Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-25T15:39:36.566Z Has data issue: false hasContentIssue false

12 - Neural foundations for conceptual representations: Evidence from functional brain imaging

from Part VI - Conceptual Models of Semantics

Published online by Cambridge University Press:  14 September 2009

Alex Martin
Affiliation:
National Institute of Mental Health
John Hart
Affiliation:
University of Texas, Dallas
Michael A. Kraut
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Overview

Semantic memory refers to a major division of declarative memory that includes knowledge of the meaning of objects and words. This chapter will focus on one aspect of the functional neuroanatomy of semantic memory: the representation of the meaning of concrete objects and object properties. The initial motivation for our work on this topic was reports of patients with so-called category-specific knowledge disorders – specifically, patients with relatively selective impaired knowledge about animals and other animate objects, and those with relatively selective impairments for man-made, inanimate objects such as tools. Since the publication of the seminal case studies by Warrington and colleagues (Warrington & McCarthy, 1983; Warrington & Shallice, 1984), well over 100 patients have been reported with a category-specific deficit for biological categories (living things, especially four-legged animals), relative to inanimate objects (especially tools and other artifacts), and more than 25 cases with the opposite pattern of deficit (Capitani et al., 2003). Our work has been motivated by an appreciation of the importance of these clinical cases for understanding the organization of conceptual knowledge, object recognition, and storage of long-term memories. In this chapter I shall outline a model of how conceptual knowledge about concrete entities (objects) is organized in the brain based on functional brain imaging studies of normal, intact individuals. From a theoretical perspective, the model attempts to incorporate the main features of property-based models that have dominated thinking about category-specific disorders for over one hundred years, and the challenge to this view from the Domain Specific theory (Caramazza & Shelton, 1998; for an overview of recent theories of the organization of conceptual knowledge in the brain see Caramazza, 1998; Martin & Caramazza, 2003).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11: 231–9.CrossRefGoogle ScholarPubMed
Avidan, G., Hasson, U., Hendler, T., Zohary, E., and Malach, R. (2002). Analysis of the neuronal selectivity underlying low fMRI signals. Current Biology, 12: 964–72.CrossRefGoogle ScholarPubMed
Badre, D., Poldrack, R. A., Pare-Blagoev, E. J., Insler, R. Z., and Wagner, A. D. (2005). Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex. Neuron, 47: 907–18.CrossRefGoogle ScholarPubMed
Bar, M. and Aminoff, E. (2003). Cortical analysis of visual context. Neuron, 38: 347–58.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Haxby, J. V., Jennings, J. E., and DeYoe, E. A. (1999). An fMRI version of the Farnsworth–Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cerebral Cortex, 9: 257–63.CrossRefGoogle ScholarPubMed
Beauchamp, M. S. and Martin, A. (in press). Grounding object concepts in perception and action: evidence from fMRI studies of tools. Cortex.Google Scholar
Beauchamp, M. S., Lee, K. E., Haxby, J. V., and Martin, A. (2002). Parallel visual motion processing streams for manipulable objects and human movements. Neuron, 34: 149–59.CrossRefGoogle ScholarPubMed
Beauchamp, M. S., Lee, K. E., Haxby, J. V., and Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15: 991–1001.CrossRefGoogle ScholarPubMed
Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25: 151–88.CrossRefGoogle ScholarPubMed
Capitani, E., Laiacona, M., Mahon, B., and Caramazza, A. (2003). What are the facts of semantic category-specific deficits? A critical review of the clinical evidence. Cognitive Neuropsychology, 20: 213–61.CrossRefGoogle ScholarPubMed
Caramazza, A. (1998). The interpretation of semantic category-specific deficits: what do they reveal about the organization of conceptual knowledge in the brain? Introduction. Neurocase, 4: 265–72.CrossRefGoogle Scholar
Caramazza, A. and Mahon, B. Z. (2003). The organization of conceptual knowledge: the evidence from category-specific semantic deficits. Trends in Cognitive Sciences, 7: 354–61.CrossRefGoogle ScholarPubMed
Caramazza, A. and Shelton, J. R. (1998). Domain-specific knowledge systems in the brain the animate–inanimate distinction. Journal of Cognitive Neuroscience, 10: 1–34.CrossRefGoogle ScholarPubMed
Castelli, F., Happe, F., Frith, U., and Frith, C. (2000). Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12: 314–25.CrossRefGoogle ScholarPubMed
Chao, L. L. and Martin, A. (1999). Cortical representation of perception, naming, and knowledge of color. Journal of Cognitive Neuroscience, 11: 25–35.CrossRefGoogle Scholar
Chao, L. L. and Martin, A. (2000). Representation of manipulable man-made objects in the dorsal stream. NeuroImage, 12: 478–84.CrossRefGoogle ScholarPubMed
Chao, L. L., Haxby, J. V., and Martin, A. (1999a). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2: 913–19.CrossRefGoogle Scholar
Chao, L. L., Martin, A., and Haxby, J. V. (1999b). Are face-responsive regions selective only for faces?Neuroreport, 10: 2945–50.CrossRefGoogle Scholar
Chao, L. L., Weisberg, J., and Martin, A. (2002). Experience-dependent modulation of category-related cortical activity. Cerebral Cortex, 12: 545–51.CrossRefGoogle ScholarPubMed
Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff, M. A., and Michel, F. (2000). The visual word form area – spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain, 123: 291–307.CrossRefGoogle ScholarPubMed
Cox, D. D. and Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage, 19: 261–70.CrossRefGoogle ScholarPubMed
Cox, D. D., Meyers, E., and Sinha, P. (2004). Contextually evoked object-specific responses in human visual cortex. Science, 304: 115–17.CrossRefGoogle ScholarPubMed
Crutch, S. J. and Warrington, E.K. (2003). The selective impairment of fruit and vegetable knowledge: A multiple processing channels account of fine-grain category specificity. Cognitive Neuropsychology, 20: 355–72.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1989). Time-locked multiregional retroactivation: a systems-level proposal for the neural substrates of recall and recognition. Cognition, 33: 25–62.CrossRefGoogle ScholarPubMed
Vreese, L. P. (1991). Two systems for colour-naming defects: verbal disconnection vs colour imagery disorder. Neuropsychologia, 29: 1–18.CrossRefGoogle ScholarPubMed
Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., and Tsivkin, S., (1999). Sources of mathematical thinking: behavioral and brain-imaging evidence. Science, 284: 970–4.CrossRefGoogle ScholarPubMed
Desimone, R. (1996). Neural mechanisms for visual memory and their role in attention. Proceedings of the National Academy of Sciences USA, 93: 13494–9.CrossRefGoogle ScholarPubMed
D'Esposito, M., Detre, J. A., Aguire, G. K., Stallcup, M., Alsop, D. C., Tippet, L. J., and Farah, M. J. (1997). A functional MRI study of mental image generation. Neuropsychologia, 35: 725–30.CrossRefGoogle ScholarPubMed
Devlin, J. T., Rushworth, M. F. S., and Matthews, P. M. (2005). Category-related activation for written words in the posterior fusiform is task specific. Neuropsychologia, 43: 69–74.CrossRefGoogle ScholarPubMed
Dolan, R. J., Fink, G. R., Rolls, E., Booth, M., Holmes, A., Frackowiak, R. S. J., and Friston, K. J. (1997). How the brain learns to see objects and faces in an impoverished context. Nature, 389: 596–9.CrossRefGoogle Scholar
Epstein, R. and Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392: 598–601.CrossRefGoogle ScholarPubMed
Freese, J. L. and Amaral, D. G. (2005). The organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. Journal of Comparative Neurology, 486: 295–317.CrossRefGoogle ScholarPubMed
Gabrieli, J. D., Poldrack, R. A., and Desmond, J. E. (1998). The role of left prefrontal cortex in language and memory. Proceedings of the National Academy of Sciences USA, 95: 906–13.CrossRefGoogle ScholarPubMed
Gold, B. T., Balota, D. A., Jones, S. A., Powell, D. K., Smith, C. D., and Andersen, A. H. (2006). Dissociation of automatic and strategic lexical–semantics: fMRI evidence for differing roles of mid-IT and multiple frontal regions. Journal of Neuroscience, 26, 6523–32.CrossRefGoogle Scholar
Grill-Spector, K. and Malach, R. (2001). fMR-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107: 293–321.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R., and Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Science, 10: 14–23.CrossRefGoogle ScholarPubMed
Grossman, E. D. and Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research, 41: 1475–82.CrossRefGoogle ScholarPubMed
Grossman, E. D. and Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35: 1167–75.CrossRefGoogle ScholarPubMed
Haxby, J. V., Gobbini, M. I., Furey, M. L., Ishai, A., Schouten, J. L., and Pietrini, P. (2001). Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science, 293: 2425–30.CrossRefGoogle ScholarPubMed
Heider, F. and Simmel, M. (1944). An experimental study of apparent behavior. American Journal of Psychology, 57: 243–9.CrossRefGoogle Scholar
Henson, R. N. A. (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70: 53–81.CrossRefGoogle ScholarPubMed
Howard, R. J., ffytche, D. H., Barnes, J., McKeefry, D., Ha, Y., Woodruff, P. W., Bullmore, E. T., Simmons, A., Williams, S. C. R., David, A. S., and Brammer, M. (1998). The functional anatomy of imagining and perceiving colour. Neuroreport, 9: 1019–23.CrossRefGoogle ScholarPubMed
Ishai, A., Ungerleider, L. G., and Haxby, J. V. (2000). Distributed neural systems for the generation of visual images. Neuron, 28: 979–90.CrossRefGoogle ScholarPubMed
Jeannerod, M., Arbib, M. A., Rizzolatti, G., and Sakata, H. (1995). Grasping objects: the cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18: 314–20.CrossRefGoogle ScholarPubMed
Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8: 71–8.CrossRefGoogle ScholarPubMed
Joseph, J. E. (2001). Functional neuroimaging studies of category specificity in object recognition: A critical review and meta-analysis. Cognitive, Affective, & Behavioral Neuroscience, 1: 119–36.CrossRefGoogle ScholarPubMed
Kan, I. P., Barsalou, L. W., Solomon, K. O., Minor, J. K., and Thompson-Schill, S. L. (2003). Role of mental imagery in a property verification task: fMRI evidence for perceptual representations of conceptual knowledge. Cognitive Neuropsychology, 20: 525–40.CrossRefGoogle Scholar
Kanwisher, N., Stanley, D., and Harris, A. (1999). The fusiform face area is selective for faces not animals. Neuroreport, 10: 183–7.CrossRefGoogle Scholar
Kanwisher, N., Woods, R. P., Iacoboni, M., and Mazziotta, J. C. (1997). A locus in human extrastriate cortex for visual shape analysis. Journal of Cognitive Neuroscience, 9: 133–42.CrossRefGoogle ScholarPubMed
Kraut, M. A., Kremen, S., Segal, J. B., Calhoun, V., Moo, L. R., and Hart, J. (2002). Object activation from features in the semantic system. Journal of Cognitive Neuroscience, 14: 24–36.CrossRefGoogle ScholarPubMed
Mahon, B. Z. and Caramazza, A. (2003). Constraining questions about the organisation and representation of conceptual knowledge. Cognitive Neuropsychology, 20: 433–50.CrossRefGoogle ScholarPubMed
Malach, R., Levy, I., and Hasson, U. (2002). The topography of high-order human object areas. Trends in Cognitive Science, 6: 176–84.CrossRefGoogle ScholarPubMed
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., and Tootell, R. B. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences USA, 92: 8135–9.CrossRefGoogle ScholarPubMed
Martin, A. (1998). The organization of semantic knowledge and the origin of words in the brain. In Jablonski, N. and Aiello, L. (eds.), The Origins and Diversification of Language. San Francisco: California Academy of Sciences, pp. 69–98.Google Scholar
Martin, A. (2001). Functional neuroimaging of semantic memory. In R. Cabeza and A. Kingstone (eds.), Handbook of Functional NeuroImaging of Cognition. Cambridge: MIT Press, pp. 153–86.Google Scholar
Martin, A. and Caramazza, A. (2003). Neuropsychological and neuroimaging perspectives on conceptual knowledge: an introduction. Cognitive Neuropsychology, 20: 195–212.CrossRefGoogle Scholar
Martin, A. and Chao, L. L. (2001). Semantic memory and the brain: structure and processes. Current Opinion in Neurobiology, 11: 194–201.CrossRefGoogle ScholarPubMed
Martin, A. and Weisberg, J. (2003). Neural foundations for understanding social and mechanical concepts. Cognitive Neuropsychology, 20: 575–87.CrossRefGoogle ScholarPubMed
Martin, A., Haxby, J. V., Lalonde, F. M., Wiggs, C. L., and Ungerleider, L. G. (1995). Discrete cortical regions associated with knowledge of color and knowledge of action. Science, 270: 102–5.CrossRefGoogle Scholar
Martin, A., Wiggs, C. L., Ungerleider, L. G., and Haxby, J. V. (1996). Neural correlates of category-specific knowledge. Nature, 379: 649–52.CrossRefGoogle ScholarPubMed
Mitchell, J. P., Heatherton, T. F., and Macrae, C. N. (2002). Distinct neural systems subserve person and object knowledge. Proceedings of the National Academy of Sciences USA, 99: 15238–43.CrossRefGoogle ScholarPubMed
Nielsen, J. M. (1958). Memory and Amnesia. Los Angeles: San Lucas Press.Google Scholar
Noppeney, U., Price, C. J., Penny, W. D., and Friston, K. J. (2006). Two distinct neural mechanisms for category-selective responses. Cerebral Cortex, 16: 437–45.CrossRefGoogle ScholarPubMed
O'Craven, K. M. and Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of Cognitive Neuroscience, 12: 1013–23.CrossRefGoogle Scholar
Oram, M. W. and Perrett, D. I. (1994). Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. Journal of Cognitive Neuroscience, 6: 99–116.CrossRefGoogle ScholarPubMed
Paulesu, E., Harrison, J., Baron-Cohen, S., Watson, J. D., Goldstein, L., Heather, J., Frackowiak, R. S., and Frith, C. D. (1995). The physiology of coloured hearing. A PET activation study of colour–word synaesthesia. Brain, 118: 661–76.CrossRefGoogle ScholarPubMed
Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., and Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331: 585–9.CrossRefGoogle ScholarPubMed
Polk, T. A. and Farah, M. J. (1998). The neural development and organization of letter recognition: evidence from functional neuroimaging, computational modeling, and behavioral studies. Proceedings of the National Academy of Science USA, 95: 847–52.CrossRefGoogle ScholarPubMed
Price, C. J., Noppeney, U., Phillips, J., and Devlin, J.T. (2003). How is the fusiform gyrus related to category-specificity?Cognitive Neuropsychology, 20: 561–74.CrossRefGoogle Scholar
Puce, A., Allison, T., Bentin, S., Gore, J. C., and McCarthy, G. (1998). Temporal cortex activation in humans viewing eye and mouth movements. Journal of Neuroscience, 18: 2188–99.CrossRefGoogle ScholarPubMed
Santos, L. R., Miller, C. T., and Hauser, M. D. (2003). Representing tools: how two non-human primate species distinguish between the functionally relevant and irrelevant features of a tool. Animal Cognition, 6: 269–81.CrossRefGoogle Scholar
Schultz, R. T., Grelotti, D. J., Klin, A., Kleinman, J., Gaag, C., Marois, R., and Skudlarski, P. (2003). The role of the fusiform face area in social cognition: implications for the pathobiology of autism. Philosophical Transactions of the Royal Society of London Series B – Biological Sciences, 358: 415–27.CrossRefGoogle ScholarPubMed
Shapiro, K. A., Moo, L. R., and Caramazza, A. (2006). Cortical signatures of noun and verb production. Proceedings of the National Academy of Sciences USA, 103: 1644–9.CrossRefGoogle ScholarPubMed
Shuren, J. E., Brott, T. G., Schefft, B. K., and Houston, W. (1996). Preserved color imagery in an achromatopsic. Neuropsychologia, 34: 485–9.CrossRefGoogle Scholar
Simmons, W. K., Martin, A., and Barsalou, L. W. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15: 1602–8.CrossRefGoogle ScholarPubMed
Simmons, W. K., Ramjee, V., Beauchamp, M. S., McRae, K., Martin, A., and Barsalou, L. W. (2006). A common neural substrate for perceiving and knowing about color. Neuropsychologia, in press.Google Scholar
Spiridon, M. and Kanwisher, N. (2002). How distributed is visual category information in human occipito-temporal cortex? An fMRI study. Neuron, 35: 1157–65.CrossRefGoogle ScholarPubMed
Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: inferring “how” from “where”. Neuropsychologia, 41: 280–92.CrossRefGoogle Scholar
Tranel, D., Damasio, H., and Damasio, A. R. (1997). A neural basis for the retrieval of conceptual knowledge. Neuropsychologia, 35: 1319–27.CrossRefGoogle ScholarPubMed
Tranel, D., Kemmerer, D., Adolphs, R., Damasio, H., and Damasio, A. R. (2003). Neural correlates of conceptual knowledge for actions. Cognitive Neuropsychology, 20: 409–32.CrossRefGoogle ScholarPubMed
Turennout, M., Ellmore, T., and Martin, A. (2000). Long-lasting cortical plasticity in the object naming system. Nature Neuroscience, 3: 1329–34.CrossRefGoogle ScholarPubMed
Warrington, E. K. and McCarthy, R. (1983). Category specific access dysphasia. Brain, 106: 859–78.CrossRefGoogle ScholarPubMed
Warrington, E. K. and Shallice, T. (1984). Category specific semantic impairments. Brain, 107: 829–54.CrossRefGoogle ScholarPubMed
Weisberg, J., Turrennout, M., and Martin, A. (in press). A neural system for learning about object function. Cerebral Cortex, published on-line March 31, 2006, doi: 10.1093/cercor/bhj 176.Google Scholar
Whatmough, C., Chertkow, H., Murtha, S., and Hanratty, K. (2002). Dissociable brain regions process object meaning and object structure during picture naming. Neuropsychologia, 40: 174–86.CrossRefGoogle ScholarPubMed
Wheatley, T., Weisberg, J., Beauchamp, M. S., and Martin, A. (2005). Automatic priming of semantically related words reduces activity in the fusiform gyrus. Journal of Cognitive Neuroscience, 17: 1871–85.CrossRefGoogle ScholarPubMed
Wiggs, C. L., Weisberg, J., and Martin, A. (1999). Neural correlates of semantic and episodic memory retrieval. Neuropsychologia, 37: 103–18.CrossRefGoogle ScholarPubMed
Wise, R. J. S., Howard, D., Mummery, C. J., Fletcher, P., Leff, A., Büchel, C., and Scott, S. K. (2000). Noun imageability and the temporal lobes. Neuropsychologia, 38: 985–94.CrossRefGoogle ScholarPubMed
Yang, J. J., Francis, N., Bellgowan, P. S. F., and Martin, A, (2005). Object concepts and the human amygdala: Enhanced activity for identifying animals independent of input modality and stimulus format. Presented at Cognitive Neuroscience Society Annual Meeting, New York.
Yovel, G. and Kanwisher, N. (2004). Face perception: domain specific, not process specific. Neuron, 44: 889–98.Google Scholar
Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., and Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11: 641–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×