Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T12:42:18.965Z Has data issue: false hasContentIssue false

4 - Anemia of prematurity and indications for erythropoietin therapy

Published online by Cambridge University Press:  10 August 2009

Pamela J. Kling
Affiliation:
M.D. University of Wisconsin, Madison, WI, USA
Pedro A. de Alarcón
Affiliation:
University of Tennessee
Eric J. Werner
Affiliation:
Eastern Virginia Medical School
J. Lawrence Naiman
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

Introduction

Anemia of prematurity is a multifactorial anemia characterized by relatively low plasma erythropoietin (EPO) levels, iatrogenic blood loss, low circulating blood volumes, and insufficient erythropoiesis. This anemia has been long characterized as nutritionally insensitive, but nutrition may influence its clinical course. Anemia of prematurity is treated with erythrocyte transfusions, and many published studies have examined the potential of recombinant human erythropoietin (rhEPO) therapy. Although rhEPO therapy is associated with a statistically lower number of transfusions, it does not eliminate transfusions in most premature infants. In addition, optimal dosage, route of administration, and timing of rhEPO therapy in prematurity remain under study. Of concern, rhEPO therapy is associated with both functional iron deficiency and depleted iron stores in other populations. In prematurity, rhEPO is given in conjunction with supplemental iron, but long-term iron status of premature infants after rhEPO therapy has been studied poorly.

Physiology of anemia of prematurity

EPO, the primary hormone regulating erythropoiesis, is measurable throughout fetal gestation [1]. In the fetus and newborn, EPO is produced primarily by the liver, which may be relatively insensitive to hypoxia compared with the kidney [1, 2]. After term birth, erythropoiesis is suppressed by markedly improved postnatal oxygen delivery and a relatively depressed plasma EPO level; consequently, a fall in hemoglobin occurs, which reaches physiologic nadir in the first months postpartum [3]. This response is exaggerated in premature infants [4].

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zanjani, E. D., Ascensao, J. L., McGlave, P. B., Banisadre, M., Ash, R. C.Studies in the liver to kidney switch of erythropoietin production. J Clin Invest 1981; 67: 1183–1188CrossRefGoogle ScholarPubMed
Eckardt, K.-U., Ratcliffe, P. J., Tan, C. C., Bauer, C., Kurtz, A.Age-dependent expression of the erythropoietin gene in rat liver and kidneys. J Clin Invest 1992; 89: 753–760CrossRefGoogle ScholarPubMed
Kling, P. J., Schmidt, R. L., Roberts, R. A., Widness, J. A.Serum erythropoietin levels during infancy: associations with erythropoiesis. J Pediatr 1996; 128: 791–796CrossRefGoogle ScholarPubMed
Stockman, J. A. III, Garcia, J. F., Oski, F. A.The anemia of prematurity: factors governing the erythropoietin response. N Engl J Med 1977; 296: 647–650CrossRefGoogle ScholarPubMed
Ohls, R. K. Evaluation and treatment of anemia in the neonate. In Christensen, R. D., ed. Hematologic Problems of the Neonate. Philadelphia: W. B. Saunders, 2000: 137–169Google Scholar
Lundstrom, U., Siimes, M. A.At what age does iron supplementation become necessary in low-birth weight infants?J Pediatr 1977; 91: 878–883CrossRefGoogle ScholarPubMed
Ohls, R. K.Erythropoietin to prevent and treat the anemia of prematurity. Curr Opin Pediatr 1999; 11: 108–114CrossRefGoogle ScholarPubMed
Maier, R. F., Obladen, M., Messinger, D., Wardrop, C. A. J.Factors related to transfusion in very low birthweight infants treated with erythropoietin. Arch Dis Child 1996; 74: F182–F186CrossRefGoogle ScholarPubMed
Ohls, R. K.Erythropoietin treatment in extremely low birth weight infants: blood in versus blood out. J Pediatr 2002; 141: 3–6CrossRefGoogle ScholarPubMed
Shannon, K. M., Keith, J. M., Mentzer, W. C., et al.Recombinant human erythropoietin stimulates erythropoiesis and reduces erythrocyte transfusions in very low birth weight preterm infants. Pediatrics 1995; 95: 1–10Google ScholarPubMed
Widness, J. A., Seward, V. J., Kromer, I. J., et al.Changing patterns of red blood cell transfusion in very low birth weight infants. J Pediatr 1996; 129: 680–687CrossRefGoogle ScholarPubMed
Kling, P. J., Sullivan, T. M., Leftwich, M. E., Roe, D. J.Score for neonatal acute physiology predicts erythrocyte transfusions in premature infants. Arch Pediatr Adolesc Med 1997; 151: 27–31CrossRefGoogle ScholarPubMed
Hume, H.Red blood cell transfusions for preterm infants: the role of evidence-based medicine. Semin Perinatol 1997; 21: 8–19CrossRefGoogle ScholarPubMed
Bednarek, F. J., Weisberger, S., Richardson, D. K., et al.Variations in blood transfusions among newborn intensive care units. J Pediatr 1998; 133: 601–607CrossRefGoogle ScholarPubMed
Ringer, S. A., Richardson, D. K., Sacher, R. A., Keszler, M., Churchill, W. H.Variations in transfusion practice in neonatal intensive care. Pediatrics 1998; 101: 194–200CrossRefGoogle ScholarPubMed
Maier, R. F., Sonntag, J., Walka, M. M., et al.Changing practices of red blood cell transfusions in infants with birth weights less than 1000g. J Pediatr 2000; 136: 220–224CrossRefGoogle Scholar
Donato, H., Vain, N., Rendo, P., et al.Effect of early versus late administration of human recombinant erythropoietin on transfusion requirements in premature infants: results of a randomized, placebo-controlled, multicenter trial. Pediatrics 2000; 105: 1066–1072CrossRefGoogle ScholarPubMed
Widness, J. A., Kulhavy, J. C., Johnson, K. J., et al.Clinical performance of an in-line point-of-care monitor in neonates. Pediatrics 2000; 106: 497–504CrossRefGoogle ScholarPubMed
Moya, M. P., Clark, R. H., Nicks, J., Tanaka, D. T.The effects of bedside blood gas monitoring on blood loss and ventilator management. Biol Neonate 2001; 80: 257–261CrossRefGoogle ScholarPubMed
Sacher, R. A., Luban, N. L. C., Strauss, R. G.Current practice and guidelines for the transfusion of cellular blood components in the newborn. Transfus Med Rev 1989; 3: 39–54CrossRefGoogle ScholarPubMed
Strauss, R. G.Practical issues in neonatal transfusion practice. Am J Clin Pathol 1997; 107: S57–S63Google ScholarPubMed
Simon, T. L., Alverson, D. C., AuBuchon, J., et al.Practice parameter for the use of red blood cell transfusions. Arch Pathol Lab Med 1998; 122: 130–138Google ScholarPubMed
Ohls, R. K., Ehrenkranz, R. A., Wright, L. L., et al.The effects of early erythropoietin therapy on the transfusion requirements of preterm infants below 1250 grams birthweight: a multicenter, randomized controlled trial. Pediatrics 2001; 108: 934–942CrossRefGoogle Scholar
Joshi, A., Gerhardt, T., Shandloff, P., Bancalari, E.Blood transfusion effect on the respiratory pattern of preterm infants. Pediatrics 1987; 80: 79–84Google ScholarPubMed
Keyes, W. G., Donohue, P. K., Spivak, J. L., Jones, M. D. J., Oski, F. A.Assessing the need for transfusion of premature infants and role of hematocrit, clinical signs, and erythropoietin level. Pediatrics 1989; 84: 412–417Google ScholarPubMed
DeMaio, J., Harris, M., Deuber, C., Spitzer, A.Effect of blood transfusion on apnea frequency in growing premature infants. J Pediatr 1989; 114: 1039–1040CrossRefGoogle ScholarPubMed
Ross, M. P., Christensen, R. D., Rothstein, G., et al.A randomized trial to develop criteria for administering erythrocyte transfusion to anemic preterm infants 1 to 3 months of age. J Perinatol 1989; 9: 246–253Google ScholarPubMed
Bifano, E. M., Smith, F., Borer, J.The relationship between determinants of oxygen delivery and respiratory abnormalities in anemic preterm infants. J Pediatr 1992; 120: 292–296CrossRefGoogle Scholar
Bifano, E. M.Lactate levels in r-HuEpo treated infants during the anemia of prematurity. Pediatr Res 1995; 37: 279AGoogle Scholar
Moller, J. C., Schwarz, U., Artlich, A., Tegtmeyer, F. K., Gortner, L.Do cardiac output and serum lactate levels indicate blood transfusion requirements in anemia of prematurity?Intensive Care Med 1996; 22: 472–476CrossRefGoogle ScholarPubMed
Jones, J. G., Holland, B. M., Hudson, I. R. B., Wardrop, C. A. J.Total circulating red cells versus haematocrit as the primary descriptor of oxygen transport by the blood. Br J Haematol 1990; 1990: 288–294CrossRefGoogle Scholar
Ballin, A., Arbel, E., Kenet, G., et al.Autologous umbilical cord blood transfusion. Arch Dis Child 1995; 73: F181–F183CrossRefGoogle ScholarPubMed
Beattie, R., Stark, J. M., Wardrop, C. A. J., Holland, B. M., Kinmond, S.Autologous umbilical cord blood transfusion. Arch Dis Child 1996; 74: F221CrossRefGoogle ScholarPubMed
Eichler, H., Schaible, T., Richter, E., et al.Cord blood as a source of autologous RBCs for transfusion to preterm infants. Transfusion 2000; 40: 1111–1117CrossRefGoogle ScholarPubMed
Kinmond, S., Aitchison, T. C., Holland, B. M., et al.Umbilical cord clamping and preterm infants: a randomised trial. Br Med J 1993; 306: 172–175CrossRefGoogle ScholarPubMed
Wardrop, C. A. J., Holland, B. M.The roles and vital importance of placental blood to the newborn infant. J Perinat Med 1995; 23: 139–143CrossRefGoogle ScholarPubMed
Ibrahim, H. M., Krouskop, R. W., Lewis, D. F., Dhanireddy, R. Placental transfusion: umbilical cord clamping and preterm infants. J Perinatol 2000; 20: 351–354CrossRefGoogle Scholar
Maier, R. F., Obladen, M., Kattner, E., et al.High- versus low-dose erythropoietin in extremely low birth weight infants. J Pediatr 1998; 132: 866–870CrossRefGoogle ScholarPubMed
Carnielli, V. P., Da Riol, R., Montini, G.Iron supplementation enhances response to high doses of recombinant human erythropoietin in preterm infants. Arch Dis Child 1998; 79: F44–F48CrossRefGoogle ScholarPubMed
Brown, M. S., Jones, M. A., Ohls, R. K., Christensen, R. D.Single-dose pharmacokinetics of recombinant human erythropoietin in preterm infants after intravenous and subcutaneous administration. J Pediatr 1993; 122: 655–657CrossRefGoogle ScholarPubMed
Widness, J. A., Veng-Pedersen, P., Peters, C., et al.Erythropoietin pharmacokinetics in premature infants: developmental, non-linearity, and treatment effects. J Appl Physiol 1996; 80: 140–148CrossRefGoogle Scholar
Brown, M. S., Keith, J. F.Comparison between two and five doses a week of recombinant human erythropoietin for anemia of prematurity: a randomized trial. Pediatrics 1999; 104: 210–215CrossRefGoogle ScholarPubMed
Ohls, R. K., Veerman, M. W., Christensen, R. D.Pharmacokinetics and effectiveness of recombinant erythropoietin administered to preterm infants by continuous infusion in total parenteral nutrition solution. J Pediatr 1996; 128: 518–523CrossRefGoogle ScholarPubMed
Bechensteen, A. G., Håga, P., Halvorsen, S., et al.Erythropoietin, protein, and iron supplementation and the prevention of anaemia of prematurity. Arch Dis Child 1993; 69: 19–23CrossRefGoogle ScholarPubMed
Messer, J., Haddad, J., Donato, L., Astruc, D., Matis, J.Early treatment of premature infants with recombinant human erythropoietin. Pediatrics 1993; 92: 519–523Google ScholarPubMed
Bechensteen, A. G., Halvorsen, S., Haga, P., Cotes, P. M., Liestol, K.Erythropoietin (Epo), protein and iron supplementation and the prevention of anaemia of prematurity: effects on serum immunoreactive Epo, growth and protein and iron metabolism. Acta Paediatr 1996; 85: 490–495CrossRefGoogle ScholarPubMed
Carnielli, V. P., Montini, G., Da Riol, R., Dall'Amico, R., Cantarutti, F.Effect of high doses of human recombinant erythropoietin on the need for blood transfusions in preterm infants. J Pediatr 1992; 121: 98–102CrossRefGoogle ScholarPubMed
Meyer, M. P., Haworth, C., Meyer, J. H., Commerford, A.A comparison of oral and intravenous iron supplementation in preterm infants receiving recombinant erythropoietin. J Pediatr 1996; 129: 258–263CrossRefGoogle ScholarPubMed
Kivivuori, S. M., Virtanen, M., Raivio, K. O., Viinikka, L., Siimes, M. A.Oral iron is sufficient for erythropoietin treatment of very low birth-weight infants. Eur J Pediatr 1999; 158: 147–151CrossRefGoogle ScholarPubMed
Pollak, A., Hayde, M., Hayn, M., et al.Effect of intravenous iron supplementation on erythropoiesis in erythropoietin-treated premature infants. Pediatrics 2001; 107: 78–85CrossRefGoogle ScholarPubMed
Vamvakas, E. C., Strauss, R. G.Meta-analysis of controlled clinical trials studying the efficacy of rHuEPO in reducing blood transfusions in the anemia of prematurity. Transfusion 2001; 41: 406–415CrossRefGoogle ScholarPubMed
Ohls, R. K., Harcum, J., Schibler, K. R., Christensen, R. D.The effect of erythropoietin on the transfusion requirements of preterm infants weighing 750 grams or less: a randomized, double-blind, placebo-controlled study. J Pediatr 1997; 131: 661–665CrossRefGoogle ScholarPubMed
Kumar, P., Shankaran, S., Krishnan, R. G.Recombinant human erythropoietin therapy for treatment of anemia of prematurity in very low birth weight infants: a randomized, double-blind, placebo-controlled trial. J Perinatol 1998; 18: 173–177Google ScholarPubMed
Ohls, R. K., Ehrenkranz, R. A., Lemons, J. A., et al.A multicenter randomized double-masked placebo-controlled trial of early erythropoietin and iron administration to preterm infants. Pediatr Res 1999; 45: 216ACrossRefGoogle Scholar
Zipursky, A.The risk of hematopoietic growth factor therapy in newborn infants. Pediatr Res 2002; 51: 549CrossRefGoogle ScholarPubMed
Ohls, R. K., Christensen, R. D.Recombinant erythropoietin compared with erythrocyte transfusion in the treatment of anemia of prematurity. J Pediatr 1991; 119: 781–788CrossRefGoogle ScholarPubMed
Beck, D., Masserey, E., Meyer, M., Calame, A.Weekly intravenous administration of recombinant human erythropoietin in infants with the anaemia of prematurity. Eur J Pediatr 1991; 150: 767–772CrossRefGoogle ScholarPubMed
Halperin, D. S., Wacker, P., Lacourt, G., et al.Effects of recombinant human erythropoietin in infants with anemia of prematurity: a pilot study. J Pediatr 1990; 116: 779–786CrossRefGoogle ScholarPubMed
Emmerson, A.Double blind trial of recombinant human erythropoietin in preterm infants: comment. Arch Dis Child 1993; 69: 542Google Scholar
Shireman, T. I., Hilsenrath, P. E., Strauss, R. G., Widness, J. A., Mutnick, A. H.Recombinant human erythropoietin vs transfusions in the treatment of anemia of prematurity. Arch Pediatr Adolesc Med 1994; 148: 582–588CrossRefGoogle ScholarPubMed
Ohls, R. K., Osborne, K. A., Chrstensen, R. D.Efficacy and cost analysis of treating very low birth weight infants with erythropoietin during their first two weeks of life: a randomized, placebo-controlled trial. J Pediatr 1995; 126: 421–426CrossRefGoogle ScholarPubMed
Maier, R. F., Obladen, M., Scigalla, P., et al.The effect of epoetin beta (recombinant human erythropoietin) on the need for transfusion in very-low-birth-weight infants. N Engl J Med 1994; 330: 1173–1178CrossRefGoogle ScholarPubMed
Fain, J., Hilsenrath, P., Widness, J. A., Strauss, R. G., Mutnick, A. H.A cost analysis comparing erythropoietin and red cell transfusions in the treatment of anemia of prematurity. Transfusion 1995; 35: 936–943CrossRefGoogle ScholarPubMed
Yeo, C. L., Choo, S., Ho, L. Y.Effect of recombinant human erythropoietin on transfusion needs in preterm infants. J Paediatr Child Health 2001; 37: 352–358CrossRefGoogle ScholarPubMed
Atasay, B., Gunlemez, A., Akar, N., Arsan, S.Does early erythropoietin therapy decrease transfusions in anemia of prematurity? Indian J Pediatr 2002; 69: 389–391CrossRefGoogle ScholarPubMed
Avent, M., Cory, B. J., Galpin, J., et al.A comparison of high versus low dose recombinant human erythropoietin versus blood transfusion in the management of anaemia of prematurity in a developing country. J Tropical Pediatr 2002; 48: 227–233CrossRefGoogle Scholar
Oski, F. A.Iron deficiency in infancy and childhood. N Engl J Med 1993; 329: 190–193Google ScholarPubMed
Oski, F. A. Differential diagnosis of anemia. In Nathan, D. G., Oski, F. A., eds. Hematology of Infancy and Childhood, Vol. 1. Philadelphia: W. B. Saunders, 1993: 346–353Google Scholar
Dallman, P. R.Iron deficiency in the weanling: a nutritional problem on the way to resolution. Acta Paediatr Scand Suppl 1986; 323: 59–67CrossRefGoogle ScholarPubMed
Harthoorn-Lasthuizen, E. J., Lindemans, J., Langenhuijsen, M. M. A. C.Does iron-deficient erythropoiesis in pregnancy influence fetal iron supply? Acta Obstet Gynecol Scand 2001; 80: 392–396CrossRefGoogle ScholarPubMed
Fomon, S. J. Iron. In Fomon, S., ed. Nutrition of Normal Infants. St Louis: Mosby, 1993: 239–260Google Scholar
Ehrenkranz, R. A.Iron requirements of preterm infants. Nutrition 1994; 10: 77–78Google ScholarPubMed
Fomon, S. J., Ziegler, E. E., Nelson, S. E., Serfass, R. E., Frantz, J. A.Erythrocyte incorporation of iron by 56-day-old infants fed a 58Fe-labeled supplement. Pediatr Res 1995; 38: 373–378CrossRefGoogle ScholarPubMed
Widness, J. A., Lombard, K. A., Ziegler, E. E., et al.Erythroctye incorporation and absorption of 58Fe in premature infants treated with erythropoietin. Pediatr Res 1997; 41: 416–423CrossRefGoogle Scholar
Saarinen, U. M., Siimes, M. A.Serum ferritin in assessment of iron nutrition in healthy infants. Acta Paediatr Scand 1978; 67: 745–751CrossRefGoogle ScholarPubMed
Al-Kharfy, T., Smyth, J. A., Wadsworth, L., et al.Erythropoietin therapy in neonates at risk of having bronchopulmonary dysplasia and requiring multiple transfusions. J Pediatr 1996; 129: 89–96CrossRefGoogle ScholarPubMed
Bader, D., Blondheim, O., Jonas, R., et al.Decreased ferritin levels, despite iron supplementation, during erythropoietin therapy in anaemia of prematurity. Acta Paediatr 1996; 85: 496–501CrossRefGoogle ScholarPubMed
Bechensteen, A. G., Halvorsen, S., Haga, P., Cotes, P. M., Liestol, K.Erythropoietin, protein and iron supplementation and the prevention of anaemia of prematurity: effects on serum immunoreactive Epo, growth and protein and iron metabolism. Acta Paediatr 1996; 85: 490–495CrossRefGoogle ScholarPubMed
Emmerson, A.Role of erythropoietin in the newborn. Arch Dis Child 1993; 69: 273–275CrossRefGoogle ScholarPubMed
Meyer, M. P., Meyer, J. H., Commerford, A., et al.Recombinant human erythropoietin in the treatment of the anemia of prematurity: results of a double-blind, placebo-controlled study. Pediatrics 1994; 93: 918–923Google ScholarPubMed
Morris, K. P., Watson, S., Reid, M. M., Hamilton, P. J., Coulthard, M. G.Assessing iron status in children with chronic renal failure on erythropoietin: which measurements should we use?Pediatr Nephrol 1994; 8: 51–56CrossRefGoogle Scholar
Taetle, R.The role of transferrin receptors in hemopoietic cell growth. Exp Hematol 1990; 18: 360–365Google ScholarPubMed
Kivivuori, S. M., Heikinheimo, M., Teppo, A. M., Siimes, M. A.Early rise in serum concentration of transferrin re-ceptor induced by recombinant human erythropoietin in very-low-birth-weight infants. Pediatr Res 1994; 36: 85–89CrossRefGoogle Scholar
Bechensteen, A. G., Haga, P., Halvorsen, S., et al.Effect of low and moderate doses of recombinant human erythropoietin on the haematological response in premature infants on a high protein and iron intake. Eur J Pediatr 1997; 156: 56–61CrossRefGoogle ScholarPubMed
Kohgo, Y., Niitsu, Y., Kondo, H., et al.Serum transferrin receptor as a new index of erythropoiesis. Blood 1987; 70: 1955–1958Google ScholarPubMed
Beguin, Y., Clemons, G. K., Pootrakul, P., Fillet, G.Quantitative assessment of erythropoiesis and functional classification of anemia based on measurements of serum transferrin receptor and erythropoietin. Blood 1993; 81: 1067–1076Google ScholarPubMed
Beguin, Y., Loo, M., R'Zik, S., et al.Early prediction of response to recombinant human erythropoietin in patients with the anemia of renal failure by serum transferrin receptor and fibrinogen. Blood 1993; 82: 2010–2016Google ScholarPubMed
Rusia, U., Flowers, C., Madan, N., Agarwal, N., Sood, S. K.Serum transferrin receptor levels in the evaluation of iron deficiency in the neonate. Acta Paediatr Jpn 1996; 38: 455–459CrossRefGoogle ScholarPubMed
Kling, P. J., Widness, J. A.Transfusions (RBC Tx) and erythropoiesis indicators influence serum transferrin receptors (TfR) levels in premature infants. Pediatr Res 1995; 37: 282AGoogle Scholar
Kling, P. J., Roberts, R. A., Widness, J. A.Plasma transferrin receptor levels and indices of erythropoiesis and iron status in healthy term infants. Am J Pediatr Hematol Oncol 1997; 20: 309–314CrossRefGoogle Scholar
Braun, J., Lindner, K., Schreiber, M., Heidler, R. A., Horl, W. H.Percentage of hypochromic red blood cells as predictor of erythropoietic and iron response after i.v. iron supplementation in maintenance haemodialysis patients. Nephrol Dial Transplant 1997; 12: 1173–1181CrossRefGoogle ScholarPubMed
Siegel, R. M., LaGrone, D. H.The use of zinc protoporphyrin in screening young children for iron deficiency. Clin Pediatr 1994; 473–479CrossRefGoogle ScholarPubMed
Kaltwasser, J. P., Gottschalk, R.Erythropoietin and iron. Kidney Int 1999; 55: S49–S56CrossRefGoogle Scholar
National Kidney Foundation. Clinical practice guidelines: treatment of anemia of chronic kidney disease. National Kidney Foundation, 2000. www.kidney.org/professionals/kdoqi/guidelines_update/doqi_upex.html#an
Shaw, J. C. L.Iron absorption by the premature infant: the effect of transfusion and iron supplements on the serum ferritin levels. Acta Paediatr Scand Suppl 1982; 299: 83–89CrossRefGoogle ScholarPubMed
Arad, I., Konijn, A. M., Linder, N., Goldstein, M. D. M., Kaufmann, N. A.Serum ferritin levels in preterm infants after multiple blood transfusions. Am J Perinatol 1988; 5: 40–43CrossRefGoogle ScholarPubMed
Brown, M. S.Effect of transfusion and phlebotomy on serum ferritin levels in low birth weight infants. J Perinatol 1996; 16: 39–42Google ScholarPubMed
Soubasi, V., Kremenopoulos, G., Diamanti, E., et al.Follow-up of very low birth weight infants after erythrpoietin treatment to prevent anemia of prematurity. J Pediatr 1995; 127: 291–297CrossRefGoogle Scholar
Krallis, N., Cholevas, V., Mavridis, A., et al.Effect of recombinant human erythropoietin in preterm infants. Eur J Haematol 1999; 63: 71–76CrossRefGoogle ScholarPubMed
Winzerling, J. J., Kling, P. J.Iron deficient erythropoiesis in premature infants measured by blood zinc protoporphyrin/heme. J Pediatr 2001; 139: 134–136CrossRefGoogle ScholarPubMed
Goodnough, L. T., Skikne, B., Brugnara, C.Erythropoietin, iron and erythropoiesis. Blood 2000; 96: 823–833Google ScholarPubMed
Sullivan, J. L.Iron, plasma antioxidants and the oxygen radical disease of prematurity. Am J Dis Child 1988; 142: 1341–1344Google Scholar
Evans, P. J., Evans, R., Kovar, I. Z., Holton, A. F., Halliwell, B.Bleomycin-detectable iron in the plasma of premature and full-term neonates. FEBS Letters 1992; 303: 210–212Google ScholarPubMed
Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., Milner, A.A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci 1993; 84: 407–412CrossRefGoogle ScholarPubMed
Humphrey, M. J., Harrell-Bean, H. A., Eskelson, C., Corrigan, J. J.Blood transfusion in the neonate: effects of dilution and age of blood on hemolysis. J Pediatr 1982; 101: 605–607CrossRefGoogle ScholarPubMed
Kling, P. J., Reichard, R. D., Roberts, R. A., Winzerling, J. J., Woodward, S. S.The effects of transfusions on oxi-dative stress and plasma erythropoietin levels in prema-ture infants. Ann Hematol 2000; 79: B13Google Scholar
Obladen, M., Maier, R., Grauel, L., et al.Recombinant human erythropoietin (rhEPO) for prevention of anaemia of prematurity: a randomized multicentre trial. Pediatr Res 1990; 28: 287ACrossRefGoogle Scholar
Shannon, K. M., Mentzer, W. C., Abels, R. I., et al.Recombinant human erythropoietin in anemia of prematurity: preliminary results of a double-blind placebo controlled pilot study. J Pediatr 1991; 118: 949–955CrossRefGoogle Scholar
Shannon, K. M., Mentzer, W. C., Abels, R. I., et al.Enhancement of erythropoiesis by recombinant human erythropoietin in low birth weight infants: a pilot study. J Pediatr 1992; 120: 586–592CrossRefGoogle ScholarPubMed
Soubasi, V., Kremenpoulos, G., Diamandi, E., Tsantali, C., Tsakiris, D.In which neonates does early recombinant human erythropoietin treatment prevent anemia of prematurity? Results of a randomized, controlled study. Pediatr Res 1993; 34: 675–679CrossRefGoogle ScholarPubMed
Ronnestad, A., Moe, P. J., Breivik, N.Enhancement of erythropoiesis by erythropoietin, bovine protein and energy fortified mother's milk during anaemia of prematurity. Acta Paediatr 1995; 84: 809–811CrossRefGoogle ScholarPubMed
Samanci, N., Ovali, F., Dagoglu, T.Effects of recombinant human erythropoietin in infants with very low birth weights. J Int Med Res 1996; 24: 190–198CrossRefGoogle ScholarPubMed
Giannakopoulou, C., Bolonaki, I., Stiakaki, E., et al.Erythropoietin (rHuEPO) administration to premature infants for the treatment of their anemia. Pediatr Hematol Oncol 1998; 15: 37–43CrossRefGoogle ScholarPubMed
Maier, R. F., Obladen, M., Mueller-Hansen, I., et al.Early treatment with erythropoietin beta ameliorates anemia and reduces transfusion requirements in infants with birth weights below 1000 g. J Pediatr 2002; 141: 8–15CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×