and such reorganization can be activated by new or differing use (exercise), changing demands or injury. Expression of neural plasticity can also cause symptoms and signs of disease.

Disorders of the motor system may cause negative phenomena such as loss of voluntary movement and strength of fine motor control, muscle spasm, tremor, twitches and synkinesis, involuntary movements (chorea, athetosis) and deficits in coordination (ataxia), or positive phenomena such as increased reflexes and increased tone. Reorganization and change in function that are primarily aimed at compensating for deficits may cause symptoms and signs that are not directly related to the primary injury.

Understanding the function of motor systems is a challenge. It is an even greater challenge to understand the causes of various symptoms and signs of injury and diseases that affect the motor systems of the spinal cord and brain. We will therefore devote a part of this chapter to describing the basic organization and function of the motor system.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, R., Sensory Rhizotomy for the Treatment of Childhood Spasticity, in Neurophysiology in Neurosurgery, , V. Deletis and , J. L. Shils, Editors. 2002, Academic Press: Amsterdam. pp. 219–230.Google Scholar
Adkins-Muir, D. L. and , T. A. Jones, Cortical Electrical Stimulation Combined with Rehabilitative Training: Enhanced Functional Recovery and Dendritic Plasticity Following Focal Cortical Ischemia in Rats. Neurol. Res., 2003. 25: pp. 780–788.CrossRefGoogle ScholarPubMed
Albe-Fessard, D., , G. Sarfel, , G. Guiot, , P. Derome, , E. Hertzog, , G. Vourc'h, , H. Brown, , P. Alleonard, , J. Herrand, and , J. C. Trigo, Electrophysiological Studies of Some Deep Cerebral Structures in Man. J. Neuro. Sci., 1966. 3: pp. 37–51.CrossRefGoogle ScholarPubMed
Albin, R. L., , A. B. Young, and , J. B. Penney, The Functional Anatomy of Basal Ganglia Origin. Trends Neurosci., 1989. 12: pp. 366–375.CrossRefGoogle Scholar
Aldrich, M. S., , Z. Hollingsworth, and , J. B. Penney, Dopamine Receptor Autoradiography of Human Narcoleptic Brain. Neurology, 1992. 42: pp. 410–5.CrossRefGoogle ScholarPubMed
Alexander, G. E. and , M. D. Crutcher, Functional Architecture of Basal Ganglia Circuits: Neural Substrate of Parallel Processing. Trends Neurosci., 1990(13): pp. 266–71.CrossRefGoogle Scholar
Alexander, G. E., , M. D. Crutcher, and , M. R. Delong, Basal Ganglia-Thalamocortical Circuits: Parallel Substrates for Motor, Oculomotor, “Prefrontal” and “Limbic” Functions. Progr. Brain Res., 1990. 85: pp. 119–146.CrossRefGoogle ScholarPubMed
Alstermark, B., , M. Pinter, and , S. Sasaki, Brainstem Relay of Disynaptic Pyramidal Epsps to Neck Motoneurons in the Cat. Brain Res., 1983. 259: pp. 147–150.CrossRefGoogle ScholarPubMed
Amassian, V. E., , M. Stewart, , G. J. Quirk, and , J. L. Rosenthal, Physiologic Basis of Motor Effects of a Transient Stimulus to Cerebral Cortex. Neurosurg., 1987. 20: pp. 74–93.CrossRefGoogle Scholar
Amassian, V. E., , R. Q. Cracco, and , P. J. Maccabee, Focal Stimulation of Human Cerebral Cortex with the Magnetic Coil: A Comparison with Electrical Stimulation. Electroenceph. Clin. Neurophys., 1989. 74: pp. 401–416.CrossRefGoogle ScholarPubMed
Amassian, V. E., , G. J. Quirk, and , M. Stewart, A Comparison of Corticospinal Activation by Magnetic Coil and Electrical Stimulation of Monkey Motor Cortex. Electroenceph. Clin. Neurophys., 1990. 77: pp. 390–401.CrossRefGoogle ScholarPubMed
Amassian, V. E., Animal and Human Motor System Neurophysiology Related to Intraoperative Monitoring, in Neurophysiology in Neurosurgery, , V. Deletis and , J. L. Shils, Editors. 2002, Academic Press: Amsterdam. pp. 3–23.Google Scholar
Andersen, P., , P. J. Hagan, , C. G. Phillips, and , T. P. S. Powell, Mapping by Microstimulation of Overlapping Projections from Area 4 to Motor Units of the Baboon's Hand. Proc. R. Soc. London ser B., 1975. 188: pp. 31–60.CrossRefGoogle ScholarPubMed
Ashby, P. and , M. Wiens, Reciprocal Inhibition Following Lesions of the Spinal Cord in Man. J. Physiol., 1989. 414: pp. 145–57.CrossRefGoogle ScholarPubMed
Baldisera, F., H. Hultborn, and M. Illert, Integration of Spinal Neuronal Systems, in Handbook of Physiology – The Nervous System II, , J. M. Brookhart and , V. B. Mountcastle, Editors. 1981, American Physiological Society: Bethesda, MD. pp. 509–595.Google Scholar
Barker, A. T., , R. Jalinous, and , I. L. Freeston, Non-Invasive Magnetic Stimulation of the Human Motor Cortex. Lancet, 1985: pp. 1106–1107.CrossRefGoogle ScholarPubMed
Bennett, D. A., , L. A. Beckett, , A. M. Murray, and , E. Al., Prevalence of Parkinsonian Signs and Associated Mortality in a Community Population of Older People. N. Eng. J. Med., 1996. 334: pp. 71–76.CrossRefGoogle Scholar
Berthoud, H. R. and , W. L. Neuhuber, Functional and Chemical Anatomy of the Afferent Vagal System. Autonomic Neurosci., 2000. 85(1–3): pp. 1–17.CrossRefGoogle ScholarPubMed
Blandini, F., C. Tassorelli, and J. T. Greenamyre, Movement Disorders, in Principles of Neural Aging, , S. U. Dani, , A. Hori, and , G. F. Walter, Editors. 1997, Elsevier: Amsterdam.Google Scholar
Boeve, B. F., , M. H. Silber, , T. J. Ferman, , J. A. Lucas, and , J. E. Parisi, Association of Rapid eye movement (sleep) Sleep Behavior Disorder and Neurodegenerative Disease May Reflect an Underlying Synucleinopathy. Movement Disorders, 2001. 16(4): pp. 622–30.CrossRefGoogle ScholarPubMed
Brink, E., , P. J. Harrison, , E. Jankowska, , D. A. McCrea, and , B. Skoog, Post-Synaptic Potentials in a Population of Motoneurons Following Activity of Single Interneurons in the Cat. J. Physiol., 1983. 343: pp. 341–359.CrossRefGoogle Scholar
Brodal, P., The Central Nervous System. 1998, Oxford University Press: New York.Google Scholar
Brown, J. A., , H. L. Lutsep, , S. C. Cramer, and , M. Weinand, Motor Cortex Stimulation for Enhancement of Recovery after Stroke: Case Report. Neurol. Res., 2003. 25: pp. 815–818.CrossRefGoogle ScholarPubMed
Brown, P., Pathophysiology of Spasticity. J. Neurol. Neurosurg. Psychiatry, 1994. 57: pp. 773–777.CrossRefGoogle ScholarPubMed
Brown, R. H. and , C. L. Nash, Current Status of Spinal Cord Monitoring. Spine, 1979. 4: pp. 466–478.CrossRefGoogle ScholarPubMed
Burke, D. and J. W. Lance, Studies of the Reflex Effects of Primary and Secondary Spindle Endings in Spasticity, in New Developments in Electromyography and Clinical Neurophysiology, , J. E. Desmedt Editor. 1973, Karger: Basel. pp. 475–495.Google Scholar
Burke, D., Spasticity as an Adaptation to Pyramidal Tract Injury, in Functional Recovery in Neurological Disease, , S. G. Waxman, Editor. 1988, Raven Press: New York.Google Scholar
Caspary, D. M., , A. Raza, Lawhorn, , , B. A. Armour, , J. Pippin, and , S. P. Arneric, Immunocytochemical and Neurochemical Evidence for Age-Related Loss of Gamma aminobutyric acid in the Inferior Colliculus: Implications for Neural Presbycusis. J. Neurosci., 1990. 10: pp. 2363–2372.CrossRefGoogle ScholarPubMed
Caspary, D. M., , J. C. Milbrandt, and , R. H. Helfert, Central Auditory Aging: Gamma aminobutyric acid Changes in the Inferior Colliculus. Exp. Gerontol., 1995. 30: pp. 349–360.CrossRefGoogle ScholarPubMed
Cooper, I. S., Ligation of the Anterior Choroidal Artery for Involuntary Movements in Parkinsonism. Psychiatry, 1953. 27: pp. 317–319.Google ScholarPubMed
Courchesne, E., , J. Townsend, , N. A. Akshoomof, , O. Saitoh, , R. Yeung-Courchesne, , A. J. Lincoln, James, R. H H. E.. , L. Schreibman, and , L. Lau, Impairment in Shifting Attention in Autistic and Cerebellar Patients. Behav. Neurosci., 1994. 108: pp. 848–865.CrossRefGoogle ScholarPubMed
Crago, A., and , W. Z. Rymer, Sampling of Total Muscle Force by Tendon Organs. J. Neurophys., 1982. 47: pp. 1069–1083.CrossRefGoogle ScholarPubMed
Cramer, S. C., , R. R. Nbenson, , V. C. Burra, , D. Himes, , K. R. Crafton, , J. S. Janowsky, , J. A. Brown, and , H. L. Lutsep, Mapping Individual Brains to Guide Restorative Therapy after Stroke: Rationale and Pilot Studies. Neurol Res, 2003(25): pp. 811–814.CrossRefGoogle ScholarPubMed
Creasey, G. H., Restoration of Bladder, Bowel, and Sexual Function. Topics Spinal Cord Inj. Rehabil., 1999. 5: pp. 21–32.CrossRefGoogle Scholar
Daly, J. J., , E. B. Marsolais, , L. M. Mendell, , W. Z. Rymer, , A. Stefanovska, , J. R. Wolpaw, and , C. Kantor, Therapeutic Neural Effects of Electrical Stimulation. IEEE Trans. Rehab. Eng., 1996. 4(4): pp. 218–230.CrossRefGoogle ScholarPubMed
Davis, M., , D. S. Gendelman, , M. D. Tischler, and , P. M. Gendelman, A Primary Acoustic Startle Circuit-Lesion and Stimulation Studies. J. Neurosci., 1982. 2: pp. 791–805.CrossRefGoogle ScholarPubMed
Davis, M., The Role of the Amygdala in Fear and Anxiety. Ann. Rev. Neurosci, 1992. 15: pp. 353–375.CrossRefGoogle ScholarPubMed
Decandia, M., , L. Provini, and , H. Taborikova, Mechanisms of the Reflex Discharge Depression in Spinal Motoneurone During Repetitive Orthodromic Stimulation. Brain Res., 1967. 4: pp. 284–291.CrossRefGoogle ScholarPubMed
Deletis, V., Intraoperative Neurophysiology and Methodologies Used to Monitor the Functional Integrity of the Motor System, in Neurophysiology in Neurosurgery, , V. Deletis and , J. L. Shils, Editors. 2002, Academic Press: Amsterdam. pp. 25–51.Google Scholar
Delong, M. R., Primate Models of Movement Disorders of Basal Ganglia Origin. Trends Neurosci., 1990. 13: pp. 281–85.CrossRefGoogle ScholarPubMed
Delwaide, P. J. and , E. Oliver, Short Latency Autogenic Inhibition (Ib Inhibition) in Human Spasticity. J. Neurol. Neurosurg. Psych., 1988. 51: pp. 1548–50.CrossRefGoogle Scholar
Dewald, J. P., , J. D. Given, and , W. Z. Rymer, Long-Lasting Reductions of Spasticity Induced by Skin Electric Al Stimulation. IEEE Trans. Rehab. Eng., 1996. 4(4): pp. 231–242.CrossRefGoogle Scholar
Dietz, V., Spinal Cord Pattern Generators for Locomotion. Clin. Neurophysiol., 2003. 114(8): pp. 1379–89.CrossRefGoogle ScholarPubMed
Dimitrijevic, M. R., Model for the Study of Plasticity of the Human Nervous System: Features of Residual Spinal Cord Motor Activity Resulting from Established Post-Traumatic Injury, in Plasticity of the Neuromuscular System (Ciba Foundation Symposium 138). 1988, Wiley: Chichester. pp. 227–239.Google Scholar
Donoghue, J. P., , S. Suner, and , J. N. Sanes, Dynamic Organization of Primary Motor Cortex Output to Target Muscles in Adult Rats. II. Rapid Reorganization Following Motor Nerve Lesions. Exp. Brain Res., 1990. 79(3): pp. 492–503.CrossRefGoogle ScholarPubMed
Dostrovsky, J. O. and , A. M. Lozano, Mechanisms of Deep Brain Stimulation. Movement Disorders, 2002. 17(Suppl. 3): pp. S63–68.CrossRefGoogle ScholarPubMed
Eccles, J. C., Plasticity at Its Simplest Level, in Centennial Lectures of E. E. Squibb & Son. 1959, Putnam & Sons: New York. pp. 217–244.Google Scholar
Edgeley, S. A., , J. A. Eyre, , R. Lemon, and , S. Miller, Excitation of the Corticospinal Tract by Electromagnetic and Electrical Stimulation of the Scalp in the Macaque Monkey. J. Physiol. (Lond.), 1990. 425: pp. 301–320.CrossRefGoogle Scholar
Elbert, T., , C. Pantev, , C. Wienbruch, , B. Rockstroh, and , E. Taub, Increased Cortical Representation of the Fingers of the Left Hand in String Players. Science, 1995. 270(5234): pp. 305–7.CrossRefGoogle ScholarPubMed
Fasano, V. A., , G. Broggi, and , S. Zeme, Intraoperative Electrical Stimulation for Functional Posterior Rhizotomy. Scand. J. Rehab. Med., 1988. 17: pp. 149–54.Google ScholarPubMed
Fetz, E. E., K. Toyama, and W. Smith, Synaptic Interaction between Cortical Neurons, in Cerebral Cortex, , E. G. Jones and , A. Peters, Editors. 1990, Plenum: New York. pp. 1–47.Google Scholar
Flament, D., , P. A. Fortier, and , E. E. Fetz, Response Patterns and Post-Spike Effects of Peripheral Afferents in Dorsal Root Ganglia of Behaving Monkeys. J. Neurophysiol., 1992. 67: pp. 875–889.CrossRefGoogle Scholar
Frost, S. B., , S. Barbay, , K. M. Friel, , E. J. Plautz, and , R. J. Nudo, Reorganization of Remote Cortical Regions after Ischemic Brain Injury: A Potential Substrate for Stroke Recovery. J. Neurophysiol., 2003. 89(6): pp. 3205–14.CrossRefGoogle ScholarPubMed
Goddard, G. V., Amygdaloid Stimulation and Learning in the Rat. J. Comp. Physiol. Psychol., 1964. 58: pp. 23–30.CrossRefGoogle ScholarPubMed
Goetz, C. G. and E. J. Pappert, Textbook of Clinical Neurology. 1999, W. B. Saunders Company: Philadelphia.
Gordon, T., , J. Hegedus, and , S. L. Tam, Adaptive and Maladaptive Motor Axonal Sprouting in Aging and Motoneuron Disese. Neurol. Res., 2004. 26: pp. 174–85.CrossRefGoogle Scholar
Guilleminault, C., , E. Mignot, and , F. C. Grumet, Familial Patterns of Narcolepsy. Lancet, 1989. 2: pp. 1376–9.CrossRefGoogle ScholarPubMed
Hagbarth, K. E., , G. Wallin, and , L. Lofstedt, Muscle Spindle Responses to Stretch in Normal and Spastic Subjects. Scand. J. Rehab. Med., 1973. 5: pp. 156–159.Google ScholarPubMed
Hall, E. J., , D. Flament, , C. Fraser, and , R. Lemon, Non-Invasive Brain Stimulation Reveals Reorganized Cortical Outputs in Amputees. Neurosci. Lett., 1990. 116: pp. 379–386.CrossRefGoogle ScholarPubMed
Halstead, L. S. and , S. W. J. Seager, The Effects of Rectal Probe Electrostimulation on Spinal Cord Injury Spasticity. Paraplegia, 1991. 29: pp. 43–47.Google ScholarPubMed
Halstead, L. S., , S. W. J. Seager, , J. M. Houston, , K. Whitsell, , M. Dennis, and , P. W. Nance, Relief of Spasticity in Sci Men and Women Using Rectal Probe Electrostimulation. Paraplegia, 1993. 31: pp. 715–721.Google ScholarPubMed
Hiersemenzel, L., , A. Curt, and , V. Dietz, From Spinal Shock to Spasticity: Neuronal Adaptations to a Spinal Cord Injury. Neurology, 2000. 54(8): pp. 1574–82.CrossRefGoogle ScholarPubMed
Hoheisel, U., , G. Beylich, and , S. Mense, Effects of an Acute Muscle Nerve Section on Excitability of Dorsal Horn Neurons in the Rat. Pain, 1995. 60(22): pp. 151–158.CrossRefGoogle Scholar
Hulliger, M., The Mammalian Muscle Spindle and Its Central Control. Rev. Physiol. Biochem. Pharmacol., 1984. 101: pp. 1–110.CrossRefGoogle ScholarPubMed
Humphrey, D. R. and , W. S. Corrie, Properties of Pyramidal Tract Neuron System within Functionally Defined Subregion of Primate Motor Cortex. J. Neurophys., 1978. 41: pp. 216–243.CrossRefGoogle ScholarPubMed
Jacobs, K. M. and , J. P. Donoghue, Reshaping the Cortical Motor Map by Unmasking Latent Intracortical Connections. Science, 1991. 251: pp. 944–947.CrossRefGoogle ScholarPubMed
Jankovic, J., Tics in Other Neurological Disorders, in Handbook of Tourette's Syndrome and Related Tic and Behavioral Disorders, , R. Kurlan, Editor. 1993, Marcel Dekker: New York. pp. 167–182.Google Scholar
Jankowska, E. and , W. J. Roberts, Synaptic Actions of Single Interneurons Mediating Reciprocal Ia Inhibition to Motoneurons. J. Physiol., 1972. 222: pp. 623–642.CrossRefGoogle Scholar
Jankowska, E. and , A. Lundberg, Interneurons in the Spinal Cord. Trends Neurosci., 1981. 4: pp. 230–233.CrossRefGoogle Scholar
Jobst, E. E., , M. E. Melnick, , N. N. Byl, , G. A. Dowling, and , M. J. Aminoff, Sensory Perception in Parkinson Disease. Arch. Neurol., 1997. 54: pp. 450–4.
Jones, T. A., , S. D. Bury, , D. L. Adkins-Muir, , L. M. Luke, , R. P. Allred, and , J. T. Sakata, Importance of Behavioral Manipulations and Measures in Rat Models of Brain Damage and Brain Repair. Ilar Journal, 2003. 44(2): pp. 144–52.CrossRefGoogle ScholarPubMed
Joodaki, M. R., , G. R. Olyaei, and , H. Bagheri, The Effects of Electrical Nerve Stimulation of the Lower Extremity on H-Reflex and F-Wave Parameters. Electromyography Clin. Neurophysiol., 2001. 41(1): pp. 23–8.Google ScholarPubMed
Kaneko, K., , S. Kawai, , F. Y., H. Morieta, and , A. Ofuji, The Effect of Current Direction Induced by Transcranial Magnetic Stimulation on Corticospinal Excitability in Human Brain. Electroenceph Clin Neurophys, 1966. 101: pp. 478–482.Google Scholar
Khaslavskaia, S., , M. Ladouceur, and , T. Sinkjaer, Increase in Tibialis Anterior Motor Cortex Excitability Following Repetitive Electrical Stimulation of the Common Peroneal Nerve. Exp. Brain Res., 2002. 143(3): pp. 309–315.CrossRefGoogle Scholar
Khudados, E., , F. W. J. Cody, and Boyle, J. O', Proprioceptive Regulation of Voluntary Ankle Movements, Demonstrated Using Muscle Vibration, Is Impaired by Parkinson's Disease. J. Neurol. Neurosurg. Psychiatry, 1999. 67: pp. 504–510.CrossRefGoogle ScholarPubMed
Kitagawa, H. and , A. R. Møller, Conduction Pathways and Generators of Magnetic Evoked Spinal Cord Potentials: A Study in Monkeys. Electroenceph. Clin. Neurophys., 1994. 93: pp. 57–67.CrossRefGoogle ScholarPubMed
Kothbauer, K. F., Motor Evoked Potential Monitoring for Intramedullary Spinal Cord Tumor Surgery, in Neurophysiology in Neurosurgery, , V. Deletis and , J. L. Shils, Editors. 2002, Academic Press: Amsterdam. pp. 73–92.Google Scholar
Kuypers, H. G. J. M., Anatomy of the Descending Pathways, in Handbook of Physiology – the Nervous System, , J. M. Brookhart and , V. B. Mountcastle, Editors. 1981, American Physiological Society: Bethesda, MD. pp. 597–666.Google Scholar
Lazzaro Di, V., , A. Oliviero, , F. Pilato, , P. Mazzone, , A. Insola, , F. Ranieri, and , P. A. Tonali, Corticospinal Volleys Evoked by Transcranial Stimulation of the Brain in Concious Humans. Neurol. Res., 2003. 25: pp. 143–150.CrossRefGoogle Scholar
Lenz, F. A., , J. O. Dostrovsky, , H. C. Kwan, , R. R. Tasker, , K. Yamashiro, and , J. T. Murphy, Methods for Microstimulation and Recording of Single Neurons and Evoked Potentials in the Human Central Nervous System. J. Neurosurg. 1988. 68(4): pp. 630–4.CrossRefGoogle ScholarPubMed
Lenz, F. A., , J. O. Dostrovsky, , R. R. Tasker, , K. Yamashiro, , H. C. Kwan, and , J. T. Murphy, Single-Unit Analysis of the Human Ventral Thalamic Nuclear Group: Somatosensory Responses. J. Neurophysiol., 1988. 59(2): pp. 299–316.CrossRefGoogle ScholarPubMed
Lenz, F. A., , R. R. Tasker, , H. C. Kwan, , S. Schnider, , R. Kwong, , Y. Murayama, , J. O. Dostrovsky, and , J. T. Murphy, Single Unit Analysis of the Human Ventral Thalamic Nuclear Group: Correlation of Thalamic “Tremor Cells” with the 3–6 Hz Component of Parkinsonian Tremor. J. Neurosci., 1988. 8(3): pp. 754–64.CrossRefGoogle ScholarPubMed
Lenz, F. A., , H. C. Kwan, , J. O. Dostrovsky, and , R. R. Tasker, Characteristics of the Bursting Pattern of Action Potentials That Occurs in the Thalamus of Patients with Central Pain. Brain Res., 1989. 496(1–2): pp. 357–60.CrossRefGoogle ScholarPubMed
Lenz, F. A., , H. C. Kwan, , J. O. Dostrovsky, , R. R. Tasker, , J. T. Murphy, and , Y. E. Lenz, Single Unit Analysis of the Human Ventral Thalamic Nuclear Group. Activity Correlated with Movement. Brain, 1990. 113(Pt 6): pp. 1795–1821.CrossRefGoogle Scholar
Lenz, F. A., , R. Martin, , H. C. Kwan, , R. R. Tasker, and , J. O. Dostrovsky, Thalamic Single-Unit Activity Occurring in Patients with Hemidystonia. Stereotact. Funct. Neurosurg., 1990. 54–55: pp. 159–62.CrossRefGoogle ScholarPubMed
Lenz, F. A., , C. J. Jaeger, , M. S. Seike, , Y. C. Lin, , S. G. Reich, , M. R. Delong, and , J. L. Vitek, Thalamic Single Neuron Activity in Patients with Dystonia: Dystonia-Related Activity and Somatic Sensory Reorganization. J. Neurophysiol., 1999. 82(5): pp. 2372–92.CrossRefGoogle ScholarPubMed
Lindstrom, S., Recurrent Control from Motor Axon Collaterals on Ia Inhibitory Pathways in the Spinal Cord of the Cat. Acta Physiol. Scand. Suppl., 1973. 392: pp. 1–43.Google ScholarPubMed
Lundberg, A. and , P. Voorhoeve, Effects from Pyramidal Tract on Spinal Reflex Arcs. Acta Physiol. Scand., 1962. 56: pp. 201–219.CrossRefGoogle ScholarPubMed
Lundberg, A., Multisensory Control of Spinal Reflex Pathways. Prog. Brain Res., 1979. 50: pp. 11–28.CrossRefGoogle ScholarPubMed
McCrea, D. A., Spinal Circuitry of Sensorimotor Control of Locomotion. J. Physiol., 2001. 533(1): pp. 41–50.CrossRefGoogle ScholarPubMed
Merton, P. A. and , H. B. Morton, Electrical Stimulation of Human Motor and Visual Cortex through the Scalp. J. Physiol., 1980. 305: pp. 9–10P.Google Scholar
Merzenich, M. M., , J. H. Kaas, , J. Wall, , R. J. Nelson, , M. Sur, and , D. Felleman, Topographic Reorganization of Somatosensory Cortical Areas 3b and 1 in Adult Monkeys Following Restricted Deafferentiation. Neuroscience, 1983. 8(1): pp. 3–55.CrossRefGoogle Scholar
Møller, A. R., Cranial Nerve Dysfunction Syndromes: Pathophysiology of Microvascular Compression, in Neurosurgical Topics Book 13, ‘Surgery of Cranial Nerves of the Posterior Fossa,’ Chapter 2, , D. L. Barrow, Editor. 1993, American Association of Neurological Surgeons: Park Ridge. IL. pp. 105–129.Google Scholar
Møller, A. R., Sensory Systems: Anatomy and Physiology. 2003, Academic Press: Amsterdam.Google Scholar
Morrison, A. R., , L. D. Sanford, and , R. J. Ross, The Amygdala: A Critical Modulator of Sensory Influence on Sleep. Biological Signals & Receptors, 2000. 9(6): pp. 283–96.CrossRefGoogle Scholar
Munhall, K. G., , P. Servos, , A. Santi, and , M. A. J. A. Goodale, 2002, Dynamic Visual Speech Perception in a Patient with Visual Form Agnosia. NeuroReport, 2002. 13(14): pp. 1793–6.CrossRefGoogle Scholar
Naito, A., , Y. J. Sun, and , Y. Yanagidaira, Electromyographic (Emg) Study of Cold Shivering in the Chronic Spinal Dog. Jap. J. Physiol., 1997. 47(1): pp. 81–6.CrossRefGoogle ScholarPubMed
Nakamura, M., , Y. Kaneoke, , K. Watanabe, and , R. Kakigi, Visual Information Process in Williams Syndrome: Intact Motion Detection Accompanied by Typical Visuospatial Dysfunctions. European Journal of Neuroscience, 2002. 16: pp. 1810–1818.CrossRefGoogle ScholarPubMed
Nicolas, G., , V. Marchand-Pauvert, , D. Burke, and , E. Pierrot-Deseilligny, Corticospinal Excitation of Presumed Cervical Propriospinal Neurons and Its Reversal to Inhibition in Humans. J. Physiol., 2001. 533(3): pp. 903–19.CrossRefGoogle ScholarPubMed
Nudo, R. J., , K. Friel, and , S. W. Delia, Role of Sensory Deficits in Motor Impairments after Injury to Primary Motor Cortex. Neuropharmacol., 2000. 39(5): pp. 733–42.CrossRefGoogle ScholarPubMed
Nuwer, M. R., Use of Somatosensory Evoked Potentials for Intraoperative Monitoring of Cerebral and Spinal Cord Function. Neurologic Clinics, 1988. 6(4): pp. 881–97.Google ScholarPubMed
O'Suilleabhain, P., , J. Bullard, and , R. B. Dewey, Proprioception in Parkinson's Disease Is Acutely Depressed by Dopamine Medications. J. Neurol Neurosurg Psychiatry, 2001. 71: pp. 607–10.CrossRefGoogle ScholarPubMed
Olson, E. J., , B. F. Boeve, and , M. H. Silber, Rapid Eye Movement Sleep Behaviour Disorder: Demographic, Clinical and Laboratory Findings in 93 Cases. Brain, 2000. 123(2): pp. 231–239.CrossRefGoogle ScholarPubMed
Oppenheimer, D. R., The Cervical Cord in Multiple Sclerosis. Neuropath. Appl. Neurobiol., 1978. 4(151–162).CrossRefGoogle ScholarPubMed
Peacock, W. J., , L. J. Arens, and , B. Berman, Cerebral Palsy Spasticity: Selective Posterior Rhizotomy. Pediatr. Neurosci., 1987. 13: pp. 61–66.CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E., Peripheral and Descending Control of Neurones Mediating Non-Monosynaptic Ia Excitation to Motoneurons: A Presumed Propriospinal System in Man. Prog. Brain Res., 1989. 80: pp. 305–314.CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E., Propriospinal Transmission of Part of the Corticospinal Excitation in Humans. Muscle & Nerve., 2002. 26(2): pp. 155–72.CrossRefGoogle ScholarPubMed
Plautz, E. J., , S. Barbay, , S. B. Frost, , K. M. Friel, , N. Dancause, , E. V. Zoubina, , A. M. Stowe, , B. M. Quaney, and , R. J. Nudo, Post-Infarct Cortical Plasticity and Behavioral Recovery Using Concurrent Cortical Stimulation and Rehabilitative Training: A Feasibility Study in Primates. Neurol. Res., 2003. 25: pp. 801–810.CrossRefGoogle ScholarPubMed
Porter, R. and , R. Lemon, Cortical Function and Voluntary Movement. 1993, Clarendon Press: Oxford.Google Scholar
Ralston, D. D. and , H. J. Ralston, The Termination of the Corticospinal Tract Axons in the Macaque Monkey. J. Comp. Neurol., 1985. 242: pp. 325–337.CrossRefGoogle Scholar
Reale, R. A. and , T. J. Imig, Auditory Cortical Field Projections to the Basal Ganglia of the Cat. Neurosci., 1983. 8(1): pp. 67–86.CrossRefGoogle ScholarPubMed
Rosen, J. B., , J. M. Hitchcock, , C. Sananes, , M. J. D. Miscrendino, and , M. Davis, A Direct Projection from the Central Nucleus of the Amygdala to the Acoustic Startle Pathway: Anterograde and Retrograde Tracing Studies. Behav. Neurosci., 1991. 105: pp. 817–25.CrossRefGoogle ScholarPubMed
Rosenow, J. M., , A. Y. Mogilner, , A. Ahmed, and , A. R. Rezai, Deep Brain Stimulation for Movement Disorders. Neurol. Res., 2004. 26: pp. 9–20.CrossRefGoogle ScholarPubMed
Rösler, K. M., Transcranial Magnetic Brain Stimulation: A Tool to Investigate Central Motor Pathways. News Physiol. Sci., 2001. 16: pp. 297–302.Google ScholarPubMed
Rudomin, P., Presynaptic Control of Synaptic Effectiveness of Muscle Spindle and Tendon Organ Afferents in the Mammalian Spinal Cord, in The Segmental Motor System, , M. D. Binder and , L. M. Mendell, Editors. 1990, Oxford University Press: Oxford. pp. 349–380.Google Scholar
Rushworth, G., Some Aspects of the Pathophysiology of Spasticity and Rigidity. Clin. Pharmacol. Therapeutics, 1964. 6: pp. 828–36.CrossRefGoogle Scholar
Sanes, J. N., , S. Suner, and , J. P. Donoghue, Dynamic Organization of Primary Motor Cortex Output to Target Muscles in Adult Rat. I. Long Term Patterns of Reorganization Following Motor or Mixed Peripheral Nerve Lesions. Exp. Brain Res., 1990. 79: pp. 479–491.CrossRefGoogle ScholarPubMed
Schenck, C. H., , M. W. Mahowald, , S. W. Kim, Conner, K. A. O', and , T. D. Hurwitz, Prominent Eye Movements During NREM Sleep and Rapid eye movement (sleep) Sleep Behavior Disorder Associated with Fuoxetine Treatment of Depression and Obsessive- Compulsive Disorder. Sleep, 1992. 15(3): pp. 226–35.CrossRefGoogle ScholarPubMed
Schenck, C. H., , J. L. Boyd, and , M. W. Mahowald, A Parasomnia Overlap Disorder Involving Sleepwalking, Sleep Terrors, and Rapid eye movement (sleep) Sleep Behavior Disorder in 33 Polysomnographically Confirmed Cases. Sleep, 1997. 20(11): pp. 972–81.CrossRefGoogle ScholarPubMed
Schieppati, M., The Hoffman Reflex: A Means of Assessing Spinal Reflex Excitability and Its Descending Control in Man. Prog. Neurobiol., 1987. 28: pp. 345–376.CrossRefGoogle Scholar
Schneider, J. S., , S. G. Diamond, and , C. H. Markham, Parkinson's Disease: Sensory and Motor Problems in Arms and Hands. Neurology, 1987. 37: pp. 951–6.CrossRefGoogle Scholar
Sehgal, N. and , J. R. McGuire, Beyond Ashworth: Electrophysiologic Quantification of Spasticity. Physical Medicine and Rehabilitation Clinics of North America, 1998. 9(4): pp. 949–979.Google ScholarPubMed
Sie, K. C. Y. and , E. W. Rubel, Rapid Changes in Protein Synthesis and Cell Size in the Cochlear Nucleus Following Eighth Nerve Activity Blockade and Cochlea Ablation. J. Comp. Neurol., 1992. 320: pp. 501–508.CrossRefGoogle ScholarPubMed
Simons, D. G. and , S. Mense, Understanding and Measurement of Muscle Tone as Related to Clinical Muscle Pain. Pain, 1998. 75(1)(1): pp. 1–17.CrossRefGoogle Scholar
Sindou, M. and , D. Jeanmonod, Microsurgical-Drez-Otomy for Treatment of Spasticity and Pain in the Lower Limbs. Neurosurgery, 1989. 24: pp. 655–670.CrossRefGoogle ScholarPubMed
Sindou, M. and P. Mertens, Selective Spinal Cord Procedures for Spasticity and Pain, in Neurophysiology in Neurosurgery, , V. Deletis and , J. L. Shils, Editors. 2002, Academic Press: Amsterdam. pp. 93–117.Google Scholar
Sipski, M. L., , C. J. Alexander, and , R. C. Rosen, Orgasm in Women with Spinal Cord Injuries: A Laboratory-Based Assessment. Arch. Phys. Med. Rehabil., 1995. 76: pp. 1097–1102.CrossRefGoogle ScholarPubMed
Sipski, M. L., , C. J. Alexander, and R. R. Rosen, Sexual Arousal and Orgasm in Women: Effects of Spinal Cord Injury. Ann. Neurol., 2001. 49(1): pp. 35–44.3.0.CO;2-J>CrossRefGoogle Scholar
Sloan, T. and D. Angell, Differential Effect of Isoflurane on Motor Evoked Potentials Elicited by Transcortical Electric or Magnetic Stimulation, in Handbook of Spinal Cord Monitoring, , S. S. Jones, et al., Editors. 1993, Kluver Academic Publishers: Hingham, MA. pp. 362–367.Google Scholar
Sloan, T., Anesthesia and Motor Evoked Potential Monitoring, in Neurophysiology in Neurosurgery, , V. Deletis and , J. L. Shils, Editors. 2002, Academic Press: Amsterdam. pp. 451–474.Google Scholar
Spiegel, J., , G. Fuss, , C. Krick, , K. Schimrigk, and , U. Dillmann, Influence of Proprioceptive Input on Parkinsonian Tremor. J. Clin. Neurophysiol., 2002. 19(1): pp. 84–9.CrossRefGoogle ScholarPubMed
Stein, R., Letter to the Editor. Paraplegia, 1991. 29: pp. 495–497.Google Scholar
Sun, W. M., , R. Macdonagh, , D. Forster, and , E. Al., Anorectal Function in Patients with Complete Spinal Transection before and after Sacral Posterior Rhizotomy. Gastroenterology, 1994. 108: pp. 990–998.CrossRefGoogle Scholar
Tamaki, T., , H. Takano, and , K. Takakuwa, Spinal Cord Monitoring: Basic Principles and Experimental Aspects. Cent. Nerv. Syst. Trauma, 1985. 2: pp. 137–149.CrossRefGoogle ScholarPubMed
Tatton, W. G., , M. J. Eastman, , W. Bedingham, , M. C. Verrier, and , I. C. Bruce, Defective Utilization of Sensory Input as the Basis of Bradykinesia, Rigidity, and Decreased Movement Repertoire in Parkinson's Disease: A Hypothesis. Can. J. Neurol. Sci., 1984. 11: pp. 136–43.CrossRefGoogle ScholarPubMed
Temel, Y. and , V. Visser-Vandewalle, Surgery in Tourette Syndrome. Mov. Disord., 2004. 19(1): pp. 3–14.CrossRefGoogle ScholarPubMed
Topka, H., , L. G. Cohen, , R. A. Cole, and , M. Hallett, Reorganization of Corticospinal Pathways Following Spinal Cord Injury. Neurology, 1991. 41(8): pp. 1276–1283.CrossRefGoogle ScholarPubMed
Vitek, J. L., , R. A. E. Bakay, , T. Hashimoto, , Y. Kaneoke, , K. Mewes, , J. Y. Zhang, , D. B. Rye, , P. Starr, , M. S. Baron, , R. Turner, and , M. R. Delong, Microelectrode-Guided Pallidotomy: Technical Approach and Application for Treatment of Medically Intractable Parkinson's Disease. J. Neurosurg., 1998. 88: pp. 1027–43.CrossRefGoogle ScholarPubMed
Vitek, J. L., , V. Chockkan, , J. Y. Zhang, , Y. Kaneoke, , M. Evatt, , M. R. Delong, , S. Triche, , K. Mewes, , T. Hashimoto, and , R. A. Bakay, Neuronal Activity in the Basal Ganglia in Patients with Generalized Dystonia and Hemiballismus. Ann. Neurol., 1999. 46(1): pp. 22–35.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Wada, J. A., Kindling 2. 1981, Raven Press: New York.Google Scholar
Wall, P. D., The Presence of Ineffective Synapses and Circumstances which Unmask Them. Phil. Trans. Royal Soc. (Lond.), 1977. 278: pp. 361–372.CrossRefGoogle Scholar
Walsh, E. G., Muscles, Masses and Motion: The Physiology of Normality, Hypotonicity, Spasticity and Rigidity. 1992, Blackwell: Oxford.Google Scholar
Whipple, B., , C. A. Gerdes, and , B. R. Komisaruk, Sexual Response to Self-Stimulation in Women with Complete Spinal Cord Injury. J. Sex. Res., 1996. 33: pp. 231–240.CrossRefGoogle Scholar
White, S. R. and , R. S. Neuman, Facilitation of Spinal Motoneuron by 5-Hydroxytryptamine and Noradrenaline. Brain Res., 1980. 185: pp. 1–9.Google Scholar
Wiesendanger, M., The Pyramidal Tract. Its Structure and Function, in Handbook of Behavioral Neurobiology, , A. L. Towe and , E. S. Luschei, Editors. 1981, Plenum: New York. pp. 401–490.Google Scholar
Wolpaw, J. R. and Keefe, J. A. O', Adaptive Plasticity in the Primate Spinal Stretch Reflex: Evidence of a Two-Phase Process. J. Neuro. Sci., 1984. 4: pp. 2718–24.Google ScholarPubMed
Yoshida, M., A. Rabin, and A. Anderson, Monosynaptic Inhibition of Pallidal Neurons by Axon Collaterals of Caudatonigral Fibers. Exp. Brain Res, 1972. 15: pp. 33–347.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Movement disorders
  • Aage R. Møller, University of Texas, Dallas
  • Book: Neural Plasticity and Disorders of the Nervous System
  • Online publication: 08 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616228.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Movement disorders
  • Aage R. Møller, University of Texas, Dallas
  • Book: Neural Plasticity and Disorders of the Nervous System
  • Online publication: 08 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616228.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Movement disorders
  • Aage R. Møller, University of Texas, Dallas
  • Book: Neural Plasticity and Disorders of the Nervous System
  • Online publication: 08 February 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511616228.006
Available formats
×