Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T13:04:36.967Z Has data issue: false hasContentIssue false

6 - Hemolytic disease of the fetus and newborn

from Section II - Erythrocyte disorders

Published online by Cambridge University Press:  05 February 2013

Pedro de Alarcón
Affiliation:
University of Illinois College of Medicine
Eric Werner
Affiliation:
Children's Hospital of the King's Daughters
Robert D. Christensen
Affiliation:
McKay-Dee Hospital, Utah
Get access

Summary

Introduction

Hemolytic disease of the fetus and newborn (HDFN) is the immune-mediated destruction of fetal red blood cells by maternal antibody. HDFN results when the fetal red blood cells express a paternally inherited red blood cell antigen not present on maternal red blood cells. The spectrum of illness ranges from clinically insignificant to the most severe form of a critically ill, anemic, hydropic, and jaundiced infant who may have subcutaneous edema, ascites, pleural effusions, and pericardial effusions.

There is no agreement when HDFN was first recognized. As reviewed by Stockman, Rosse suggested that the marriage of Catherine of Aragon and Henry VIII illustrates the natural history of HDFN (1). Catherine had five children, three boys and one girl dying in utero with only one surviving girl, Mary I, Tudor Queen of England. A clearer description of the disorder came in 1607 with the description of a twin-birth by a French midwife who delivered a hydropic dead child and a twin that died of jaundice – what we now recognize as kernicterus (2). It was the pivotal paper by Dr. Louis K. Diamond in 1932 that clearly identified the development of the maternal antibody in response to the incompatibility of the fetal red cells with maternal red cells even though the Rhesus red cell antigen had not yet been identified. Parallel to the understanding of HDFN, Landsteiner began the process of identification of the red cell antigens at the start of the 20th century, first with the identification of the ABO system and then with the identification of the Rh system (3). He described the development of antibodies against rhesus monkey red cells in rabbits. He suggested that this was a new antigen distinct from the ABO system and called it the Rhesus antigen. This name is now well established in spite of the early controversy, since the antigen identified was a simian antigen related to but not the same as the human antigen.

Type
Chapter
Information
Neonatal Hematology
Pathogenesis, Diagnosis, and Management of Hematologic Problems
, pp. 65 - 90
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Stockman, JA, 3rd. Overview of the state of the art of Rh disease: history, current clinical management, and recent progress. J Pediatr Hematol Oncol 2001;23:385–93.CrossRefGoogle ScholarPubMed
Bowman, JM. RhD hemolytic disease of the newborn. N Engl J Med 1998;339:1775–7.CrossRefGoogle ScholarPubMed
Landsteiner, K, Weiner, A. An agglutinable factor in human blood recognized by immune sera for Rhesus blood. Pro Soc Exp Biol Med 1940;43:223.CrossRefGoogle Scholar
Mollison, PL.Methods of determining the posttransfusion survival of stored red cells. Transfusion 1984;24:93–6.CrossRefGoogle ScholarPubMed
Bowman, JM. Treatment options for the fetus with alloimmune hemolytic disease. Transfus Med Rev 1990;4:191–207.CrossRefGoogle ScholarPubMed
Chavez, GF, Mulinare, J, Edmonds, LD. Epidemiology of Rh hemolytic disease of the newborn in the United States. JAMA 1991;265:3270–4.CrossRefGoogle ScholarPubMed
Murphy, SL. Deaths: final data for 1998. Natl Vital Stat Rep 2000;48:1–105.Google ScholarPubMed
Liumbruno, GM, D’Alessandro, A, Rea, F, et al. The role of antenatal immunoprophylaxis in the prevention of maternal-foetal anti-Rh(D) alloimmunisation. Blood Transfus 2010;8:8–16.Google ScholarPubMed
Moise, KJ, Jr. Non-anti-D antibodies in red-cell alloimmunization. Eur J Obstet Gynecol Reprod Biol 2000;92:75–81.CrossRefGoogle ScholarPubMed
Avent, ND, Reid, ME. The Rh blood group system: a review. Blood 2000;95:375–87.Google ScholarPubMed
Westhoff, CM. The Rh blood group system in review: a new face for the next decade. Transfusion 2004;44:1663–73.CrossRefGoogle ScholarPubMed
Avent, ND. New insight into the Rh system: structure and function. ISBT Sci Ser 2007;2:35–43.CrossRefGoogle Scholar
Colin, Y, Cherif-Zahar, B, Le Van Kim, C, Raynal, V, Van Huffel, V, Cartron, JP. Genetic basis of the RhD-positive and RhD-negative blood group polymorphism as determined by Southern analysis. Blood 1991;78:2747–52.Google ScholarPubMed
Avent, ND, Martin, PG, Armstrong-Fisher, SS, et al. Evidence of genetic diversity underlying Rh D, weak D (Du), and partial D phenotypes as determined by multiplex polymerase chain reaction analysis of the RHD gene. Blood 1997;89:2568–77.Google Scholar
Daniels, G, Green, C, Smart, E. Differences between RhD-negative Africans and RhD-negative Europeans. Lancet 1997;350:862–3.CrossRefGoogle ScholarPubMed
Okuda, H, Kawano, M, Iwamoto, S, et al. The RHD gene is highly detectable in RhD-negative Japanese donors. J Clin Invest 1997;100:373–9.CrossRefGoogle ScholarPubMed
Singleton, BK, Green, CA, Avent, ND, et al. The presence of an RHD pseudogene containing a 37 base pair duplication and a nonsense mutation in Africans with the Rh D-negative blood group phenotype. Blood 2000;95:12–18.Google Scholar
Sun, CF, Chou, CS, Lai, NC, Wang, WT. RHD gene polymorphisms among RhD-negative Chinese in Taiwan. Vox Sang 1998;75:52–7.CrossRefGoogle ScholarPubMed
Wagner, FF, Gassner, C, Muller, TH, Schonitzer, D, Schunter, F, Flegel, WA. Molecular basis of weak D phenotypes. Blood 1999;93:385–93.Google ScholarPubMed
Gorick, B, McDougall, DC, Ouwehand, WH, et al. Quantitation of D sites on selected ‘weak D’ and ‘partial D’ red cells. Vox Sang 1993;65:136–40.Google Scholar
Wagner, FF, Frohmajer, A, Ladewig, B, et al. Weak D alleles express distinct phenotypes. Blood 2000;95:2699–708.Google ScholarPubMed
Lacey, PA, Caskey, CR, Werner, DJ, Moulds, JJ. Fatal hemolytic disease of a newborn due to anti-D in an Rh-positive Du variant mother. Transfusion 1983;23:91–4.CrossRefGoogle Scholar
Mouro, I, Colin, Y, Cherif-Zahar, B, Cartron, JP, Le Van Kim, C.Molecular genetic basis of the human Rhesus blood group system. Nat Genet 1993;5:62–5.CrossRefGoogle ScholarPubMed
Marini, AM, Matassi, G, Raynal, V, Andre, B, Cartron, JP, Cherif-Zahar, B.The human Rhesus-associated RhAG protein and a kidney homologue promote ammonium transport in yeast. Nat Genet 2000;26:341–4.CrossRefGoogle Scholar
Sturgeon, P.Hematological observations on the anemia associated with blood type Rh null. Blood 1970;36:310–20.Google Scholar
Hughes-Jones, NC.Quantitation and the Rh blood group system. Transfus Med 1991;1:69–76.CrossRefGoogle ScholarPubMed
Bowell, PJ, Allen, DL, Entwistle, CC. Blood group antibody screening tests during pregnancy. Br J Obstet Gynaecol 1986;93:1038–43.CrossRefGoogle ScholarPubMed
Filbey, D, Hanson, U, Wesstrom, G. The prevalence of red cell antibodies in pregnancy correlated to the outcome of the newborn: a 12 year study in central Sweden. Acta Obstet Gynecol Scand 1995;74:687–92.CrossRefGoogle ScholarPubMed
Moran, P, Robson, SC, Reid, MM. Anti-E in pregnancy. BJOG 2000;107:1436–8.CrossRefGoogle ScholarPubMed
Kozlowski, CL, Lee, D, Shwe, KH, Love, EM. Quantification of anti-c in haemolytic disease of the newborn. Transfus Med 1995;5:37–42.CrossRefGoogle ScholarPubMed
Wenk, RE, Goldstein, P, Felix, JK. Alloimmunization by hr’(c), hemolytic disease of newborns, and perinatal management. Obstet Gynecol 1986;67:623–6.CrossRefGoogle Scholar
Bowell, PJ, Brown, SE, Dike, AE, Inskip, MJ. The significance of anti-c alloimmunization in pregnancy. Br J Obstet Gynaecol 1986;93:1044–8.CrossRefGoogle ScholarPubMed
Babinszki, A, Berkowitz, RL. Haemolytic disease of the newborn caused by anti-c, anti-E and anti-Fya antibodies: report of five cases. Prenat Diagn 1999;19:533–6.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Bowman, JM, Pollock, JM, Manning, FA, Harman, CR. Severe anti-C hemolytic disease of the newborn. Am J Obstet Gynecol 1992;166:1239–43.CrossRefGoogle ScholarPubMed
Winters, JL, Pineda, AA, Gorden, LD, et al. RBC alloantibody specificity and antigen potency in Olmsted County, Minnesota. Transfusion 2001;41:1413–20.CrossRefGoogle ScholarPubMed
Moncharmont, P, Juron-Dupraz, F, Rigal, D, Vignal, M, Meyer, F. Haemolytic disease of two newborns in a Rhesus anti-e alloimmunized woman. Review of literature. Haematologia (Budap) 1990;23:97–100.Google Scholar
Hoeltge, GA, Domen, RE, Rybicki, LA, Schaffer, PA. Multiple red cell transfusions and alloimmunization. Experience with 6996 antibodies detected in a total of 159,262 patients from 1985 to 1993. Arch Pathol Lab Med 1995;119:42–5.Google Scholar
Hardy, J, Napier, JA. Red cell antibodies detected in antenatal tests on rhesus positive women in South and Mid Wales, 1948–1978. Br J Obstet Gynaecol 1981;88:91–100.CrossRefGoogle ScholarPubMed
Poulter, M, Kemp, TJ, Carritt, B. DNA-based rhesus typing: simultaneous determination of RHC and RHD status using the polymerase chain reaction. Vox Sang 1996;70:164–8.CrossRefGoogle ScholarPubMed
Faas, BH, Simsek, S, Bleeker, PM, et al. Rh E/e genotyping by allele-specific primer amplification. Blood 1995;85:829–32.Google ScholarPubMed
Spence, WC, Potter, P, Maddalena, A, Demers, DB, Bick, DP. DNA-based prenatal determination of the RhEe genotype. Obstet Gynecol 1995;86:670–2.Google ScholarPubMed
Yamamoto, F, Clausen, H, White, T, Marken, J, Hakomori, S. Molecular genetic basis of the histo-blood group ABO system. Nature 1990;345:229–33.CrossRefGoogle ScholarPubMed
Clausen, H, Hakomori, S. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang 1989;56:1–20.CrossRefGoogle ScholarPubMed
Ozolek, JA, Watchko, JF, Mimouni, F. Prevalence and lack of clinical significance of blood group incompatibility in mothers with blood type A or B. J Pediatr 1994;125:87–91.CrossRefGoogle ScholarPubMed
Sherer, DM, Abramowicz, JS, Ryan, RM, Sheils, LA, Blumberg, N, Woods, JR, Jr. Severe fetal hydrops resulting from ABO incompatibility. Obstet Gynecol 1991;78:897–9.Google ScholarPubMed
Peevy, KJ, Wiseman, HJ. ABO hemolytic disease of the newborn: evaluation of management and identification of racial and antigenic factors. Pediatrics 1978;61:475–8.CrossRefGoogle ScholarPubMed
Osborn, LM, Lenarsky, C, Oakes, RC, Reiff, MI. Phototherapy in full-term infants with hemolytic disease secondary to ABO incompatibility. Pediatrics 1984;74:371–4.Google ScholarPubMed
Guaran, RL, Drew, JH, Watkins, AM. Jaundice: clinical practice in 88,000 liveborn infants. Aust N Z J Obstet Gynaecol 1992;32:186–92.CrossRefGoogle ScholarPubMed
Ukita, M, Takahashi, A, Nunotani, T, Kihana, T, Watanabe, S, Yamada, N. IgG subclasses of anti-A and anti-B antibodies bound to the cord red cells in ABO incompatible pregnancies. Vox Sang 1989;56:181–6.CrossRefGoogle ScholarPubMed
Engelfriet, CP, Overbeeke, MA, Dooren, MC, Ouwehand, WH, von dem Borne, AE. Bioassays to determine the clinical significance of red cell alloantibodies based on Fc receptor-induced destruction of red cells sensitized by IgG. Transfusion 1994;34:617–26.CrossRefGoogle ScholarPubMed
Coombs, RR, Mourant, AE, Race, RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol 1945;26:255–66.Google ScholarPubMed
Lee, S. Molecular basis of Kell blood group phenotypes. Vox Sanguinis 1997;73:1–11.CrossRefGoogle ScholarPubMed
Bowman, JM, Pollock, JM, Manning, FA, Harman, CR, Menticoglou, S. Maternal Kell blood group alloimmunization. Obstet Gynecol 1992;79:239–44.Google ScholarPubMed
Babinszki, A, Lapinski, RH, Berkowitz, RL. Prognostic factors and management in pregnancies complicated with severe kell alloimmunization: experiences of the last 13 years. Am J Perinatol 1998;15:695–701.CrossRefGoogle ScholarPubMed
Lee, S, Wu, X, Son, S, et al. Point mutations characterize KEL10, the KEL3, KEL4, and KEL21 alleles, and the KEL17 and KEL11 alleles. Transfusion 1996;36:490–4.CrossRefGoogle ScholarPubMed
Weiner, CP, Widness, JA. Decreased fetal erythropoiesis and hemolysis in Kell hemolytic anemia. Am J Obstet Gynecol 1996;174:547–51.CrossRefGoogle ScholarPubMed
Vaughan, JI, Manning, M, Warwick, RM, Letsky, EA, Murray, NA, Roberts, IA. Inhibition of erythroid progenitor cells by anti-Kell antibodies in fetal alloimmune anemia. N Engl J Med 1998;338:798–803.CrossRefGoogle ScholarPubMed
Vaughan, JI, Warwick, R, Letsky, E, Nicolini, U, Rodeck, CH, Fisk, NM. Erythropoietic suppression in fetal anemia because of Kell alloimmunization. Am J Obstet Gynecol 1994;171:247–52.CrossRefGoogle ScholarPubMed
Southcott, MJ, Tanner, MJ, Anstee, DJ. The expression of human blood group antigens during erythropoiesis in a cell culture system. Blood 1999;93:4425–35.Google Scholar
Ogawa, M, MacEachern, MD, Avila, L. Human marrow erythropoiesis in culture: II. Heterogeneity in the morphology, time course of colony formation, and sedimentation velocities of the colony-forming cells. Am J Hematol 1977;3:29–36.CrossRefGoogle ScholarPubMed
Dangers of anti-Kell in pregnancy. Lancet 1991;337:1319–20.
Constantine, G.Anti-Kell in pregnancy. Lancet 1991;338:198.CrossRefGoogle ScholarPubMed
Zimmerman, R, Carpenter, RJ, Jr., Durig, P, Mari, G.Longitudinal measurement of peak systolic velocity in the fetal middle cerebral artery for monitoring pregnancies complicated by red cell alloimmunisation: a prospective multicentre trial with intention-to-treat. BJOG 2002;109:746–52.CrossRefGoogle ScholarPubMed
Mayne, KM, Bowell, PJ, Pratt, GA. The significance of anti-Kell sensitization in pregnancy. Clin Lab Haematol 1990;12:379–85.CrossRefGoogle ScholarPubMed
McKenna, DS, Nagaraja, HN, O’Shaughnessy, R.Management of pregnancies complicated by anti-Kell isoimmunization. Obstet Gynecol 1999;93:667–73.Google ScholarPubMed
Redman, CM, Marsh, WL.The Kell blood group system and the McLeod phenotype. Semin Hematol 1993;30:209–18.Google ScholarPubMed
Moncharmont, P, Juron-Dupraz, F, Doillon, M, Vignal, M, Debeaux, P. A case of hemolytic disease of the newborn infant due to anti-K (Cellano). Acta Haematol 1991;85:45–6.CrossRefGoogle Scholar
Duguid, JKM, Bromilow, IM. Haemolytic disease of the newborn due to anti-k. Vox Sang 1990;58:69.CrossRefGoogle ScholarPubMed
Gorlin, JB, Kelly, L. Alloimmunisation via previous transfusion places female kpb-negative recipients at risk for having children with clinically significant hemolytic disease of the newborn. Vox Sang 1994;66:46–8.Google ScholarPubMed
Lowe, RF, Musengezi, AT, Moores, P. Severe hemolytic disease of the newborn associated with anti-JSb. Transfusion 1978;18:466–8.CrossRefGoogle ScholarPubMed
Gordon, MC, Kennedy, MS, O’Shaughnessy, RW, Waheed, A.Severe hemolytic disease of the newborn due to anti-Js(b). Vox Sang 1995;69:140–1.Google Scholar
Miller, LH, Mason, SJ, Clyde, DF, McGinniss, MH. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 1976;295:302–4.CrossRefGoogle Scholar
Hadley, TJ, Peiper, SC. From malaria to chemokine receptor: the emerging physiologic role of the Duffy blood group antigen. Blood 1997;89:3077–91.Google ScholarPubMed
Horuk, R, Chitnis, CE, Darbonne, WC, et al. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 1993;261:1182–4.CrossRefGoogle ScholarPubMed
Sim, BK, Chitnis, CE, Wasniowska, K, Hadley, TJ, Miller, LH. Receptor and ligand domains for invasion of erythrocytes by Plasmodium falciparum. Science 1994;264:1941–4.CrossRefGoogle ScholarPubMed
Tournamille, C, Le Van Kim, C, Gane, P, Cartron, JP, Colin, Y. Molecular basis and PCR-DNA typing of the Fya/fyb blood group polymorphism. Hum Genet 1995;95:407–10.CrossRefGoogle ScholarPubMed
Weatherall, DJ. Host genetics and infectious disease. Parasitology 1996;112 Suppl:S23–9.Google ScholarPubMed
Tournamille, C, Colin, Y, Cartron, JP, Le Van Kim, C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 1995;10:224–8.CrossRefGoogle ScholarPubMed
Chaudhuri, A, Polyakova, J, Zbrzezna, V, Pogo, AO. The coding sequence of Duffy blood group gene in humans and simians: restriction fragment length polymorphism, antibody and malarial parasite specificities, and expression in nonerythroid tissues in Duffy-negative individuals. Blood 1995;85:615–21.Google ScholarPubMed
Peiper, SC, Wang, ZX, Neote, K, et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med 1995;181:1311–7.CrossRefGoogle ScholarPubMed
Weinstein, L, Taylor, ES. Hemolytic disease of the neonate secondary to anti-Fya. Am J Obstet Gynecol 1975;121:643–5.CrossRefGoogle ScholarPubMed
Goodrick, MJ, Hadley, AG, Poole, G.Haemolytic disease of the fetus and newborn due to anti-Fy(a) and the potential clinical value of Duffy genotyping in pregnancies at risk. Transfus Med 1997;7:301–4.CrossRefGoogle ScholarPubMed
Vescio, LA, Farina, D, Rogido, M, Sola, A. Hemolytic disease of the newborn caused by anti-Fyb. Transfusion 1987;27:366.CrossRefGoogle ScholarPubMed
Buchanan, DI, Sinclair, M, Sanger, R, Gavin, J, Teesdale, P. An Alberta Cree Indian with a rare Duffy antibody, anti-Fy 3. Vox Sang 1976;30:114–21.CrossRefGoogle ScholarPubMed
Sosler, SD, Perkins, JT, Fong, K, Saporito, C. The prevalence of immunization to Duffy antigens in a population of known racial distribution. Transfusion 1989;29:505–7.CrossRefGoogle Scholar
Shah, VP, Gilja, BK. Hemolytic disease of newborn due to anti-Duffy (Fya). N Y State J Med 1983;83: 244–5.Google Scholar
Mallinson, G, Soo, KS, Schall, TJ, Pisacka, M, Anstee, DJ. Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/Fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a-b-) phenotype. Br J Haematol 1995;90:823–9.CrossRefGoogle ScholarPubMed
Olives, B, Mattei, MG, Huet, M, et al. Kidd blood group and urea transport function of human erythrocytes are carried by the same protein. J Biol Chem 1995;270:15607–10.CrossRefGoogle ScholarPubMed
Xu, Y, Olives, B, Bailly, P, et al. Endothelial cells of the kidney vasa recta express the urea transporter HUT11. Kidney Int 1997;51:138–46.CrossRefGoogle ScholarPubMed
Olives, B, Merriman, M, Bailly, P, et al. The molecular basis of the Kidd blood group polymorphism and its lack of association with type 1 diabetes susceptibility. Hum Mol Genet 1997;6:1017–20.CrossRefGoogle ScholarPubMed
Woodfield, DG, Douglas, R, Smith, J, Simpson, A, Pinder, L, Staveley, JM. The Jk(a–b–) phenotype in New Zealand Polynesians. Transfusion 1982;22:276–8.CrossRefGoogle ScholarPubMed
Dorner, I, Moore, JA, Chaplin, H, Jr. Combined maternal erythrocyte autosensitization and materno-fetal Jk incompatibility. Transfusion 1974;14:212–19.CrossRefGoogle ScholarPubMed
Merlob, P, Litwin, A, Reisner, SH, Cohen, IJ, Zaizov, R. Hemolytic disease of the newborn caused by anti-Jkb. Pediatr Hematol Oncol 1987;4:357–60.CrossRefGoogle ScholarPubMed
Thakral, B, Malhotra, S, Saluja, K, Kumar, P, Marwaha, N. Hemolytic disease of newborn due to anti-Jk b in a woman with high risk pregnancy. Transfus Apher Sci 2010;43:41–3.CrossRefGoogle Scholar
Pierce, SR, Hardman, JT, Steele, S, Beck, ML. Hemolytic disease of the newborn associated with anti-Jk3. Transfusion 1980;20:189–91.CrossRefGoogle ScholarPubMed
Practice parameter: management of hyperbilirubinemia in the healthy term newborn. American Academy of Pediatrics. Provisional Committee for Quality Improvement and Subcommittee on Hyperbilirubinemia. Pediatrics 1994;94:558–65.
Tomita, M, Furthmayr, H, Marchesi, VT. Primary structure of human erythrocyte glycophorin A. Isolation and characterization of peptides and complete amino acid sequence. Biochemistry 1978;17:4756–70.CrossRefGoogle ScholarPubMed
Dahr, W, Beyreuther, K, Steinbach, H, Gielen, W, Kruger, J. Structure of the Ss blood group antigens, II: a methionine/threonine polymorphism within the N-terminal sequence of the Ss glycoprotein. Hoppe Seylers Z Physiol Chem 1980;361:895–906.CrossRefGoogle Scholar
Dahr, W, Beyreuther, K, Kordowicz, M, Kruger, J. N-terminal amino acid sequence of sialoglycoprotein D (glycophorin C) from human erythrocyte membranes. Eur J Biochem 1982;125:57–62.CrossRefGoogle ScholarPubMed
Chasis, JA, Mohandas, N. Red blood cell glycophorins. Blood 1992;80:1869–79.Google ScholarPubMed
Geifman-Holtzman, O, Wojtowycz, M, Kosmas, E, Artal, R. Female alloimmunization with antibodies known to cause hemolytic disease. Obstet Gynecol 1997;89:272–5.CrossRefGoogle ScholarPubMed
De Young-Owens, A, Kennedy, M, Rose, RL, Boyle, J, O’Shaughnessy, R. Anti-M isoimmunization: management and outcome at the Ohio State University from 1969 to 1995. Obstet Gynecol 1997;90:962–6.CrossRefGoogle ScholarPubMed
Duguid, JK, Bromilow, IM, Entwistle, GD, Wilkinson, R. Haemolytic disease of the newborn due to anti-M. Vox Sang 1995;68:195–6.CrossRefGoogle ScholarPubMed
Telischi, M, Behzad, O, Issitt, PD, Pavone, BG. Hemolytic disease of the newborn due to anti-N. Vox Sang 1976;31:109–16.CrossRefGoogle ScholarPubMed
Mayne, KM, Bowell, PJ, Green, SJ, Entwistle, CC. The significance of anti-S sensitization in pregnancy. Clin Lab Haematol 1990;12:105–7.CrossRefGoogle ScholarPubMed
Smith, G, Knott, P, Rissik, J, de la Fuente, J, Win, N.Anti-U and haemolytic disease of the fetus and newborn. Br J Obstet Gynaecol 1998;105:1318–21.CrossRefGoogle ScholarPubMed
Novaretti, MC, Jens, E, Pagliarini, T, et al. Hemolytic disease of the newborn due to anti-U. Rev Hosp Clin Fac Med Sao Paulo 2003;58:320–3.CrossRefGoogle ScholarPubMed
Howard, H, Martlew, V, McFadyen, I, et al. Consequences for fetus and neonate of maternal red cell allo-immunisation. Arch Dis Child Fetal Neonatal Ed 1998;78:F62–6.CrossRefGoogle ScholarPubMed
Clarke, CA. Preventing rhesus babies: the Liverpool research and follow up. Arch Dis Child 1989;64:1734–40.CrossRefGoogle ScholarPubMed
Bowman, JM, Pollock, JM, Penston, LE. Fetomaternal transplacental hemorrhage during pregnancy and after delivery. Vox Sang 1986;51:117–21.CrossRefGoogle ScholarPubMed
Cohen, F, Zuelzer, WW. Mechanisms of isoimmunization. II. Transplacental passage and postnatal survival of fetal erythrocytes in heterospecific pregnancies. Blood 1967;30:796–804.Google ScholarPubMed
Huchet, J, Defossez, Y, Brossard, Y. Detection of transplacental hemorrhage during the last trimester of pregnancy. Transfusion 1988;28:506.CrossRefGoogle ScholarPubMed
Feldman, N, Skoll, A, Sibai, B. The incidence of significant fetomaternal hemorrhage in patients undergoing cesarean section. Am J Obstet Gynecol 1990;163:855–8.CrossRefGoogle ScholarPubMed
Zuppa, AA, Cardiello, V, Lai, M, Cataldi, L, D’Andrea, V, Romagnoli, C. ABO hemolytic disease of the fetus and newborn: an iatrogenic complication of heterologous assisted reproductive technology-induced pregnancy. Transfusion 2010;50:2102–4.CrossRefGoogle ScholarPubMed
Jakobowicz, R, Williams, L, Silberman, F. Immunization of Rh-negative volunteers by repeated injections of very small amounts of Rh-positive blood. Vox Sang 1972;23:376–81.CrossRefGoogle ScholarPubMed
Bowman, JM, Chown, B, Lewis, M, Pollock, JM. Rh isoimmunization during pregnancy: antenatal prophylaxis. Can Med Assoc J 1978;118:623–7.Google ScholarPubMed
Tovey, LA, Townley, A, Stevenson, BJ, Taverner, J. The Yorkshire antenatal anti-D immunoglobulin trial in primigravidae. Lancet 1983;2:244–6.CrossRefGoogle ScholarPubMed
Carneiro-Sampaio, MM, Grumach, AS, Manissadjian, A. Laboratory screening for the diagnosis of children with primary immunodeficiencies. J Investig Allergol Clin Immunol 1991;1:195–200.Google Scholar
Jeon, H, Calhoun, B, Pothiawala, M, Herschel, M, Baron, BW. Significant ABO hemolytic disease of the newborn in a group B infant with a group A2 mother. Immunohematology 2000;16:105–8.Google Scholar
Kay, LA. Cellular basis of immune response to antigens of ABO blood-group system. Capacity to provide help during response to T-cell-dependent ABO-system antigens is restricted to individuals of blood group O. Lancet 1984;2:1369–71.CrossRefGoogle ScholarPubMed
Nevanlinna, HR, Anttinen, EE, Vainio, T. [Hemolytic disease of newborn due to Rh isoimmunization; considerations on therapy and prognosis]. Duodecim 1956;72:354–69.Google ScholarPubMed
Clarke, C, Finn, R, McConnell, R, Sheppard, P. The protection afforded by ABO incompatibility against erythroblastosis due to rhesus anti-D. Int Arch Allergy Immunol 1958;13:377–81.Google Scholar
Ascari, WQ, Levine, P, Pollack, W. Incidence of maternal Rh immunization by ABO compatible and incompatible pregnancies. Br Med J 1969;1:399–401.CrossRefGoogle ScholarPubMed
Murray, S, Knox, EG, Walker, W. Rhesus haemolytic disease of the newborn and the ABO groups. Vox Sang 1965;10:6–31.CrossRefGoogle ScholarPubMed
Simister, NE, Story, CM. Human placental Fc receptors and the transmission of antibodies from mother to fetus. J Reprod Immunol 1997;37:1–23.CrossRefGoogle ScholarPubMed
Palfi, M, Selbing, A. Placental transport of maternal immunoglobulin G. Am J Reprod Immunol 1998;39:24–6.CrossRefGoogle ScholarPubMed
Devey, ME, Voak, D. A critical study of the IgG subclasses of Rh anti-D antibodies formed in pregnancy and in immunized volunteers. Immunology 1974;27:1073–9.Google ScholarPubMed
Palfi, M, Hilden, JO, Gottvall, T, Selbing, A. Placental transport of maternal immunoglobulin G in pregnancies at risk of Rh (D) hemolytic disease of the newborn. Am J Reprod Immunol 1998;39:323–8.CrossRefGoogle ScholarPubMed
Clarke, CA, Mollison, PL. Deaths from Rh haemolytic disease of the fetus and newborn, 1977–87. J R Coll Physicians Lond 1989;23:181–4.Google Scholar
McMaster Conference on Prevention of Rh Immunization 28–30 September, 1977. Vox Sang 1979;36:50–64.
Joseph, KS, Kramer, MS. The decline in Rh hemolytic disease: should Rh prophylaxis get all the credit?Am J Public Hlth 1998;88:209–15.CrossRefGoogle ScholarPubMed
Trolle, B. Prenatal Rh-immune prophylaxis with 300 micrograms immune globulin anti-D in the 28th week of pregnancy. Acta Obstet Gynecol Scand 1989;68:45–7.CrossRefGoogle ScholarPubMed
Queenan, JT, Gadow, EC, Lopes, AC. Role of spontaneous abortion in Rh immunization. Am J Obstet Gynecol 1971;110:128–30.CrossRefGoogle ScholarPubMed
Queenan, JT, Kubarych, SF, Shah, S, Holland, B. Role of induced abortion in rhesus immunisation. Lancet 1971;1:815–17.CrossRefGoogle ScholarPubMed
Tabsh, KM, Lebherz, TB, Crandall, BF. Risks of prophylactic anti-D immunoglobulin after second-trimester amniocentesis. Am J Obstet Gynecol 1984;149:225–6.CrossRefGoogle ScholarPubMed
Brandenburg, H, Jahoda, MG, Pijpers, L, Wladimiroff, JW. Rhesus sensitization after midtrimester genetic amniocentesis. Am J Med Genet 1989;32:225–6.CrossRefGoogle ScholarPubMed
Daffos, F, Capella-Pavlovsky, M, Forestier, F. Fetal blood sampling during pregnancy with use of a needle guided by ultrasound: a study of 606 consecutive cases. Am J Obstet Gynecol 1985;153:655–60.CrossRefGoogle ScholarPubMed
Bowman, JM, Pollock, JM, Peterson, LE, Harman, CR, Manning, FA, Menticoglou, SM. Fetomaternal hemorrhage following funipuncture: increase in severity of maternal red-cell alloimmunization. Obstet Gynecol 1994;84:839–43.Google ScholarPubMed
Blakemore, KJ, Baumgarten, A, Schoenfeld-Dimaio, M, Hobbins, JC, Mason, EA, Mahoney, MJ. Rise in maternal serum alpha-fetoprotein concentration after chorionic villus sampling and the possibility of isoimmunization. Am J Obstet Gynecol 1986;155:988–93.CrossRefGoogle ScholarPubMed
Jansen, MW, Brandenburg, H, Wildschut, HI, et al. The effect of chorionic villus sampling on the number of fetal cells isolated from maternal blood and on maternal serum alpha-fetoprotein levels. Prenat Diagn 1997;17:953–9.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rose, PG, Strohm, PL, Zuspan, FP. Fetomaternal hemorrhage following trauma. Am J Obstet Gynecol 1985;153:844–7.CrossRefGoogle ScholarPubMed
An assessment of the hazards of amniocentesis. Report to the Medical Research Council by their Working Party on Amniocentesis. Br J Obstet Gynaecol 1978;85 Suppl 2:1–41.
Simonovits, I, Timar, I, Bajtai, G. Rate of Rh immunization after induced abortion. Vox Sang 1980;38:161–4.CrossRefGoogle ScholarPubMed
Screening for D (Rh) Incompatibility. In Force USPST, ed. Guide to Clinical Preventive Services. 2nd edn. Washington, DC: Office of Disease Prevention and Health Promotion, 1996.
Gynecologists. ACoOa. Prevention of Rh (D) Alloimmunization. (ed Pract Bull No. 4.). Washington, DC: American College of Obstetricians and Gynecologists, 1999.
Maayan-Metzger, A, Schwartz, T, Sulkes, J, Merlob, P. Maternal anti-D prophylaxis during pregnancy does not cause neonatal haemolysis. Arch Dis Child Fetal Neonatal Edit 2001;84:F60–2.CrossRefGoogle Scholar
Pollack, W, Ascari, WQ, Kochesky, RJ, O’Connor, RR, Ho, TY, Tripodi, D. Studies on Rh prophylaxis. 1. Relationship between doses of anti-Rh and size of antigenic stimulus. Transfusion 1971;11:333–9.CrossRefGoogle ScholarPubMed
Zipursky, A. The universal prevention of Rh immunization. Clin Obstet Gynecol 1971;14:869–84.CrossRefGoogle ScholarPubMed
Ness, PM, Baldwin, ML, Niebyl, JR. Clinical high-risk designation does not predict excess fetal-maternal hemorrhage. Am J Obstet Gynecol 1987;156:154–8.CrossRefGoogle Scholar
Davis, BH, Olsen, S, Bigelow, NC, Chen, JC. Detection of fetal red cells in fetomaternal hemorrhage using a fetal hemoglobin monoclonal antibody by flow cytometry. Transfusion 1998;38:749–56.CrossRefGoogle ScholarPubMed
Taylor, JF. Sensitization of Rh-negative daughters by their Rh-positive mothers. N Engl J Med 1967;276:547–51.CrossRefGoogle ScholarPubMed
Lo, YM, Lau, TK, Chan, LY, Leung, TN, Chang, AM. Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 2000;46:1301–9.Google ScholarPubMed
Van den Veyver, IB, Moise, KJ, Jr. Fetal RhD typing by polymerase chain reaction in pregnancies complicated by rhesus alloimmunization. Obstet Gynecol 1996;88:1061–7.CrossRefGoogle ScholarPubMed
Mari, G, Deter, RL, Carpenter, RL, et al. Noninvasive diagnosis by Doppler ultrasonography of fetal anemia due to maternal red-cell alloimmunization. Collaborative Group for Doppler Assessment of the Blood Velocity in Anemic Fetuses. N Engl J Med 2000;342:9–14.CrossRefGoogle Scholar
Boulet, S, Krause, C, Tixier, H, Bardou, M, Sagot, P. Relevance of new recommendations on routine antenatal prevention of rhesus immunization: an appraisal based on a retrospective analysis of all cases observed in two French administrative areas of 3 million inhabitants. Eur J Obstet Gynecol Reprod Biol 2009;146:65–70.CrossRefGoogle ScholarPubMed
Kumar, S, Regan, F. Management of pregnancies with RhD alloimmunisation. BMJ 2005;330:1255–8.CrossRefGoogle ScholarPubMed
Sohda, S, Arinami, T, Hamada, H, Nakauchi, H, Hamaguchi, H, Kubo, T. The proportion of fetal nucleated red blood cells in maternal blood: estimation by FACS analysis. Prenat Diagn 1997;17:743–52.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Ganshirt, D, Garritsen, H, Miny, P, Holzgreve, W. Fetal cells in maternal circulation throughout gestation. Lancet 1994;343:1038–9.CrossRefGoogle ScholarPubMed
Hamada, H, Arinami, T, Kubo, T, Hamaguchi, H, Iwasaki, H. Fetal nucleated cells in maternal peripheral blood: frequency and relationship to gestational age. Hum Genet 1993;91:427–32.CrossRefGoogle ScholarPubMed
Bianchi, DW, Flint, AF, Pizzimenti, MF, Knoll, JH, Latt, SA. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA 1990;87:3279–83.CrossRefGoogle ScholarPubMed
Geifman-Holtzman, O, Grotegut, CA, Gaughan, JP, Holtzman, EJ, Floro, C, Hernandez, E. Noninvasive fetal RhCE genotyping from maternal blood. BJOG 2009;116:144–51.CrossRefGoogle ScholarPubMed
Illanes, S, Soothill, P. Noninvasive approach for the management of hemolytic disease of the fetus. Expert Rev Hematol 2009;2:577–82.CrossRefGoogle ScholarPubMed
Illanes, S, Soothill, P. Management of red cell alloimmunisation in pregnancy: the non-invasive monitoring of the disease. Prenat Diagn 2010;30:668–73.CrossRefGoogle ScholarPubMed
Finning, K, Martin, P, Daniels, G. The use of maternal plasma for prenatal RhD blood group genotyping. Methods Mol Biol 2009;496:143–57.CrossRefGoogle ScholarPubMed
Finning, K, Martin, P, Summers, J, Daniels, G. Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma. Transfusion 2007;47:2126–33.CrossRefGoogle Scholar
Moise, KJ, Jr., Perkins, JT, Sosler, SD, et al. The predictive value of maternal serum testing for detection of fetal anemia in red blood cell alloimmunization. Am J Obstet Gynecol 1995;172:1003–9.CrossRefGoogle ScholarPubMed
Cramer, AD, Dimmette, RM, Stubbs, JT. A clinical study of the autoanalyzer method for prenatal antibody evaluation and screening. Am J Clin Pathol 1970;53:355–63.CrossRefGoogle ScholarPubMed
Hilden, JO, Backteman, K, Nilsson, J, Ernerudh, J. Flow-cytometric quantitation of anti-D antibodies. Vox Sang 1997;72:172–6.CrossRefGoogle ScholarPubMed
Austin, EB, McIntosh, Y. Anti-D quantification by flow cytometry: a comparison of five methods. Transfusion 2000;40:77–83.CrossRefGoogle ScholarPubMed
Kumpel, BM. Quantification of anti-D and fetomaternal hemorrhage by flow cytometry. Transfusion 2000;40:6–9.CrossRefGoogle ScholarPubMed
Urbaniak, SJ, Greiss, MA, Crawford, RJ, Fergusson, MJ. Prediction of the outcome of rhesus haemolytic disease of the newborn: additional information using an ADCC assay. Vox Sang 1984;46:323–9.CrossRefGoogle ScholarPubMed
Oepkes, D, van Kamp, IL, Simon, MJ, Mesman, J, Overbeeke, MA, Kanhai, HH. Clinical value of an antibody-dependent cell-mediated cytotoxicity assay in the management of Rh D alloimmunization. Am J Obstet Gynecol 2001;184:1015–20.CrossRefGoogle ScholarPubMed
Liley, AW. Liquor amnil analysis in the management of the pregnancy complicated by rhesus sensitization. Am J Obstet Gynecol 1961;82:1359–70.CrossRefGoogle Scholar
Queenan, JT, Tomai, TP, Ural, SH, King, JC. Deviation in amniotic fluid optical density at a wavelength of 450 nm in Rh-immunized pregnancies from 14 to 40 weeks’ gestation: a proposal for clinical management. Am J Obstet Gynecol 1993;168:1370–6.CrossRefGoogle Scholar
Liley, AW. Intrauterine transfusion of foetus in haemolytic disease. Br Med J 1963;2:1107–9.CrossRefGoogle ScholarPubMed
Rodeck, CH, Kemp, JR, Holman, CA, Whitmore, DN, Karnicki, J, Austin, MA. Direct intravascular fetal blood transfusion by fetoscopy in severe Rhesus isoimmunisation. Lancet 1981;1:625–7.CrossRefGoogle ScholarPubMed
Nicolaides, KH, Rodeck, CH, Mibashan, RS, Kemp, JR. Have Liley charts outlived their usefulness?Am J Obstet Gynecol 1986;155:90–4.CrossRefGoogle ScholarPubMed
MacKenzie, IZ, Bowell, PJ, Castle, BM, Selinger, M, Ferguson, JF. Serial fetal blood sampling for the management of pregnancies complicated by severe rhesus (D) isoimmunization. Br J Obstet Gynaecol 1988;95:753–8.CrossRefGoogle ScholarPubMed
Weiner, CP, Williamson, RA, Wenstrom, KD, Sipes, SL, Grant, SS, Widness, JA. Management of fetal hemolytic disease by cordocentesis. I. Prediction of fetal anemia. Am J Obstet Gynecol 1991;165:546–53.CrossRefGoogle ScholarPubMed
Spinnato, JA, Clark, AL, Ralston, KK, Greenwell, ER, Goldsmith, LJ. Hemolytic disease of the fetus: a comparison of the Queenan and extended Liley methods. Obstet Gynecol 1998;92:441–5.Google ScholarPubMed
Moise, KJ, Jr. Management of rhesus alloimmunization in pregnancy. Obstet Gynecol 2008;112:164–76.CrossRefGoogle ScholarPubMed
Detti, L, Oz, U, Guney, I, Ferguson, JE, Bahado-Singh, RO, Mari, G. Doppler ultrasound velocimetry for timing the second intrauterine transfusion in fetuses with anemia from red cell alloimmunization. Am J Obstet Gynecol 2001;185:1048–51.CrossRefGoogle ScholarPubMed
Graham-Pole, J, Barr, W, Willoughby, ML. Continuous-flow plasmapheresis in management of severe rhesus disease. Br Med J 1977;1:1185–8.CrossRefGoogle ScholarPubMed
Angela, E, Robinson, E, Tovey, LA. Intensive plasma exchange in the management of severe Rh disease. Br J Haematol 1980;45:621–31.CrossRefGoogle ScholarPubMed
Berlin, G, Selbing, A, Ryden, G. Rhesus haemolytic disease treated with high-dose intravenous immunoglobulin. Lancet 1985;1:1153.CrossRefGoogle ScholarPubMed
Margulies, M, Voto, LS, Mathet, E, Margulies, M. High-dose intravenous IgG for the treatment of severe Rhesus alloimmunization. Vox Sang 1991;61:181–9.CrossRefGoogle ScholarPubMed
Voto, LS, Mathet, ER, Zapaterio, JL, Orti, J, Lede, RL, Margulies, M. High-dose gammaglobulin (IVIg) followed by intrauterine transfusions (IUTs): a new alternative for the treatment of severe fetal hemolytic disease. J Perinat Med 1997;25:85–8.CrossRefGoogle ScholarPubMed
Cashore, WJ. Neonatal hyperbilirubinemia. In McMillan, JA, Feigin, RD, DeAngelis, CD, Jones, MDJ, eds. Oski’s Pediatrics 4th edn. Philadelphia, PA, USA:Lippincott, Williams & Wilkins, 2006:235–45.Google Scholar
Roberts, IA. The changing face of haemolytic disease of the newborn. Early Hum Dev 2008;84:515–23.CrossRefGoogle ScholarPubMed
Smits-Wintjens, VE, Walther, FJ, Lopriore, E. Rhesus haemolytic disease of the newborn: postnatal management, associated morbidity and long-term outcome. Semin Fetal Neonatal Med 2008;13:265–71.CrossRefGoogle ScholarPubMed
Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004;114:297–316.
Hyperbilirubinemia. AAP/ACOG Guideline for Perinatal Care. 6th edn.; 2007:251–9.
Alpay, F, Sarici, SU, Okutan, V, Erdem, G, Ozcan, O, Gokcay, E. High-dose intravenous immunoglobulin therapy in neonatal immune haemolytic jaundice. Acta Paediatr 1999;88:216–19.CrossRefGoogle ScholarPubMed
Dagoglu, T, Ovali, F, Samanci, N, Bengisu, E. High-dose intravenous immunoglobulin therapy for rhesus haemolytic disease. J Int Med Res 1995;23:264–71.CrossRefGoogle ScholarPubMed
Rubo, J, Albrecht, K, Lasch, P, et al. High-dose intravenous immune globulin therapy for hyperbilirubinemia caused by Rh hemolytic disease. J Pediatr 1992;121:93–7.CrossRefGoogle ScholarPubMed
Smits-Wintjens, VE, Walther, FJ, Rath, ME, et al. Intravenous immunoglobulin in neonates with rhesus hemolytic disease: a randomized controlled trial. Pediatrics 2011;127:680–6.CrossRefGoogle ScholarPubMed
Bowman, JM. Immune hemolytic disease. In Natha, D, Orkin, S, eds. Nathan and Oski’s Hematology of Infancy and Childhood. 5th edn. Philadelphia, PA, USA: W.B. Saunders Co., 1998:53.Google Scholar
Blackall, DP, Pesek, GD, Montgomery, MM, et al. Hemolytic disease of the fetus and newborn due to anti-Ge3: combined antibody-dependent hemolysis and erythroid precursor cell growth inhibition. Am J Perinatol 2008;25:541–5.CrossRefGoogle ScholarPubMed
Dorn, I, Schlenke, P, Hartel, C. Prolonged anemia in an intrauterine-transfused neonate with Rh-hemolytic disease: no evidence for anti-D-related suppression of erythropoiesis in vitro. Transfusion 2010;50:1064–70.CrossRefGoogle Scholar
Rath, ME, Smits-Wintjens, VE, Lindenburg, IT, et al. Exchange transfusions and top-up transfusions in neonates with Kell haemolytic disease compared to Rh D haemolytic disease. Vox Sang 2011;100:312–16.CrossRefGoogle ScholarPubMed
Cakana, AZ, Ngwenya, L. Is antenatal antibody screening worthwhile in the Zimbabwean population?Cent Afr J Med 2000;46:38–41.Google ScholarPubMed
Mandisodza, AR, Mangoyi, G, Musekiwa, Z, Mvere, D, Abayomi, A. Incidence of haemolytic disease of the newborn in Harare, Zimbabwe. West Afr J Med 2008;27:29–31.Google ScholarPubMed
Anwar, M, Ali, N, Khattak, MF, Raashid, Y, Karamat, KA. A case for comprehensive antenatal screening for blood group antibodies. J Pak Med Assoc 1999;49:246–8.Google ScholarPubMed
Wu, KH, Chu, SL, Chang, JG, Shih, MC, Peng, CT. Haemolytic disease of the newborn due to maternal irregular antibodies in the Chinese population in Taiwan. Transfus Med 2003;13:311–14.CrossRefGoogle ScholarPubMed
Wu, YJ, Wu, Y, Chen, BC, Liu, Y. [Detection and analysis of anti-Rh blood group antibodies]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 2008;24:604–6.Google ScholarPubMed
Wong, KF, Tse, KT, Lee, AW, Mak, CS, So, CC. Is antenatal antibody screening worthwhile in Chinese?Br J Haematol 1997;97:917–19.CrossRefGoogle ScholarPubMed
Guidelines for detection, management and prevention of hyperbilirubinemia in term and late preterm newborn infants (35 or more weeks’ gestation) – Summary. Paediatr Child Hlth 2007;12:401–18.
Shortland, DB, Hussey, M, Chowdhury, AD. Understanding neonatal jaundice: UK practice and international profile. J R Soc Promot Hlth 2008;128:202–6.CrossRefGoogle ScholarPubMed
Tizzard, S, Yiannouzis, K. Yellow alert! How to identify neonatal liver disease. J Fam Health Care 2008;18:98–100.Google ScholarPubMed
Dani, C, Poggi, C, Barp, J, Romagnoli, C, Buonocore, G. Current Italian practices regarding the management of hyperbilirubinaemia in preterm infants. Acta Paediatr 2011.CrossRefGoogle ScholarPubMed
Agulnik, A, Ryumina, II, Burgos, AE. Hyperbilirubinemia guideline adherence in Russia illustrates universal challenges. Eur J Pediatr 2009;168:1175–80.CrossRefGoogle ScholarPubMed
Zimring, JC, Welniak, L, Semple, JW, Ness, PM, Slichter, SJ, Spitalnik, SL. Current problems and future directions of transfusion-induced alloimmunization: summary of an NHLBI working group. Transfusion 2011;51:435–41.CrossRefGoogle ScholarPubMed
Waldron, P, de Alarcon, P. ABO hemolytic disease of the newborn: a unique constellation of findings in siblings and review of protective mechanisms in the fetal-maternal system. Am J Perinatol 1999;16:391–8.CrossRefGoogle ScholarPubMed
McAdams, RM, Dotzler, SA, Winter, LW, Kerecman, JD. Severe hemolytic disease of the newborn from anti-e. J Perinatol 2008;28:230–2.CrossRefGoogle ScholarPubMed
Vaughan, JI, Warwick, R, Welch, CR, Letsky, EA. Anti-Kell in pregnancy. Br J Obstet Gynaecol 1991;98:944–5.CrossRefGoogle ScholarPubMed
Bowman, JM, Harman, FA, Manning, CR, Pollock, JM. Erythroblastosis fetalis produced by anti-k. Vox Sang 1989;56:187–9.CrossRefGoogle ScholarPubMed
Jovanovic-Srzentic, S, Djokic, M, Tijanic, N, et al. Antibodies detected in samples from 21,730 pregnant women. Immunohematology 2003;19:89–92.Google ScholarPubMed
Field, TE, Wilson, TE, Dawes, BJ, Giles, CM. Haemolytic disease of the newborn due to anti-Mt a. Vox Sang 1972;22:432–7.Google Scholar
Cheung, CC, Challis, D, Fisher, G, et al. Anti-Mta associated with three cases of hemolytic disease of the newborn. Immunohematology 2002;18:37–9.Google ScholarPubMed
Davies, J, Day, S, Milne, A, Roy, A, Simpson, S. Haemolytic disease of the foetus and newborn caused by auto anti-LW. Transfus Med 2009;19:218–19.CrossRefGoogle ScholarPubMed
Francis, BJ, Hatcher, DE. Hemolytic disease of the newborn apparently caused by anti-Lu-a. Transfusion 1961;1:248–50.CrossRefGoogle ScholarPubMed
Scheffer, H, Tamaki, HT. Anti-Lu-b and mild hemolytic disease of the newborn: a case report. Transfusion 1966;6:497–8.CrossRefGoogle ScholarPubMed
Dube, VE, Zoes, CS. Subclinical hemolytic disease of the newborn associated with IgG anti-Lub. Transfusion 1982;22:251–3.CrossRefGoogle ScholarPubMed
Abhyankar, S, Silfen, S, Rao, SP, Vinciguerra, C, Dimiaio, TM. Positive cord blood “DAT” due to anti-Le(a): absence of hemolytic disease of the newborn. Am J Pediatr Hematol Oncol 1989;11:184–5.Google ScholarPubMed
Carreras Vescio, LA, Torres, OW, Virgilio, OS, Pizzolato, M.Mild hemolytic disease of the newborn due to anti-Lewis(a). Vox Sang 1993;64:194–5.CrossRefGoogle Scholar
Reid, ME, Ellisor, SS. Hemolytic disease of newborn due to anti-Leb. Vox Sang 1982;42:278.CrossRefGoogle ScholarPubMed
Joshi, SR, Wagner, FF, Vasantha, K, Panjwani, SR, Flegel, WA. An AQP1 null allele in an Indian woman with Co(a-b-) phenotype and high-titer anti-Co3 associated with mild HDN. Transfusion 2001;41:1273–8.CrossRefGoogle Scholar
DeMarco, M, Uhl, L, Fields, L, Pacini, D, Gorlin, JB, Kruskall, MS. Hemolytic disease of the newborn due to the Scianna antibody, anti-Sc2. Transfusion 1995;35:58–60.CrossRefGoogle ScholarPubMed
Ferguson, SJ, Boyce, F, Blajchman, MA. Anti-Ytb in pregnancy. Transfusion 1979;19:581–2.CrossRefGoogle ScholarPubMed
Moulds, MK. Serological investigation and clinical significance of high-titer, low-avidity (HTLA) antibodies. Am J Med Technol 1981;47:789–95.Google ScholarPubMed
Sacks, DA, Johnson, CS, Platt, LD. Isoimmunization in pregnancy to Gerbich antigen. Am J Perinatol 1985;2:208–10.CrossRefGoogle ScholarPubMed
Wu, KH, Chang, JG, Lin, M, et al. Hydrops foetalis caused by anti-Mur in first pregnancy – a case report. Transfus Med 2002;12:325–7.CrossRefGoogle ScholarPubMed
Nakajima, H, Ito, K. An example of anti-Jra causing hemolytic disease of the newborn and frequency of Jra antigen in the Japanese population. Vox Sang 1978;35:265–7.Google ScholarPubMed
Masumoto, A, Masuyama, H, Sumida, Y, Segawa, T, Hiramatsu, Y. Successful management of anti-Jra alloimmunization in pregnancy: a case report. Gynecol Obstet Invest 2010;69:81–3.CrossRefGoogle ScholarPubMed
Takabayashi, T, Murakami, M, Yajima, H, Tsujiei, M, Ozawa, N, Yajima, A. Influence of maternal antibody anti-Jra on the baby: a case report and pedigree chart. Tohoku J Exp Med 1985;145:97–101.CrossRefGoogle ScholarPubMed
Ishihara, Y, Miyata, S, Chiba, Y, Kawai, T. Successful treatment of extremely severe fetal anemia due to anti-Jra alloimmunization. Fetal Diagn Ther 2006;21:269–71.CrossRefGoogle ScholarPubMed
Moncharmont, P, Buclet, D, Trouilloud, C, Peyrard, T, Rigal, D. Severe hemolytic disease of the fetus and the newborn associated with anti-Vw (Vw). J Matern Fetal Neonatal Med 2010;23:1066–8.CrossRefGoogle Scholar
Ichikawa, Y, Sato, C, McCreary, J, Lubenko, A. Kg, a new low-frequency red cell antigen responsible for hemolytic disease of the newborn. Vox Sang 1989;56:98–100.CrossRefGoogle ScholarPubMed
Kubo, S, Takahashi, J, Yoshizawa, H, et al. Male newborn with anti-Kg antibody-induced hemolytic disease of the newborn. Pediatr Int 2009;51:582–4.CrossRefGoogle ScholarPubMed
Beaulieu, M-D. Screening for D (Rh) sensitization in pregnancy. Canadian Task Force on the Periodic Health Examination The Canadian Guide to Clinical Preventive Health Care Ottawa: Canada Communication Group; 1994:116–24.Google Scholar
Baptista-Gonzalez, H, Rosenfeld-Mann, F, Leiss-Marquez, T.Prevencion de la isoinmunizacion materna al RhD, con g-globulina anti-D. Salud Publica Mex 2001:52–8.Google Scholar
2011.
Lee, D, Contreras, M, Robson, SC, Rodeck, CH, Whittle, MJ. Recommendations for the use of anti-D immunoglobulin for Rh prophylaxis. British Blood Transfusion Society and the Royal College of Obstetricians and Gynaecologists. Transfus Med 1999;9:93–7.Google ScholarPubMed
ACOG practice bulletin. Prevention of Rh D alloimmunization. Number 4, May 1999 (replaces educational bulletin Number 147, October 1990). Clinical management guidelines for obstetrician-gynecologists. American College of Obstetrics and Gynecology. Int J Gynaecol Obstet 1999;66:63–70.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×