Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T01:25:33.465Z Has data issue: false hasContentIssue false

3 - Aspects of fetoplacental nutrition in intrauterine growth restriction and macrosomia

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Timothy R. H. Regnault
Affiliation:
Perinatal Research Center, University of Colorado Health Sciences Center, Aurora, Colorado
Sean W. Limesand
Affiliation:
Perinatal Research Center, University of Colorado Health Sciences Center, Aurora, Colorado
William W. Hay Jr.
Affiliation:
Perinatal Research Center, University of Colorado Health Sciences Center, Aurora, Colorado
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

Newborn birth weights have been steadily increasing throughout much of the developed world. However, the numbers of the two extremes, small fetuses that have suffered some form of intrauterine growth restriction (IUGR) and large or macrosomic fetuses, remain constant, and within some populations are actually increasing. IUGR and large-for-gestational-age (LGA) fetuses and newborns are at increased risk for fetal and neonatal morbidity and mortality. IUGR is an important and relatively common problem in obstetrics, which may represent impaired placental insufficiency and associated placental nutrient transport function. In developed countries, 3–7% of newborns are classified as IUGR, the causes of which include, but are not limited to, maternal malnutrition, maternal hypertension and idiopathic placental insufficiency. These fetuses are at increased risk of hypoxia, hypoglycemia and acidemia and also spontaneous preterm delivery. Interest in IUGR has increased recently by retrospective epidemiological, clinical follow-up and animal studies, that indicate increased susceptibility to adulthood metabolic disorders such as obesity, insulin resistance, type 2 diabetes mellitus and cardiovascular disease, particularly hypertension, in IUGR offspring. Furthermore, follow-up studies of infants who displayed abnormal umbilical artery Doppler flow velocity waveforms, commonly associated with IUGR, have demonstrated a lower IQ at 3 and 5 years of age. At the other end of the spectrum, the number of macrosomic, LGA births among certain minorities, delivered at term or ≥ 41 weeks, has increased.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ananth, C. V., Wen, S. W.Trends in fetal growth among singleton gestations in the United States and Canada, 1985 through 1998. Semin. Perinato. 2002;26:260–7.CrossRefGoogle ScholarPubMed
Ananth, C. V., Demissie, K., Kramer, M. S., Vintzileos, A. M.Small-for-gestational-age births among black and white women: temporal trends in the United States. Am. J. Public Health 2003;93:577–9.CrossRefGoogle ScholarPubMed
Shelley-Jones, D. C., Beischer, N. A., Sheedy, M. T., Walstab, J. E.Excessive birth weight and maternal glucose tolerance – a 19-year review. Aust. N. Z. J. Obstet. Gynaecol. 1992;32:318–24.CrossRefGoogle ScholarPubMed
Martin, J. A., Hamilton, B. E., Ventura, S. J.Births: preliminary data for 2000. Natl Vital Stat Rep 2001;49:1–20.Google ScholarPubMed
Scherjon, S., Briet, J., Oosting, H., Kok, J.The discrepancy betweens maturation of visual-evoked potentials and cognitive outcome at five years in very preterm infants with and without hemodynamic signs of fetal brain-sparing. Pediatrics 2000;105:385–391.CrossRefGoogle Scholar
Ventura, S. J., Martin, J. A., Curtin, S. C., Menacker, F., Hamilton, B. E.Births: final data for 1999. Natl Vital Stat. Rep. 2001;49:1–100.Google ScholarPubMed
Mondestin, M. A., Ananth, C. V., Smulian, J. C., Vintzileos, A. M.Birth weight and fetal death in the United States: the effect of maternal diabetes during pregnancy. Am. J. Obstet. Gynecol. 2002;187:922–26.CrossRefGoogle ScholarPubMed
Lackman, F., Capewell, V., Richardson, B., daSilva, O., Gagnon, R.The risks of spontaneous preterm delivery and perinatal mortality in relation to size at birth according to fetal versus neonatal growth standards. Am. J. Obstet. Gynecol. 2001;184:946–53.CrossRefGoogle ScholarPubMed
Ghidini, A.Idiopathic fetal growth restriction: a pathophysiologic approach. Obstet. Gynecol. Surv. 1996;51:376–82.CrossRefGoogle ScholarPubMed
Economides, D. L., Nicolaides, K. H., Campbell, S.Relation between maternal-to-fetal blood glucose gradient and uterine and umbilical Doppler blood flow measurements. Br. J. of Obstet. Gynaecol. 1990;97:543–44.CrossRefGoogle ScholarPubMed
Marconi, A. M., Cetin, I., Ferrazzi, E.et al.Lactate metabolism in normal and growth-retarded human fetuses. Pediatr. Res. 1990;28:652–6.CrossRefGoogle ScholarPubMed
Marconi, A. M., Paolini, C., Buscaglia, M.et al.The impact of gestational age and fetal growth on the maternal- fetal glucose concentration difference. Obstet. Gynecol. 1996;87:937–42.CrossRefGoogle ScholarPubMed
Barker, D. J.The fetal origins of coronary heart disease. Acta Paediatrica 1997; (Suppl.) 422:78–82.CrossRefGoogle ScholarPubMed
Vickers, M. H., Breier, B. H., Cutfield, W. S., Hofman, P. L., Gluckman, P. D.Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am. J. Physiol. Endocrino. Metab. 2000;279:E83–87.CrossRefGoogle ScholarPubMed
Barker, D. J., Hales, C. N., Fall, C. H.et al.Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 1993;36:62–7.CrossRefGoogle ScholarPubMed
Barker, D. J.Fetal programming of coronary heart disease. Trends Endocrinol. Metab. 2002;13:364–8.CrossRefGoogle ScholarPubMed
Barker, D. J.Intrauterine programming of adult disease. Molec. Med. Today 1995;1:418–23.CrossRefGoogle ScholarPubMed
Roseboom, T. J., Meulen, J. H., Osmond, C.et al.Coronary heart disease after prenatal exposure to the Dutch famine, 1944–45. Heart 2000;84:595–8.CrossRefGoogle ScholarPubMed
Scherjon, S. A., Oosting, H., Smolders-DeHaas, H., Zondervan, H. A., Kok, J. H.Neurodevelopmental outcome at three years of age after fetal ‘brain-sparing’. Early Hum. Dev. 1998;52:67–79.CrossRefGoogle Scholar
Buchanan, T. A., Metzger, B. E., Freinkel, N., Bergman, R. N.Insulin sensitivity and β-cell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am. J. Obstet. Gynecol. 1990;162:1008–14.CrossRefGoogle ScholarPubMed
Ventura, S. J., Martin, J. A., Curtin, S. C., Mathews, T. J.Births: final data for 1997. Natl Vital Stat. Rep. 1999;47:1–96.Google ScholarPubMed
Gluckman, P. D., Morel, P. C., Ambler, G. R.et al.Elevating maternal insulin-like growth factor-I in mice and rats alters the pattern of fetal growth by removing maternal constraint. J. Endocrinol. 1992;134:R1–3.CrossRefGoogle ScholarPubMed
Battaglia, F. C.Clinical studies linking fetal velocimetry, blood flow and placental transport in pregnancies complicated by intrauterine growth retardation (intrauterine growth restriction). Trans. Am. Clin. Climatol. Assoc. 2003;114:305–13.Google Scholar
Arbeille, P.Fetal arterial Doppler-intrauterine growth restriction and hypoxia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1997;75:51–3.CrossRefGoogle Scholar
Detti, L., Akiyama, M., Mari, G.Doppler blood flow in obstetrics. Curr. Opin. Obstet. Gynecol. 2002;14:587–93.CrossRefGoogle Scholar
Krampl, E., Lees, C., Bland, J. M.et al.Fetal Doppler velocimetry at high altitude. Ultrasound Obstet. Gynecol. 2001;18:329–34.CrossRefGoogle ScholarPubMed
Pardi, G., Cetin, I., Marconi, A. M.et al.Diagnostic value of blood sampling in fetuses with growth retardation. N. Eng. J. Med. 1993;328:692–6.CrossRefGoogle ScholarPubMed
Rigano, S., Bozzo, M., Ferrazzi, E.et al.Early and persistent reduction in umbilical vein blood flow in the growth-restricted fetus: a longitudinal study. Am. J. Obstet. Gynecol. 2001;185:834–8.CrossRefGoogle ScholarPubMed
Trudinger, B. J., Giles, W. B., Cook, C. M., Bombardieri, J.Collins, , L. Fetal umbilical artery flow velocity waveforms and placental resistance: clinical significance. Br. J. Obstet. Gynaecol. 1985;92:23–30.CrossRefGoogle Scholar
Gagnon, R., Johnston, L., Murotsuki, J.Fetal placental embolization in the late-gestation ovine fetus: alterations in umbilical blood flow and fetal heart rate patterns. Am. J. Obstet. Gynecol. 1996;175:63–72.CrossRefGoogle ScholarPubMed
Lubchenco, L. O., Hansman, C., Dressler, M., Boyd, E.Intrauterine growth as estimated from liveborn birth-weight data at 24 to 42 weeks of gestation. Pediatrics 1963;32:793–800.Google ScholarPubMed
Lubchenco, L. O., Horner, F. A., Reed, L. H.et al.Sequelae of premature birth. Evaluation of premature infants of low birth weights at ten years of age. Am. J. Dis. Child. 1963;106:101–15.CrossRefGoogle ScholarPubMed
Battaglia, F. C., Lubchenco, L. O.A practical classification of newborn infants by weight and gestational age. J. Pediatr. 1967;71:159–63.CrossRefGoogle ScholarPubMed
Metcoff, J. Fetal growth and maternal nutrition. In Falkner, F., Tanner, J. M., eds. Human Growth. New York, NY: Plenum Press; 1985: 333–88.Google ScholarPubMed
Williams, R. L., Creasy, R. K., Cunningham, G. C.et al.Fetal growth and perinatal viability in California. Obstet. Gynecol. 1982;59:624–32.Google ScholarPubMed
Williams, R. L., Chen, P. M.Identifying the sources of the recent decline in perinatal mortality rates in California. N. Eng. J. Med. 1982;306:207–14.CrossRefGoogle ScholarPubMed
Nahum, G. G., Stanislaw, H., Huffaker, B. J.Fetal weight gain at term: linear with minimal dependence on maternal obesity. Am. J. Obstet. Gynecol. 1995;172:1387–94.CrossRefGoogle ScholarPubMed
Sparks, J. W.Human intrauterine growth and nutrient accretion. Semin. Perinatol. 1984;8:74–93.Google ScholarPubMed
Sparks, J. W., Girard, J. R., Battaglia, F. C.An estimate of the caloric requirements of the human fetus. Biol. Neonate 1980;38:113–19.CrossRefGoogle ScholarPubMed
Moore, T. R.Fetal growth in diabetic pregnancy. Clin. Obstet. Gynecol. 1997;40:771–86.CrossRefGoogle ScholarPubMed
Ong, S., Lash, G., Baker, P. N.Angiogenesis and placental growth in normal and compromised pregnancies. Best Pract. Res. Clin. Obstet. Gynaecol. 2000;14:969–80.CrossRefGoogle ScholarPubMed
Regnault, T. R. H., Galan, H. L., Parker, T. A., Anthony, R. V.Placental development in normal and compromised pregnancies – a review. Placenta 2002;23(Suppl. A, Trophoblast Research 16):S119–29.CrossRefGoogle ScholarPubMed
Wladimiroff, J. W., Wijngaard, vd J. A., Degani, S.et al.Cerebral and umbilical arterial blood flow velocity waveforms in normal and growth-retarded pregnancies. Obstet. Gynecol. 1987;69:705–9.Google ScholarPubMed
Wladimiroff, J. W.A review of the etiology, diagnostic techniques and management of intrauterine growth restriction, and the clinical application of Doppler in the assessment of placental blood flow. J. Perinat. Med. 1991;19:11–13.Google ScholarPubMed
Wladimiroff, J. W., Stewart, P. A., Groenenberg, I. A.Fetal Doppler studies in normal and complicated pregnancies. J. Perinat. Med. 1991;19 (Suppl. 1):288–92.Google ScholarPubMed
Tchirikov, M., Rybakowski, C., Huneke, B., Schroder, H. J.Blood flow through the ductus venosus in singleton and multifetal pregnancies and in fetuses with intrauterine growth retardation. Am. J. Obstet. Gynecol. 1998;178:943–9.CrossRefGoogle ScholarPubMed
Jansson, T., Ylven, K., Wennergren, M., Powell, T. L.Glucose transport and system A activity in syncytiotrophoblast microvillous and basal plasma membranes in intrauterine growth restriction. Placenta 2002;23:392–9.CrossRefGoogle ScholarPubMed
Kingdom, J., Huppertz, B., Seaward, G., Kaufmann, P.Development of the placental villous tree and its consequences for fetal growth. Eur. J. Obstet. Gynecol. Reprod. Biol. 2000;92:35–43.CrossRefGoogle ScholarPubMed
Ahmed, A., Perkins, J.Angiogenesis and intrauterine growth restriction. Best Pract. Res. Clin. Obstet. Gynaecol. 2000;14:981–98.CrossRefGoogle ScholarPubMed
Benirschke, K., Kaufmann, P. Architecture of normal villous trees. Pathology of the Human Placenta. London: Springer Verlag, 2000:116–54.CrossRefGoogle Scholar
Ali, K. Z., Burton, G. J., Morad, N., Ali, M. E.Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude?Placenta 1996;17:677–82.CrossRefGoogle ScholarPubMed
Kingdom, J. C. P., Kaufmann, P.Oxygen and placental villous development – origins of fetal hypoxia. Placenta 1997;18:613–21.CrossRefGoogle ScholarPubMed
Zamudio, S., Moore, L. G.Altitude and fetal growth: current knowledge and future directions. Ultrasound Obstet. Gynecol. 2000;16:6–8.CrossRefGoogle ScholarPubMed
Giussani, D. A., Phillips, P. S., Anstee, S., Barker, D. J.Effects of altitude versus economic status on birth weight and body shape at birth. Pediatr. Res. 2001;49:490–4.CrossRefGoogle ScholarPubMed
Garcia, F. C., Stiffel, V. M., Gilbert, R. D.Effects of long-term high-altitude hypoxia on isolated fetal ovine coronary arteries. J. Soc. Gynecol. Invest. 2000;7:211–17.CrossRefGoogle ScholarPubMed
Krampl, E., Lees, C., Bland, J. M.et al.Fetal biometry at 4300 m compared to sea level in Peru. Ultrasound Obstet. Gynecol. 2000;16:9–18.CrossRefGoogle ScholarPubMed
Galan, H. L., Rigano, S., Chyu, J.et al.Comparison of low- and high-altitude Doppler velocimetry in the peripheral and central circulations of normal fetuses. Am. J. Obstet. Gynecol. 2000;183:1158–61.CrossRefGoogle ScholarPubMed
Mayhew, T. M.Thinning of the intervascular tissue layers of the human placenta is an adaptive response to passive diffusion in vivo and may help to predict the origins of fetal hypoxia. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998;81:101–9.CrossRefGoogle ScholarPubMed
Espinoza, J., Sebire, N. J., McAuliffe, F., Krampl, E., Nicolaides, K. H.Placental villus morphology in relation to maternal hypoxia at high altitude. Placenta 2001;22:606–8.CrossRefGoogle ScholarPubMed
Zhang, E. G., Burton, G. J., Smith, S. K., Charnock-Jones, D. S.Placental vessel adaptation during gestation and to high altitude: changes in diameter and perivascular cell coverage. Placenta 2002;23:751–62.CrossRefGoogle ScholarPubMed
Xiong, X., Mayes, D., Demianczuk, N.et al.Impact of pregnancy-induced hypertension on fetal growth. Am. J. Obstet. Gynecol. 1999;180(1 Pt 1):207–13.CrossRefGoogle ScholarPubMed
Eskenazi, B., Fenster, L., Sidney, S., Elkin, E. P.Fetal growth retardation in infants of multiparous and nulliparous women with preeclampsia. Am. J. Obstet. Gynecol. 1993;169:1112–18.CrossRefGoogle ScholarPubMed
Lenfant, C.Working group report on high blood pressure in pregnancy. J. Clin. Hypertens. (Greenwich) 2001;3:75–88.Google Scholar
Rasmussen, S., Irgens, L. M.Fetal growth and body proportion in preeclampsia. Obstet. Gynecol. 2003;101:575–83.Google ScholarPubMed
Gratton, R. J., Asano, H., Han, V. K.The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (insulin-like growth factor binding protein-1) in the placentae of women with pre-eclampsia. Placenta 2002;23:303–10.CrossRefGoogle ScholarPubMed
Teasdale, F.Histomorphometry of the human placenta in pre-eclampsia associated with severe intrauterine growth retardation. Placenta 1987;8:119–28.CrossRefGoogle ScholarPubMed
Mayhew, T. M., Ohadike, C., Baker, P. N.et al.Stereological investigation of placental morphology in pregnancies complicated by pre-eclampsia with and without intrauterine growth restriction. Placenta 2003;24:219–26.CrossRefGoogle ScholarPubMed
Alfaidy, N., Gupta, S., DeMarco, C., Caniggia, I., Challis, J. R.Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J. Clin. Endocrinol. Metab. 2002;87:4797–805.CrossRefGoogle ScholarPubMed
Challier, J. C., Carbillon, L., Kacemi, A.et al.Characterization of first trimester human fetal placental vessels using immunocytochemical markers. Cell Mol. Biol. (Noisy-le-grand) 2001;47 Online Pub:OL79–OL87.Google ScholarPubMed
Carbillon, L., Perrot, N., Uzan, M., Uzan, S.Doppler ultrasonography and implantation: a critical review. Fetal Diagn. Ther. 2001;16:327–32.CrossRefGoogle ScholarPubMed
Waddell, B. J., Hisheh, S., Dharmarajan, A. M., Burton, P. J.Apoptosis in rat placenta is zone-dependent and stimulated by glucocorticoids. Biol. Reprod. 2000;63:1913–17.CrossRefGoogle ScholarPubMed
Ito, M., Itakura, A., Ohno, Y.et al.Possible activation of the renin-angiotensin system in the feto-placental unit in preeclampsia. J. Clin. Endocrinol. Metab. 2002;87:1871–78.CrossRefGoogle ScholarPubMed
Regnault, T. R. H., Vrijer, B., Galan, H. L.et al.The relationship between transplacental O2 diffusion and placental expression of PlGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J. Physiol. 2003;550:641–56.CrossRefGoogle Scholar
Krebs, C., Macara, L. M., Leiser, R.et al.Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am. J. Obstet. Gynecol. 1996;175:1534–42.CrossRefGoogle ScholarPubMed
Jackson, M. R., Walsh, A. J., Morrow, R. J.et al.Reduced placental villous tree elaboration in small-for-gestational-age pregnancies: relationship with umbilical artery Doppler waveforms. Am. J. Obstet. Gynecol. 1995;172:518–25.CrossRefGoogle ScholarPubMed
Giles, W. B., Trudinger, B. J., Baird, P. J.Fetal umbilical artery flow velocity waveforms and placental resistance: pathological correlation. Br. J. Obstet. Gynaecol. 1985;92:31–8.CrossRefGoogle ScholarPubMed
Trudinger, B. J., Stevens, D., Connelly, A.et al.Umbilical artery flow velocity waveforms and placental resistance: the effects of embolization of the umbilical circulation. Am. J. Obstet. Gynecol. 1987;157:1443–8.CrossRefGoogle ScholarPubMed
Gagnon, R.Placental insufficiency and its consequences. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003;110 (Suppl. 1):S99–107.CrossRefGoogle ScholarPubMed
Morrow, R. J., Adamson, S. L., Bull, S. B., Ritchie, J. W.Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am. J. Obstet. Gynecol. 1989;161:1055–60.CrossRefGoogle ScholarPubMed
Macara, L., Kingdom, J. C., Kohnen, G.et al.Elaboration of stem villous vessels in growth restricted pregnancies with abnormal umbilical artery Doppler waveforms. Br. J. Obstet. Gynaecol. 1995;102:807–12.CrossRefGoogle ScholarPubMed
Ansari, T., Fenlon, S., Pasha, S.et al.Morphometric assessment of the oxygen diffusion conductance in placentae from pregnancies complicated by intra-uterine growth restriction. Placenta 2003;24:618–26.CrossRefGoogle ScholarPubMed
Jansson, T.Amino acid transporters in the human placenta. Pediatr. Res. 2001;49:141–7.CrossRefGoogle ScholarPubMed
Sibley, C. P., Coan, P. M., Ferguson-Smith, A. C.et al.Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. USA 2004;101:8204–8.CrossRefGoogle ScholarPubMed
Regnault, T. R. H., Vrijer, B., Battaglia, F. C.Transport and metabolism of amino acids in placenta. Endocrine 2003;19:23–41.CrossRefGoogle Scholar
Meschia, G., Cotter, J. R., Breathnach, C. S., Barron, D. H.The diffusibility of oxygen across the sheep placenta. Q. J. Exper. Physiol. Cognate Med. Sci. 1965;50:466–80.CrossRefGoogle ScholarPubMed
Meschia, G., Battaglia, F. C., Bruns, P. D.Theoretical and experimental study of transplacental diffusion. J. Appl. Physiol. 1967;22:1171–8.CrossRefGoogle ScholarPubMed
Mayhew, T. M., Jackson, M. R., Haas, J. D.Microscopical morphology of the human placenta and its effects on oxygen diffusion: a morphometric model. Placenta 1986;7:121–31.CrossRefGoogle ScholarPubMed
Wilkening, R. B., Meschia, G.Effect of occluding one umbilical artery on placental oxygen transport. Am. J. Physiol. 1991;260:H1319–25.Google ScholarPubMed
Pardi, G., Cetin, I., Marconi, A. M.et al.Venous drainage of the human uterus: respiratory gas studies in normal and fetal growth-retarded pregnancies. Am. J. Obstet. Gynecol. 1992;166:699–706.CrossRefGoogle ScholarPubMed
Jackson, M. R., Mayhew, T. M., Boyd, P. A.Quantitative description of the elaboration and maturation of villi from 10 weeks of gestation to term. Placenta 1992;13:357–70.CrossRefGoogle ScholarPubMed
Teasdale, F., Jean-Jacques, G.Morphometric evaluation of the microvillous surface enlargement factor in the human placenta from mid-gestation to term. Placenta 1985;6:375–81.CrossRefGoogle ScholarPubMed
Woods, D. L., Malan, A. F., Heese, H. D.Placental size of small-for-gestational-age infants at term. Early Hum. Dev. 1982;7:11–15.CrossRefGoogle ScholarPubMed
Woods, D. L., Rip, M. R.Placental villous surface area of light-for-dates infants at term. Early Hum. Dev. 1987;15:113–17.CrossRefGoogle ScholarPubMed
Constancia, M., Hemberger, M., Hughes, J.et al.Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature 2002;417:945–8.CrossRefGoogle ScholarPubMed
Economides, D. L., Nicolaides, K. H.Blood glucose and oxygen tension levels in small-for-gestational-age fetuses. Am. J. Obstet. Gynecol. 1989;160:385–9.CrossRefGoogle ScholarPubMed
Nieto-Diaz, A., Villar, J., Matorras-Weinig, R., Valenzuela-Ruiz, P.Intrauterine growth retardation at term: association between anthropometric and endocrine parameters. Acta Obstetric. Gynecolog. Scand. 1996;75:127–31.CrossRefGoogle ScholarPubMed
Thureen, P. J., Trembler, K. A., Meschia, G., Makowski, E. L., Wilkening, R. B.Placental glucose transport in heat-induced fetal growth retardation. Am. J. Physiol. 1992;263:R578–85.Google ScholarPubMed
Limesand, S. W., Regnault, T. R., Hay, W. W. J.r.Characterization of glucose transporter 8 (glucose transporters8) in the ovine placenta of normal and growth restricted fetuses. Placenta 2004;25: 70–7.CrossRefGoogle ScholarPubMed
Jansson, T., Wennergren, M., Illsley, N. P.Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 1993;77:1554–62.Google ScholarPubMed
Kainulainen, H., Jarvinen, T., Heinonen, P. K.Placental glucose transporters in fetal intrauterine growth retardation and macrosomia. Gynecol. Obstet. Invest. 1997;44:89–92.CrossRefGoogle ScholarPubMed
Reid, G. J., Lane, R. H., Flozak, A. S., Simmons, R. A.Placental expression of glucose transporter proteins 1 and 3 in growth-restricted fetal rats. Am. J. Obstet. Gynecol. 1999;180:1017–23.CrossRefGoogle ScholarPubMed
Wallace, J. M., Bourke, D. A., Aitken, R. P., Milne, J. S., Hay, W. W. Jr.Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep. J. Physiol. 2003;547:85–94.CrossRefGoogle ScholarPubMed
Teasdale, F., Jean-Jacques, G.Intrauterine growth retardation: morphometry of the microvillous membrane of the human placenta. Placenta 1988;9:47–55.CrossRefGoogle ScholarPubMed
Hay, W. W. J., Meznarich, H. K.Effect of maternal glucose concentration on uteroplacental glucose concentration and transfer in pregnant sheep. Proc. Soc. Exper. Biol. Med. 1989;190:63–9.CrossRefGoogle ScholarPubMed
Molina, R. D., Meschia, G., Battaglia, F. C., Hay, W. W. J.Gestational maturation of placental glucose transfer capacity in sheep. Am. J. Physiol. 1991;261:R697–704.Google Scholar
Joost, H. G., Bell, G. I., Best, J. D.et al.Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. Am. J. Physiol. Endocrinol. Metab. 2002;282:E974–6.CrossRefGoogle ScholarPubMed
Mueckler, M.Facilitative glucose transporters. Eur. J. Biochem. 1994;219:713–25.CrossRefGoogle ScholarPubMed
Barros, L. F., Yudilevich, D. L., Jarvis, S. M., Beaumont, N., Baldwin, S. A.Quantitation and immunolocalization of glucose transporters in the human placenta. Placenta 1995;16:623– 33.CrossRefGoogle ScholarPubMed
Hauguel-De Mouzon, S., Challier, J. C., Kacemi, A.et al.The glucose transporters3 glucose transporter isoform is differentially expressed within human placental cell types. J. Clin. Endocrinol. Metab. 1997;82:2689–94.Google ScholarPubMed
Xing, A. Y., Challier, J. C., Lepercq, J.et al.Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J. Clin. Endocrinol. Metab. 1998;83:4097–101.Google ScholarPubMed
Gude, N. M., Stevenson, J. L., Rogers, S.et al.glucose transporters12 expression in human placenta in first trimester and term. Placenta 2003;24:566–70.CrossRefGoogle ScholarPubMed
Currie, M. J., Bassett, N. S., Gluckman, P. D.Ovine glucose transporter-1 and -3: cDNA partial sequences and developmental gene expression in the placenta. Placenta 1997;18:393–401.CrossRefGoogle ScholarPubMed
Ehrhardt, R. A., Bell, A. W.Developmental increases in glucose transporter concentration in the sheep placenta. Am. J. Physiol. 1997;273:R1132–41.Google ScholarPubMed
Devaskar, S. U., Devaskar, U. P., Schroeder, R. E.et al.Expression of genes involved in placental glucose uptake and transport in the nonobese diabetic mouse pregnancy. Am. J. Obstet. Gynecol. 1994;171:1316–23.CrossRefGoogle ScholarPubMed
Das, U. G., Sadiq, H. F., Soares, M. J., Hay, W. W. J., Devaskar, S. U.Time-dependent physiological regulation of rodent and ovine placental glucose transporter (glucose transporters-1) protein. Am. J. Physiol. 1998;274:R339–47.Google Scholar
Das, U. G., He, J., Ehrhardt, R. A., Hay, W. W. Jr, Devaskar, S. U.Time-dependent physiological regulation of ovine placental glucose transporters-3 glucose transporter protein. Am. J. Physiol. Regula. Integrat. Comparat. Physiol. 2000;279:R2252–61.CrossRefGoogle Scholar
Hahn, T., Barth, S., Graf, R.et al.Placental glucose transporter expression is regulated by glucocorticoids. J. Clin. Endocrinol. Metab. 1999;84:1445–52.Google ScholarPubMed
Gaither, K., Quraishi, A. N., Illsley, N. P.Diabetes alters the expression and activity of the human placental glucose transporters1 glucose transporter. J. Clin. Endocrinol. Metab. 1999;84:695–701.Google Scholar
Sciullo, E., Cardellini, G., Baroni, M. G.et al.Glucose transporter (Glut1, Glut3) mRNA in human placenta of diabetic and non-diabetic pregnancies. Early Pregnancy 1997;3:172–82.Google ScholarPubMed
Esterman, A., Greco, M. A., Mitani, Y.et al.The effect of hypoxia on human trophoblast in culture: morphology, glucose transport and metabolism. Placenta 1997;18:129–36.CrossRefGoogle ScholarPubMed
Pickard, M. R., Sinha, A. K., Ogilvie, L. M.et al.Maternal hypothyroxinemia influences glucose transporter expression in fetal brain and placenta. J. Endocrinol. 1999;163:385– 94.CrossRefGoogle ScholarPubMed
DiGiacomo, J. E., Hay, W. W. Jr.Placental-fetal glucose exchange and placental glucose consumption in pregnant sheep. Am. J. Physiol. 1990;258:E360–7.Google ScholarPubMed
Kudo, Y., Boyd, C. A.Human placental amino acid transporter genes: expression and function. Reproduction 2002;124:593–600.CrossRefGoogle ScholarPubMed
Cetin, I., Ronzoni, S., Marconi, A. M.et al.Maternal concentrations and fetal-maternal concentration differences of plasma amino acids in normal and intrauterine growth-restricted pregnancies. Am. J. Obstet. Gynecol. 1996;174:1575–83.CrossRefGoogle ScholarPubMed
Economides, D. L., Nicolaides, K. H., Gahl, W. A., Bernardini, I., Evans, M. I.Plasma amino acids in appropriate- and small-for-gestational-age fetuses. Am. J. Obstet. Gynecol. 1989;161:1219–27.CrossRefGoogle ScholarPubMed
Cetin, I., Marconi, A. M., Bozzetti, P.et al.Umbilical amino acid concentrations in appropriate and small for gestational age infants: a biochemical difference present in utero. Am. J. Obstet. Gynecol. 1988;158:120–6.CrossRefGoogle ScholarPubMed
Paolini, C. L., Marconi, A. M., Ronzoni, S.et al.Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies. J. Clin. Endocrinol. Metab. 2001;86:5427–32.CrossRefGoogle ScholarPubMed
Dicke, J. M., Henderson, G. I.Placental amino acid uptake in normal and complicated pregnancies. Am. J. Med. Sci. 1988;295:223–7.CrossRefGoogle ScholarPubMed
Glazier, J. D., Cetin, I., Perugino, G.et al.Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction. Pediatr. Res. 1997;42:514–9.CrossRefGoogle ScholarPubMed
Mahendran, D., Donnai, P., Glazier, J. D.et al.Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr. Res. 1993;34:661–5.CrossRefGoogle ScholarPubMed
Johnson, L. W., Smith, C. H.Neutral amino acid transport systems of microvillous membrane of human placenta. Am. J. Physiol. 1988;254:C773–80.CrossRefGoogle ScholarPubMed
Hoeltzli, S. D., Smith, C. H.Alanine transport systems in isolated basal plasma membrane of human placenta. Am. J. Physiol. 1989;256:C630–7.CrossRefGoogle ScholarPubMed
Novak, D. A., Beveridge, M. J., Malandro, M., Seo, J.Ontogeny of amino acid transport system A in rat placenta. Placenta 1996;17:643–51.CrossRefGoogle ScholarPubMed
Low, S. Y., Rennie, M. J., Taylor, P. M.Sodium-dependent glutamate transport in cultured rat myotubes increases after glutamine deprivation. FASEB J. 1994;8:127–31.CrossRefGoogle ScholarPubMed
Taylor, P. M., Kaur, S., Mackenzie, B., Peter, G. J.Amino-acid-dependent modulation of amino acid transport in Xenopus laevis oocytes. J. Exper. Biol. 1996;199:923–31.Google ScholarPubMed
Malandro, M. S., Beveridge, M. J., Novak, D. A., Kilberg, M. S.Rat placental amino acid transport after protein-deprivation-induced intrauterine growth retardation. Biochem. Soc. Trans. 1996;24:839–43.CrossRefGoogle ScholarPubMed
Cramer, S., Beveridge, M., Kilberg, M., Novak, D.Physiological importance of system A-mediated amino acid transport to rat fetal development. Am. J. Physiol. Cell Physiol. 2002;282:C153–60.CrossRefGoogle ScholarPubMed
Hoeltzli, S. D., Kelley, L. K., Moe, A. J., Smith, C. H.Anionic amino acid transport systems in isolated basal plasma membrane of human placenta. Am. J. Physiol. 1990;259:C47–55.CrossRefGoogle ScholarPubMed
Malandro, M. S., Beveridge, M. J., Kilberg, M. S., Novak, D. A.Effect of low-protein diet-induced intrauterine growth retardation on rat placental amino acid transport. Am. J. Physiol. 1996;271:C295–303.CrossRefGoogle ScholarPubMed
Moe, A., Smith, C.Anionic amino acid uptake by microvillous membrane vesicles from human placenta. Am. J. Physiol. 1989;257:C1005–11.CrossRefGoogle ScholarPubMed
Novak, D., Quiggle, F., Artime, C., Beveridge, M.Regulation of glutamate transport and transport proteins in a placental cell line. Am. J. Physiol. Cell Physiol. 2001;281:C1014–22.CrossRefGoogle Scholar
Novak, D. A., Beveridge, M. J.Glutamine transport in human and rat placenta. Placenta 1997;18:379–86.CrossRefGoogle ScholarPubMed
Matthews, J. C., Beveridge, M. J., Malandro, M. S.et al.Activity and protein localization of multiple glutamate transporters in gestation day 14 vs. day 20 rat placenta. Am. J. Physiol. 1998;274:C603–14.CrossRefGoogle ScholarPubMed
Dancis, J., Money, W. L., Springer, D., Levitz, M.Transport of amino acids by placenta. Am. J. Obstet. Gynecol. 1968;101:820–9.CrossRefGoogle ScholarPubMed
Fairman, W. A., Vandenberg, R. J., Arriza, J. L., Kavanaugh, M. P., Amara, S. G.An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 1995;375:599–603.CrossRefGoogle ScholarPubMed
Nakayama, T., Kawakami, H., Tanaka, K., Nakamura, S.Expression of three glutamate transporter subtype mRNAs in human brain regions and peripheral tissues. Molec. Brain Res. 1996;36:189–92.CrossRefGoogle ScholarPubMed
Matthews, J. C., Beveridge, M. J., Dialynas, E.et al.Placental anionic and cationic amino acid transporter expression in growth hormone overexpressing and null IGF-II or null IGF-I receptor mice. Placenta 1999;20:639–50.CrossRefGoogle ScholarPubMed
Regnault, T. R. H., Vrijer, B., Trembler, K. A.et al.The umbilical uptake of glutamate in intrauterine growth restriction pregnancies. J. Perinatal Med. 2001;29:546.Google Scholar
Ayuk, P. T., Sibley, C., Donnai, P., D'Souza, S., Glazier, J.Development and polarization of cationic amino acid transporters and regulators in the human placenta. Am. J. Physiol. 2000;278:c1162–71.CrossRefGoogle ScholarPubMed
Kamath, S. G., Furesz, T. C., Way, B. A., Smith, C. H.Identification of three cationic amino acid transporters in placental trophoblast: cloning, expression, and characterization of hCAT-1. J. Membrane Biol. 1999;171:55–62.CrossRefGoogle ScholarPubMed
Malandro, M. S., Beveridge, M. J., Kilberg, M. S., Novak, D. A.Effect of low-protein diet-induced intrauterine growth retardation on rat placental amino acid transport. Am. J. Physiol. 1996;271:C295–303.CrossRefGoogle ScholarPubMed
Eleno, N., Deves, R., Boyd, C. A.Membrane potential dependence of the kinetics of cationic amino acid transport systems in human placenta. J. Physiol. 1994;479:291–300.CrossRefGoogle ScholarPubMed
Malandro, M. S., Beveridge, M. J., Kilberg, M. S., Novak, D. A.Ontogeny of cationic amino acid transport systems in rat placenta. Am. J. Physiol. 1994;267:C804–11.CrossRefGoogle ScholarPubMed
Furesz, T. C., Moe, A. J., Smith, C. H.Two cationic amino acid transport systems in human placental basal plasma membranes. Am. J. Physiol. 1991;261:C246–52.CrossRefGoogle ScholarPubMed
Ayuk, P. T., Theophanous, D., D'Souza, S. W., Sibley, C., Glazier, J. D.L-Arginine transport by the microvillous plasma membrane of the syncytiotrophoblast from human placenta in relation to nitric oxide production: Effects of gestation, preclampsia, and intrauterine growth restriction. J. Clin. Endocrinol. Metab. 2002;87:747–51.CrossRefGoogle Scholar
Jansson, T., Scholtbach, V., Powell, T. L.Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr. Res. 1998;44:532–7.CrossRefGoogle ScholarPubMed
Furesz, T. C., Moe, A. J., Smith, C. H.Lysine uptake by human placental microvillous membrane: comparison of system y+ with basal membrane. Am. J. Physiol. 1995;268:C755–61.CrossRefGoogle Scholar
Bell, A. W., Wilkening, R. B., Meschia, G.Some aspects of placental function in chronically heat-stressed ewes. J. Dev. Physiol. 1987;9:17–29.Google ScholarPubMed
Bell, A. W., McBride, B. W., Slepetis, R., Early, R. J., Currie, W. B.Chronic heat stress and prenatal development in sheep: I. Conceptus growth and maternal plasma hormones and metabolites. J. Animal Sci. 1989;67:3289–99.CrossRefGoogle ScholarPubMed
Karl, P. I., Fisher, S. E.Taurine transport by microvillous membrane vesicles and the perfused cotyledon of the human placenta. Am. J. Physiol. 1990;258:C443–51.CrossRefGoogle ScholarPubMed
Miyamoto, Y., Balkovetz, D. F., Leibach, F. H., Mahesh, V. B., Ganapathy, V.Na+ + Cl− − gradient-driven, high-affinity, uphill transport of taurine in human placental brush-border membrane vesicles. FEBS Letters 1988;231:263–7.CrossRefGoogle Scholar
Moyer, M. S., Insler, N., Dumaswala, R.The role of chloride in taurine transport across the human placental brush-border membrane. Biochim. Biophys. Acta 1992;1109:74–80.CrossRefGoogle ScholarPubMed
Norberg, S., Powell, T. L., Jansson, T.Intrauterine growth restriction is associated with a reduced activity of placental taurine transporters. Pediatr. Res. 1998;44:233–8.CrossRefGoogle ScholarPubMed
Kulanthaivel, P., Leibach, F. H., Mahesh, V. B., Ganapathy, V.Tyrosine residues are essential for the activity of the human placental taurine transporter. Biochim. Biophys. Acta 1989;985:139–46.CrossRefGoogle ScholarPubMed
Kulanthaivel, P., Cool, D. R., Ramamoorthy, S.et al.Transport of taurine and its regulation by protein kinase C in the JAR human placental choriocarcinoma cell line. Biochem. J. 1991;277:53–8.CrossRefGoogle ScholarPubMed
Roos, S., Powell, T. L., Jansson, T.The human placental taurine transporter in uncomplicated and intrauterine growth restriction pregnancies: cellular localization, protein expression and regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004;287:R886–93.CrossRefGoogle ScholarPubMed
Jimenez-Moleon, J. J., Bueno-Cavanillas, A., Luna-del-Castillo, J. D.et al.Impact of different levels of carbohydrate intolerance on neonatal outcomes classically associated with gestational diabetes mellitus. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002;102:36–41.CrossRefGoogle ScholarPubMed
Desoye, G., Korgun, E. T., Ghaffari-Tabrizi, N., Hahn, T.Is fetal macrosomia in adequately controlled diabetic women the result of a placental defect? – a hypothesis. J. Maternal-Fetal Neonat. Med. 2002;11:258–61.Google ScholarPubMed
Ogata, E. S., Sabbagha, R., Metzger, B. E.et al.Serial ultrasonography to assess evolving fetal macrosomia. Studies in 23 pregnant diabetic women. J. Am. Med. Assoc. 1980;243:2405–8.CrossRefGoogle ScholarPubMed
Bernstein, I. M., Goran, M. I., Copeland, K. C.Maternal insulin sensitivity and cord blood peptides: relationships to neonatal size at birth. Obstet. Gynecol. 1997;90:780–3.CrossRefGoogle ScholarPubMed
Nicolini, U., Hubinont, C., Santolaya, J.et al.Maternal-fetal glucose gradient in normal pregnancies and in pregnancies complicated by alloimmunization and fetal growth retardation. Am. J. Obstet. Gynecol. 1989;161:924–7.CrossRefGoogle ScholarPubMed
Kervran, A., Girard, J. R.Glucose-induced increase of plasma insulin in the rat foetus in utero. J. Endocrinol. 1974;62:545– 51.CrossRefGoogle ScholarPubMed
Aldoretta, P. W., Carver, T. D., Hay, W. W. Jr.Maturation of glucose-stimulated insulin secretion in fetal sheep. Biol. Neonate 1998;73:375–86.CrossRefGoogle ScholarPubMed
Carver, T. D., Anderson, S. M., Aldoretta, P. W., Hay, W. W. Jr.Effect of low-level basal plus marked “pulsatile” hyperglycemia on insulin secretion in fetal sheep. Am. J. Physiol. 1996;271:E865–71.Google ScholarPubMed
Bihoreau, M. T., Ktorza, A., Kervran, A., Picon, L.Effect of gestational hyperglycemia on insulin secretion in vivo and in vitro by fetal rat pancreas. Am. J. Physiol. 1986;251:E86–91.Google ScholarPubMed
Eriksson, U. J., Styrud, J.Congenital malformations in diabetic pregnancy: the clinical relevance of experimental animal studies. Acta Paediatr. Scand. Suppl. 1985;320:72–8.CrossRefGoogle ScholarPubMed
Lepercq, J., Taupin, P., Dubois-Laforgue, D.et al.Heterogeneity of fetal growth in type 1 diabetic pregnancy. Diabetes Metab. 2001;27:339–44.Google ScholarPubMed
Landon, M. B., Mintz, M. C., Gabbe, S. G.Sonographic evaluation of fetal abdominal growth: predictor of the large-for-gestational-age infant in pregnancies complicated by diabetes mellitus. Am. J. Obstet. Gynecol. 1989;160:115–21.CrossRefGoogle ScholarPubMed
Reece, E. A., Winn, H. N., Smikle, C.et al.Sonographic assessment of growth of the fetal head in diabetic pregnancies compared with normal gestations. Am. J. Perinatol. 1990;7:18–22.CrossRefGoogle ScholarPubMed
Wong, S. F., Chan, F. Y., Oats, J. J., McIntyre, D. H.Fetal growth spurt and pregestational diabetic pregnancy. Diabetes Care 2002;25:1681–4.CrossRefGoogle ScholarPubMed
Wong, S. F., Chan, F. Y., Cincotta, R. B., Oats, J. J., McIntyre, H. D.Routine ultrasound screening in diabetic pregnancies. Ultrasound Obstet. Gynecol. 2002;19:171–6.CrossRefGoogle ScholarPubMed
Mayhew, T. M., Sisley, I.Quantitative studies on the villi, trophoblast and intervillous pores of placentae from women with well-controlled diabetes mellitus. Placenta 1998;19:371–7.CrossRefGoogle ScholarPubMed
Teasdale, F., Jean-Jacques, G.Morphometry of the microvillous membrane of the human placenta in maternal diabetes mellitus. Placenta 1986;7:81–8.CrossRefGoogle ScholarPubMed
Salvesen, D. R., Higueras, M. T., Mansur, C. A.et al.Placental and fetal Doppler velocimetry in pregnancies complicated by maternal diabetes mellitus. Am. J. Obstet. Gynecol. 1993;168:645–52.CrossRefGoogle ScholarPubMed
Fadda, G. M., D'Antona, D., Ambrosini, G.et al.Placental and fetal pulsatility indices in gestational diabetes mellitus. J. Reprod. Med. 2001;46:365– 70.Google ScholarPubMed
Pedersen, J.Weight and length at birth of infants of diabetic mothers. Acta Endocrinol. (Copenh.) 1954;16:330–42.Google ScholarPubMed
Jansson, T., Wennergren, M., Powell, T. L.Placental glucose transport and glucose transporters 1 expression in insulin-dependent diabetes. Am. J. Obstet. Gynecol. 1999;180:163–8.CrossRefGoogle ScholarPubMed
Jansson, T., Ekstrand, Y., Wennergren, M., Powell, T. L.Placental glucose transport in gestational diabetes mellitus. Am. J. Obstet. Gynecol. 2001;184:111–6.CrossRefGoogle ScholarPubMed
Boileau, P., Mrejen, C., Girard, J., Hauguel-de, M. S.Overexpression of glucose transporters3 placental glucose transporter in diabetic rats. J. Clin. Invest. 1995;96:309–17.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Matthews, N., Glazier, J.et al.Neutral amino acid uptake by the microvillous plasma membrane of the human placenta is inversely related to fetal size at birth in normal pregnancy. J. Clin. Endocrinol. Metab. 1998;83:3320–6.Google ScholarPubMed
Kuruvilla, A. G., D'Souza, S. W., Glazier, J. D.et al.Altered activity of the system A amino acid transporter in microvillous membrane vesicles from placentas of macrosomic babies born to diabetic women. J. Clin. Invest. 1994;94:689– 95.CrossRefGoogle ScholarPubMed
Jansson, T., Ekstrand, Y., Bjorn, C., Wennergren, M., Powell, T. L.Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes 2002;51:2214–9.CrossRefGoogle ScholarPubMed
Pedersen, J.Diabetes and pregnancy; blood sugar of newborn infants during fasting and glucose administration. Nord. Med. 1952;47:1049.Google ScholarPubMed
Pedersen, J.Course of diabetes during pregnancy. Acta Endocrinol. (Copenh.) 1952;9:342–64.Google ScholarPubMed
Valensise, H., Larciprete, G., Vasapollo, B.et al.C-peptide and insulin levels at 24–30 weeks' gestation: an increased risk of adverse pregnancy outcomes?Eur. J. Obstet. Gynecol. Reprod. Biol. 2002;103:130–5.CrossRefGoogle ScholarPubMed
Kitajima, M., Oka, S., Yasuhi, I.et al.Maternal serum triglyceride at 24–32 weeks' gestation and newborn weight in nondiabetic women with positive diabetic screens. Obstet. Gynecol. 2001;97:776–80.CrossRefGoogle ScholarPubMed
Delmis, J., Drazancic, A., Ivanisevic, M., Suchanek, E.Glucose, insulin, HGH and IGF-I levels in maternal serum, amniotic fluid and umbilical venous serum: a comparison between late normal pregnancy and pregnancies complicated with diabetes and fetal growth retardation. J. Perinat. Med. 1992;20:47–56.CrossRefGoogle ScholarPubMed
Verhaeghe, J., Bree, R., Herck, E.et al.C-peptide, insulin-like growth factors I and II, and insulin-like growth factor binding protein-1 in umbilical cord serum: correlations with birth weight. Am. J. Obstet. Gynecol. 1993;169:89–97.CrossRefGoogle ScholarPubMed
Wiznitzer, A., Furman, B., Zuili, I.et al.Cord leptin level and fetal macrosomia. Obstet. Gynecol. 2000;96:707–13.Google ScholarPubMed
Margetic, S., Gazzola, C., Pegg, G. G., Hill, R. A.Leptin: a review of its peripheral actions and interactions. Int. J. Obesity Related Metab. Disord. J. Int. Assoc. Study Obesity 2002;26:1407–33.CrossRefGoogle ScholarPubMed
Masuzaki, H., Ogawa, Y., Sagawa, N.et al.Nonadipose tissue production of leptin – leptin as a novel placenta-derived hormone in humans. Nature Medicine 1997;3:1029–33.CrossRefGoogle ScholarPubMed
Holness, M. J., Munns, M. J., Sugden, M. C.Current concepts concerning the role of leptin in reproductive function. Mol. Cellul. Endocrinol. 1999;157:11–20.CrossRefGoogle ScholarPubMed
Ashworth, C. J., Hoggard, N., Thomas, L.et al.Placental leptin. Rev. Reprod. 2000;5:18–24.CrossRefGoogle ScholarPubMed
Eckert, J. E., Gatford, K. L., Luxford, B. G., Campbell, R. G., Owens, P. C.Leptin expression in offspring is programmed by nutrition in pregnancy. J. Endocrinol. 2000;165:R1–6.CrossRefGoogle ScholarPubMed
Jaquet, D., Leger, J., Levy-Marchal, C., Oury, J. F., Czernichow, P.Ontogeny of leptin in human fetuses and newborns: effect of intrauterine growth retardation on serum leptin concentrations. J. Clin. Endocrinol. Metabol. 1998;83:1243–6.CrossRefGoogle ScholarPubMed
Considine, R. V., Sinha, M. K., Heiman, M. L.et al.Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Eng. J. Med. 1996;334:292–5.CrossRefGoogle ScholarPubMed
Tamura, T., Goldenberg, R. L., Johnston, K. E., Cliver, S. P.Serum leptin concentrations during pregnancy and their relationship to fetal growth. Obstet. Gynecol. 1998;91:389–95.CrossRefGoogle ScholarPubMed
Devaskar, S. U., Anthony, R., Hay, W. W. Jr.Ontogeny and insulin regulation of fetal ovine white adipose tissue leptin expression. Am. J. Physiol. Regulatory Integrative Comp. Physiol. 2002;282:R431–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×