Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-28T13:34:57.205Z Has data issue: false hasContentIssue false

5 - Thermal regulation and effects on nutrient substrate metabolism

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
J. M. Hawdon
Affiliation:
Neonatal Unit, University College London Hospitals, London, UK
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

One of the most stimulating and rewarding aspects for many clinicians practicing neonatology is the application of basic physiological principles to the understanding of disease processes and to determining optimal management. This is particularly true in the area of thermal regulation. Those who carried out the early and pioneering work were also pioneers in neonatal physiology. Their work was of immeasurable value in reducing neonatal mortality and morbidity, and has informed subsequent technological advances. The current generation of practicing neonatologists has been fortunate enough to be taught by these “masters” and learn from their works. It is our responsibility to hand on to our juniors enthusiasm and respect for the application of physiology to neonatal care.

This chapter covers normal physiological changes, the challenges to these, the impact of disturbed thermal regulation, and therapeutic strategies.

Changes in the thermal environment at birth

Fetal temperature rises and falls with maternal temperature and is maintained at 0.5°C above that of the mother. Fetal heat loss is via the placenta and amniotic fluid.

At birth, a fall in body temperature is physiological; indeed stimulation of peripheral thermal receptors is a trigger for spontaneous breathing. The usual rectal temperature of the newborn baby is 36.5–37.0°C with skin temperature 0.5°C below this.

Physiological responses first described 40 years ago are triggered by the postnatal fall in temperature resulting in heat conservation and heat production.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rutter, N. Temperature control and its disorders. In Robertson, N. R. C., Rennie, J. M., eds. Textbook of Neonatology. Edinburgh: Churchill Livingstone; 1999.Google Scholar
Harned, H. S., Herrington, R. T., Ferreiro, J. I.The effects of immersion and temperature on respiration in newborn lambs. Pediatrics 1970;45:598–602.Google ScholarPubMed
Adamsons, K., Gandy, G. M., James, L. S.The influence of thermal factors upon oxygen consumption of the newborn human infant. J. Pediatr. 1965;66:495–508.CrossRefGoogle Scholar
Bruck, K.Temperature regulation in the newborn infant. Biol. Neonate. 1961;3:65–119.CrossRefGoogle Scholar
Blackburn, S. T., Loper, D. L. Thermoregulation. In Blackburn, S. T., Loper, D. L., eds. Maternal, Fetal and Neonatal Physiology: a Clinical Perspective. Philadelphia, PA: W. B. Saunders;1992:677–97.Google Scholar
Hey, E. N., Katz, G.The optimum thermal environment for naked babies. Arch. Dis. Child. 1970;45:328–34.CrossRefGoogle ScholarPubMed
Hey, E.Thermal neutrality. Br. Med. Bull. 1975;31:69–74.CrossRefGoogle ScholarPubMed
Sauer, P. J., Dane, H. J., Visser, H. K. A.New standards for neutral thermal environment of healthy very low birth weight infants in week one of life. Arch. Dis. Child. 1984;59:18–22.CrossRefGoogle ScholarPubMed
Sauer, P. J., Dane, H. J., Visser, H. K. A.Influences of variations in ambient humidity on insensible water loss and thermoneutral environment of low birthweight infants. Acta Paediatr. Scand. 1984;73:615–19.CrossRefGoogle Scholar
Rowe, M. I., Weinberg, G., Andrews, W.Reduction of neonatal heat loss by an insulated head cover. J. Pediatr. Surg. 1983;18:909–13.CrossRefGoogle ScholarPubMed
Fanaroff, A. A., Wald, M., Gruber, H. S., Klaus, M. H.Insensible water loss in low birth weight infants. Pediatrics 1972;50:236–45.Google ScholarPubMed
Rutter, N., Hull, D.Water loss from the skin of term and preterm babies. Arch. Dis. Child. 1979;54:858–68.CrossRefGoogle ScholarPubMed
Baumgart, S.Partitioning of heat losses and heat gains in premature newborn infants under radiant warmers. Pediatrics 1985;75:89–99.Google ScholarPubMed
Jones, R. W., Rochefort, M. J., Baum, J. D.Increased insensible water loss in newborn infants nursed under radiant heaters. Br. Med. J. 1976;2:1347–50.CrossRefGoogle ScholarPubMed
Hey, E. N., Katz, G.The range of thermal insulation in the tissues of the newborn baby. J. Physiol. 1970;207:667–81.CrossRefGoogle Scholar
Polk, D. H., Callegari, C. C., Newnham, J.et al.Effect of fetal thyroidectomy on newborn thermogenesis in lambs. Pediatr. Res. 1987;21:453–7.CrossRefGoogle ScholarPubMed
Gunn, T. R., Gluckman, P. D.The endocrine control of the onset of thermogenesis at birth. Bailieres Clin. Endocrinol. Metab. 1989;3:869–86.CrossRefGoogle ScholarPubMed
Marchini, G., Persson, B., Jonsson, N., Marcus, C.Influence of body temperature on thyrotrophic hormone release and lipolysis in the newborn infant. Acta Paediatr. 1995;84:1284–8.CrossRefGoogle Scholar
Deavers, D. R., Musacchia, X. J.The function of glucocorticoids in thermogenesis. Fed. Proc. 1979;38:2177–81.Google ScholarPubMed
Glass, L., Silverman, W. A., Sinclair, J. C.Effect of thermal environment on cold resistance and growth of small infants after the first week of life. Pediatrics 1968;41:1033–46.Google ScholarPubMed
Davis, V.The structure and function of brown adipose tissue in the neonate. J. Obstet. Gynecol. Neonatal Nurs. 1980:9:368–72.Google ScholarPubMed
Hey, E. N., Katz, G.Evaporative water loss in the newborn baby. J. Physiol. 1969;200:605–19.CrossRefGoogle Scholar
Foster, K. G., Hey, E. N., Katz, G.The response of sweat glands of the newborn baby to thermal stimuli and to intradermal acetylcholine. J. Physiol. 1969;203:13–29.CrossRefGoogle ScholarPubMed
Cogneville, A. M., Cividino, N., Tordet-Caridroit, C.Lipid composition of brown adipose tissue as related to nutrition during the neonatal period in hypotrophic rats. J. Nutr. 1975;105:982–8.CrossRefGoogle ScholarPubMed
Zimmerberg, B.Thermoregulatory deficits following prenatal alcohol exposure: structural correlates. Alcohol 1989;6:389–93.CrossRefGoogle ScholarPubMed
Blakelok, R. T., Harding, J. E., Kolbe, A., Pease, P. W.Gastroschisis: can the morbidity be avoided?Pediatr. Surg. Int. 1997;12:276–82.CrossRefGoogle Scholar
Silverman, W. A., Fertig, J. W., Berger, A. P.The influence of the thermal environment upon survival of newly born premature infants. Pediatrics 158;22:876–86.Google Scholar
Beutow, K. C., Klein, S. W.Effects of maintenance of “normal” skin temperature on survival of infants of low birthweight. Pediatrics 1964;34:163–70.Google Scholar
Glass, L., Lala, R. V., Jaiswal, V., Nigam, S. K.Effect of thermal environment and caloric intake on head growth of low birthweight infants during the late neonatal period. Arch. Dis. Child. 1975;50:571–3.CrossRefGoogle ScholarPubMed
Narendran, V., Hoath, S. B.Thermal management of the low birth weight infants: a cornerstone of neonatology. J. Pediatr. 1999;134:529–31.CrossRefGoogle ScholarPubMed
Robertson, A. F.Reflections on errors in neonatology: I. The “hands-off” years, 1920–1950. J. Perinatol. 2003;23:48–55.CrossRefGoogle Scholar
Costeloe, K., Hennessy, E., Gibson, A. T., Marlow, N., Wilkinson, A. R.The EPICure study: outcomes to discharge from hospital for infants born at the threshold of viability. Pediatrics 2000;106:659–71.CrossRefGoogle ScholarPubMed
CESDI. Project 27/28. An enquiry into quality of care and its effect on the survival of babies born at 27–28 weeks. Confidential Enquiry into Stillbirths and Deaths, UK. 2003. Available at: http://www.cemach.org.uk
Schultz, K., Soltesz, G., Molnar, D., Mestyan, J.Effect of hypothermia on plasma metabolites in preterm newborn infants with particular reference to plasma free amino acids. Biol. Neonate. 1979;36:220–4.CrossRefGoogle Scholar
Deshpande, S., Hawdon, J. M., Ward Platt, M. P., Aynsley-Green, A. Metabolic adaptation to extrauterine life. In Rodeck, C. H., Whittle, M. J., eds. Fetal Medicine: Basic Science and Clinical Practice. London: Churchill Livingstone; 1999:1059–69.Google Scholar
Hetenyi, G. Jr, Cowan, J. S.Effect of cooling on the glucoregulation of anesthetized and non-anesthetized newborn dogs. Biol. Neonate 1981;40:9–20.CrossRefGoogle Scholar
Satas, S., Loberg, E. M., Porter, H.et al.Effect of global hypoxia-ischemia followed by 24h of mild hypothermia on organ pathology and biochemistry in a newborn pig survival model. Biol. Neonate 2003;83:146–56.CrossRefGoogle Scholar
Battin, M. R., Penrice, J., Gunn, T. R., Gunn, A. R.Treatment of term infants with head cooling and mild systemic hypothermia (35 ℃ and 34.5 ℃) after perinatal asphyxia. Pediatrics 2003;111:244–51.CrossRefGoogle ScholarPubMed
Pal, D. K., Manandhar, D. S., Rajbhandari, S.et al.Neonatal hypoglycemia in Nepal. 1. Prevalence and risk factors. Arch. Dis. Child. 2000;82:46–51.CrossRefGoogle ScholarPubMed
L'Costello, A. M., Pal, D. K., Manandhar, D. S.et al.Neonatal hypoglycaemia in Nepal. 2. Availability of alternative fuels. Arch. Dis. Child. 2000;82:52–8.CrossRefGoogle Scholar
Stayer, S. A., Steven, J. M., Nicolson, S. C.et al.The metabolic effects of surface cooling neonates prior to cardiac surgery. Anesth. Analg. 1994;79:834–9.CrossRefGoogle ScholarPubMed
Azzopardi, D., Robertson, N. J., Cowan, F. M.et al.Pilot study of treatment with whole body hypothermia for neonatal encephalopathy. Pediatrics 2000;106:684–94.CrossRefGoogle ScholarPubMed
Ichiba, S., Killer, H. M., Firmin, R. K.et al.Pilot investigation of hypothermia in neonates receiving extracorporeal membrane oxygenation. Arch. Dis. Child. 2003;88:128–33.CrossRefGoogle ScholarPubMed
Debillon, T., Daoud, P., Durand, P., et al.Whole-body cooling after perinatal asphyxia: a pilot study in term neonates. Dev. Med. Child. Neurol. 2003;45:17–23.CrossRefGoogle ScholarPubMed
Compagnoni, G., Pogliani, L., Lista, G.et al.Hypothermia reduces neurological damage in asphyxiated newborn infants. Biol. Neonate 2002;82:222–7.CrossRefGoogle ScholarPubMed
Sasaki, J., Yamaguchi, A., Nabeshima, Y.et al.Exercise at high temperature causes maternal hyperthermia and fetal anomalies. Teratology 1995;51:233–6.CrossRefGoogle ScholarPubMed
Graham, J. M. Jr, Edwards, M. J.Teratogen update: gestational effects of maternal hyperthermia due to febrile illness and resultant patterns of defects in humans. Teratology 1998;58:209–21.3.0.CO;2-Q>CrossRefGoogle Scholar
Martinez-Frias, M. L., Mazario, Garcia M. J., Caldas, C. F.et al.High maternal fever during gestation and severe congenital limb disruptions. Am. J. Med. Genet. 2001;98:201–3.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Chambers, C. D., Johnson, K. A., Dick, L. M., Felix, R. J., Jones, K. L.Maternal fever and birth outcome: a prospective study. Teratology 1998;58:251–7.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Miller, M. W., Nyborg, W. L., Dewey, W. C.et al.Hyperthermic teratogenicity, thermal dose and diagnostic ultrasound during pregnancy: implications of new standards on tissue heating. J. Hyperthermia 2002;18:361–84.CrossRefGoogle ScholarPubMed
World Federation of Ultrasound in Medicine and Biology. Available at: http://www:wfumb.org.
European Federation of Societies for Ultrasound in Medicine and Biology. Available at http://www.efsumb.org.
British Medical Ultrasound Society. Guidelines for the use of diagnostic ultrasound equipment. British Medical Ultrasound Society Bulletin. Aug. 2000;29–33.
Lieberman, E., Lang, J., Richardson, D. K.et al.Intrapartum maternal fever and neonatal outcome. Pediatrics 2000;105:8–13.CrossRefGoogle ScholarPubMed
Impey, L., Greenwood, C., MacQuillan, K., Reynolds, M., Sheil, O.Fever in labour and neonatal encephalopathy: a prospective study. Br. J. Obstet. Gynaecol. 2001;108:594–7.Google Scholar
Deans, A. C., Steer, P. J.Labour and birth in water. Temperature of pool is important. Br. Med. J. 1995;11:390–1.CrossRefGoogle Scholar
Fleming, P. J., Azaz, Y., Wigfield, R.Development of thermoregulation in infancy: possible implications for SIDS. J. Clin. Pathol. 1992;45:S17–19.Google Scholar
Sinclair, J. C.Servo-control for maintaining abdominal skin temperature at 36 ℃ in low birth weight infants. Cochrane Database Syst Rev. 2002;CD001074.Google Scholar
Johnson, K. J., Bhatia, P., Bell, E. F.Infrared thermometry of newborn infants. Pediatrics 1991;87:34–8.Google ScholarPubMed
Craig, J. V., Lancaster, G. A., Taylor, S., Williamson, P. R., Smyth, R. L.Infrared ear thermometry compared with rectal thermometry in children: a systematic review. Lancet 2002;360:603–9.CrossRefGoogle ScholarPubMed
Stothers, J. K.Head insulation and heat loss in the newborn. Arch. Dis. Child. 1981;56:530–4.CrossRefGoogle ScholarPubMed
Marks, K. H., Devenyi, A. G., Bello, M. E.et al.Thermal head wrap for infants. J. Pediatr. 1985;107:956–9.CrossRefGoogle ScholarPubMed
Marks, K. H., Lee, C. A., Bolan, C. D. Jr, Maisels, M. J.Oxygen consumption and temperature control of premature infants in a double wall incubator. Pediatrics 1981;68:93–8.Google Scholar
Yeh, T. F., Voora, S., Lilien, L. D.et al.Oxygen consumption and insensible water loss in premature infants in single versus double-walled incubators. J. Pediatr. 1980;97:967– 71.CrossRefGoogle ScholarPubMed
Nielsen, H., Jung, A., Atherton, S.Evaluation of the Porta-Warm mattress as a source of heat for neonatal transport. Pediatrics 1976;58:500–54.Google ScholarPubMed
Sulyok, E., Jequier, E., Ryser, G.Effect of relative humidity on the thermal balance of the newborn infant. Biol. Neonate 1982;21:210–18.CrossRefGoogle Scholar
Baumgart, S., Engle, W. D., Fox, W. W., Polin, R. A.Effect of heat shielding on convection and evaporation, and radiant heat transfer in the premature infant. J. Pediatr. 1981;97:948–56.CrossRefGoogle Scholar
Whitelaw, A.Kangaroo baby care: just a nice experience or an important advance for preterm infants. Pediatrics 1990;85:604–5.Google ScholarPubMed
Charpak, N., Ruiz-Pelaez, J. G., Calume, Figueroa Z.Current knowledge of Kangaroo Mother intervention. Curr. Opin. Pediatr. 1996;8:108–12.CrossRefGoogle ScholarPubMed
Conde-Agudelo, A., Diaz-Rossello, J. L., Belizan, J. M.Kangaroo mother care to reduce morbidity and mortality in low birthweight infants. Cochrane Database Syst Rev. 2003:CD002771Google ScholarPubMed
Feldman, R., Eidelman, A. I.Skin-to-skin contact (Kangaroo Care) accelerates autonomic and neurobehavioural maturation in preterm infants. Dev. Med. Child. Neurol. 2003:45:274–81.CrossRefGoogle ScholarPubMed
Feldman, R., Eidelman, A. I., Sirota, L., Weller, A.Comparison of skin-to-skin (kangaroo) and traditional care: parenting outcomes and preterm infant development. Pediatrics 2002;110:16–26.CrossRefGoogle ScholarPubMed
Christensson, K., Siles, C., Moreno, L.et al.Temperature, metabolic adaptation and crying in healthy full-term newborns cared for skin-to-skin or in a cot. Acta Paediatr. 1992;81:488–49.CrossRefGoogle ScholarPubMed
Bauer, K., Uhrig, C., Sperling, P.et al.Body temperatures and oxygen consumption during skin-to-skin (kangaroo) care of preterm infants weighing less than 1500 grams. J. Pediatr. 1997;130:240–4.CrossRefGoogle ScholarPubMed
Bohnhorst, B., Heyne, T., Peter, C. S., Poets, C. F.Skin-to-skin (kangaroo) care, respiratory control, and thermoregulation. J. Pediatr. 2001;138:193–217.CrossRefGoogle ScholarPubMed
Besch, N. J., Perlstein, P. H., Edwards, N. K., Keenan, W. J., Sutherland, J. M.The transparent baby bag: a shield against heat loss. N. Engl. J. Med. 1971;284:121–4.CrossRefGoogle ScholarPubMed
Vohra, S., Frent, G., Campbell, V., Abbott, M., Whyte, R., Effect of polythene occlusive skin wrapping on heat loss in very low birth weight infants at delivery: a randomized trial. J. Pediatr. 1999;134:547–51.CrossRefGoogle ScholarPubMed
Harden, A., Pampiglione, G., Waterston, D. J.Circulatory arrest during hypothermia in cardiac surgery: an EEG study in children. Br. Med. J. 1966;2:1105–8.CrossRefGoogle ScholarPubMed
Kirkham, F. J.Recognition and prevention of neurological complications in pediatric cardiac surgery. Pediatr. Cardiol. 1998;19:331–45.CrossRefGoogle ScholarPubMed
Thoresen, M., Penrice, J., Lorek, A.et al.Mild hypothermia after severe transient hypoxia-ischaemia ameliorates delayed cerebral energy failure in the newborn piglet. Pediatr. Res. 1995;37:667–70.CrossRefGoogle Scholar
Gunn, A. J., Gunn, T. R., Gunning, M. I., Williams, C. E., Gluckman, P. D.Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics 1998;102:1098–116.CrossRefGoogle ScholarPubMed
Whitelaw, A., Thoresen, M.Clinical trials of treatments after perinatal asphyxia. Curr. Opin. Pediatr. 2002;14:664–8.CrossRefGoogle ScholarPubMed
Thoresen, M., Whitelaw, A.Cardiovascular changes during mild therapeutic hypothermia and rewarming in neonates with hypoxic-ischaemic encephalopathy. Pediatrics 2000;106:92–9.CrossRefGoogle Scholar
Thoresen, M.Cooling the newborn after asphyxia – physiological and experimental background and its clinical use. Semin. Neonatol. 2000;5:61–73.CrossRefGoogle ScholarPubMed
Dragovich, D., Tamburlini, G., Alisjahbana, A.et al.Thermal control of the newborn: knowledge and practice of health professionals in seven countries. Acta Paediatr. 1997;86:645–50.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×