Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T01:13:49.801Z Has data issue: false hasContentIssue false

19 - Management of renal failure in multiple myeloma

from Section 4 - Supportive therapies

Published online by Cambridge University Press:  18 December 2013

Stephen A. Schey
Affiliation:
Department of Haematology, King’s College Hospital, London
Kwee L. Yong
Affiliation:
Department of Haematology, University College Hospital, London
Robert Marcus
Affiliation:
Department of Haematology, King’s College Hospital, London
Kenneth C. Anderson
Affiliation:
Dana-Farber Cancer Institute, Boston
Get access

Summary

Introduction

Renal failure is a common complication observed in patients with multiple myeloma (MM) and other plasma cell cancers that is generally associated with an adverse clinical outcome[1]. The optimal management of MM patients with renal disease presents a challenge. As numerous drugs are cleared via the kidneys, renal impairment imposes limitation on anti-myeloma therapeutics through decreased drug clearance and enhanced toxicity[1]. Thus optimal renal function assessment is essential, often involving measurements of glomerular filtration rate (GFR), serum creatinine (sCr) levels, and creatinine clearance (CrCl) rates. However, the exact definition and incidence of “renal failure” varies among investigators and depends on the measurement parameter being used. The Kidney Disease Outcomes Quality Initiative (K/DOQI) of the National Kidney Foundation defines kidney disease as either kidney damage or a decreased GFR of <60 ml/min/1.73 m2 for ≥3 months[2]. Using the KDOQI criteria, we observed that 54% of patients seen at Roswell Park Cancer Institute presented with stage ≥3 (<60 ml/min/1.73 m2) kidney disease at the time of diagnosis[3]. When sCr is used to assess kidney function, a value of ≥2 mg/dl specifies impairment and is present in approximately 20% of MM patients[4–7]. Although measurement of sCr is simple and relatively the least cumbersome approach, it varies with age, sex and muscle mass, and is not an absolute reflection of renal function[8]. Patients with MM tend to be elderly with normal or low muscle mass and thus sCr may be lower for a given GFR or CrCl rate. As such, the extent of renal insufficiency is often underestimated in these patients when sCr alone is utilized to assess kidney function[8–13].

Type
Chapter
Information
Myeloma
Pathology, Diagnosis, and Treatment
, pp. 255 - 275
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Winearls, C. G.Acute myeloma kidney. Kidney Int. 1995;48(4):1347–61.CrossRefGoogle ScholarPubMed
K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification; 2000 [database on the Internet].
Ailawadhi, S., Chanan-Khan, A.Management of Multiple Myeloma Patients with Renal Dysfunction. In: Lonial, S., editor, Myeloma Therapy: Pursuing the Plasma Cell (Contemporary Hematology). Humana Press; 2008, pp. 499–516.CrossRefGoogle Scholar
Badros, A., Barlogie, B., Siegel, E. et al. Results of autologous stem cell transplant in multiple myeloma patients with renal failure. Br. J. Haematol. 2001;114(4):822–9.CrossRefGoogle ScholarPubMed
Blade, J., Fernandez-Llama, P., Bosch, F. et al. Renal failure in multiple myeloma: presenting features and predictors of outcome in 94 patients from a single institution. Arch. Intern. Med. 1998;158(17):1889–93.CrossRefGoogle ScholarPubMed
Kyle, R. A., Gertz, M. A., Witzig, T. E. et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo. Clin. Proc. 2003;78(1):21–33.CrossRefGoogle ScholarPubMed
Sakhuja, V., Jha, V., Varma, S. et al. Renal involvement in multiple myeloma: a 10-year study. Ren. Fail. 2000;22(4):465–77.CrossRefGoogle ScholarPubMed
Manjunath, G., Sarnak, M. J., Levey, A. S.Estimating the glomerular filtration rate. Dos and don’ts for assessing kidney function. Postgrad. Med. 2001;110(6):55–62; quiz 11.CrossRefGoogle ScholarPubMed
Levey, A. S., Bosch, J. P., Lewis, J. B. et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999;130(6):461–70.CrossRefGoogle ScholarPubMed
Knudsen, L. M., Hippe, E., Hjorth, M., Holmberg, E., Westin, J.Renal function in newly diagnosed multiple myeloma–a demographic study of 1353 patients. The Nordic Myeloma Study Group. Eur. J. Haematol. 1994;53(4):207–12.CrossRefGoogle Scholar
Knudsen, L. M., Hjorth, M., Hippe, E.Renal failure in multiple myeloma: reversibility and impact on the prognosis. Nordic Myeloma Study Group. Eur. J. Haematol. 2000;65(3):175–81.CrossRefGoogle ScholarPubMed
Bostom, A. G., Kronenberg, F., Ritz, E.Predictive performance of renal function equations for patients with chronic kidney disease and normal serum creatinine levels. J. Am. Soc. Nephrol. 2002;13(8):2140–4.CrossRefGoogle ScholarPubMed
Duncan, L., Heathcote, J., Djurdjev, O., Levin, A.Screening for renal disease using serum creatinine: who are we missing?Nephrol. Dial. Transplant 2001;16(5):1042–6.CrossRefGoogle ScholarPubMed
Cockcroft, D. W., Gault, M. H.Prediction of creatinine clearance from serum creatinine. Nephron 1976;16(1):31–41.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Terpos, E., Chanan-Khan, A. et al. Renal impairment in patients with multiple myeloma: a consensus statement on behalf of the International Myeloma Working Group. J. Clin. Oncol. 2010;28(33):4976–84.CrossRefGoogle Scholar
Bellomo, R., Ronco, C., Kellum, J. A., Mehta, R. L., Palevsky, P.Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004;8(4):R204–12.CrossRefGoogle ScholarPubMed
Mehta, R. L., Kellum, J. A., Shah, S. V. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 2007;11(2):R31.CrossRefGoogle ScholarPubMed
Srisawat, N., Hoste, E. E., Kellum, J. A.Modern classification of acute kidney injury. Blood Purif. 2010;29(3):300–7.CrossRefGoogle ScholarPubMed
Alexanian, R., Barlogie, B., Dixon, D.Renal failure in multiple myeloma. Pathogenesis and prognostic implications. Arch. Intern. Med. 1990;150(8):1693–5.CrossRefGoogle ScholarPubMed
Lorenz, E. C., Sethi, S., Poshusta, T. L. et al. Renal failure due to combined cast nephropathy, amyloidosis and light-chain deposition disease. Nephrol. Dial. Transplant 2010;25(4):1340–3.CrossRefGoogle ScholarPubMed
Blade, J., Rosinol, L.Renal, hematologic and infectious complications in multiple myeloma. Best Pract. Res. Clin. Haematol. 2005;18(4):635–52.CrossRefGoogle ScholarPubMed
Pasquali, S., Zucchelli, P., Casanova, S. et al. Renal histological lesions and clinical syndromes in multiple myeloma. Renal Immunopathology Group. Clin. Nephrol. 1987;27(5):222–8.Google ScholarPubMed
Ivanyi, B.Renal complications in multiple myeloma. Acta. Morphol. Hung. 1989;37(3–4):235–43.Google ScholarPubMed
Montseny, J. J., Kleinknecht, D., Meyrier, A. et al. Long-term outcome according to renal histological lesions in 118 patients with monoclonal gammopathies. Nephrol. Dial. Transplant 1998;13(6):1438–45.CrossRefGoogle ScholarPubMed
Basnayake, K., Cheung, C. K., Sheaff, M. et al. Differential progression of renal scarring and determinants of late renal recovery in sustained dialysis dependent acute kidney injury secondary to myeloma kidney. J. Clin. Pathol. 2010;63(10):884–7.CrossRefGoogle ScholarPubMed
Batuman, V., Verroust, P. J., Navar, G. L. et al. Myeloma light chains are ligands for cubilin (gp280). Am. J. Physiol. 1998;275(2 Pt 2):F246–54.Google Scholar
Klassen, R. B., Allen, P. L., Batuman, V., Crenshaw, K., Hammond, T. G.Light chains are a ligand for megalin. J. Appl. Physiol. 2005;98(1):257–63.CrossRefGoogle ScholarPubMed
Wirk, B. Renal failure in multiple myeloma: a medical emergency. Bone Marrow Transplant 2011, Feb 21.
Huang, Z. Q., Sanders, P. W.Biochemical interaction between Tamm-Horsfall glycoprotein and Ig light chains in the pathogenesis of cast nephropathy. Lab. Invest. 1995;73(6):810–17.Google ScholarPubMed
Haynes, R. J., Read, S., Collins, G. P., Darby, S. C., Winearls, C. G.Presentation and survival of patients with severe acute kidney injury and multiple myeloma: a 20-year experience from a single centre. Nephrol. Dial. Transplant 2010;25(2):419–26.CrossRefGoogle ScholarPubMed
Sengul, S., Zwizinski, C., Simon, E. E. et al. Endocytosis of light chains induces cytokines through activation of NF-kappaB in human proximal tubule cells. Kidney Int. 2002;62(6):1977–88.CrossRefGoogle ScholarPubMed
Kyle, R. A., Gertz, M. A.Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin. Hematol. 1995;32(1):45–59.Google ScholarPubMed
Melcion, C., Mougenot, B., Baudouin, B. et al. Renal failure in myeloma: relationship with isoelectric point of immunoglobulin light chains. Clin. Nephrol. 1984;22(3):138–43.Google ScholarPubMed
Truong, L. D., Mawad, J., Cagle, P., Mattioli, C.Cytoplasmic crystals in multiple myeloma-associated Fanconi’s syndrome. A morphological study including immunoelectron microscopy. Arch. Pathol. Lab. Med. 1989;113(7):781–5.Google ScholarPubMed
Orfila, C., Lepert, J. C., Modesto, A., Bernadet, P., Suc, J. M.Fanconi’s syndrome, kappa light-chain myeloma, non-amyloid fibrils and cytoplasmic crystals in renal tubular epithelium. Am. J. Nephrol. 1991;11(4):345–9.CrossRefGoogle ScholarPubMed
Kisilevsky, R., Young, I. D.Pathogenesis of amyloidosis. Baillieres Clin. Rheumatol. 1994;8(3):613–26.CrossRefGoogle ScholarPubMed
Jancelewicz, Z., Takatsuki, K., Sugai, S., Pruzanski, W.. IgD multiple myeloma. Review of 133 cases. Arch. Intern. Med. 1975;135(1):87–93.CrossRefGoogle ScholarPubMed
Sanchorawala, V.Light-chain (AL) amyloidosis: diagnosis and treatment. Clin. J. Am. Soc. Nephrol. 2006;1(6):1331–41.CrossRefGoogle ScholarPubMed
Pozzi, C., D’Amico, M., Fogazzi, G. B. et al. Light chain deposition disease with renal involvement: clinical characteristics and prognostic factors. Am. J. Kidney Dis. 2003;42(6):1154–63.CrossRefGoogle ScholarPubMed
Lin, J., Markowitz, G. S., Valeri, A. M. et al. Renal monoclonal immunoglobulin deposition disease: the disease spectrum. J. Am. Soc. Nephrol. 2001;12(7):1482–92.Google ScholarPubMed
Buxbaum, J., Gallo, G.Nonamyloidotic monoclonal immunoglobulin deposition disease. Light-chain, heavy-chain, and light- and heavy-chain deposition diseases. Hematol. Oncol. Clin. North. Am. 1999;13(6):1235–48.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Kastritis, E., Rosinol, L., Blade, J., Ludwig, H.Pathogenesis and treatment of renal failure in multiple myeloma. Leukemia 2008;22(8):1485–93.CrossRefGoogle ScholarPubMed
Lorenz, E. C., Gertz, M. A., Fervenza, F. C. et al. Long-term outcome of autologous stem cell transplantation in light chain deposition disease. Nephrol. Dial. Transplant 2008;23(6):2052–7.CrossRefGoogle ScholarPubMed
Goossens, T., Klein, U., Kuppers, R.Frequent occurrence of deletions and duplications during somatic hypermutation: implications for oncogene translocations and heavy chain disease. Proc. Natl. Acad. Sci. USA 1998;95(5):2463–8.CrossRefGoogle ScholarPubMed
Aucouturier, P., Khamlichi, A. A., Touchard, G. et al. Brief report: heavy-chain deposition disease. N Engl. J. Med. 1993;329(19):1389–93.CrossRefGoogle ScholarPubMed
Herrera, G., Picken, M. M.Renal diseases associated with plasma cell dyscrasias, amyloidosis, waldenstroms macroglobulinemia, cryoglobulinemic nephropathies. In: Jennette, J. C., Olson, J. L., Schwartz, M. M., Silva, F. G., editors. Heptinstall’s Pathology of the Kidney. 6th edition, Philadelphia: Lippincott Williams & Wilkins; 2007, p. 861.Google Scholar
Sanders, P. W., Herrera, G. A., Kirk, K. A., Old, C. W., Galla, J. H.Spectrum of glomerular and tubulointerstitial renal lesions associated with monotypical immunoglobulin light chain deposition. Lab. Invest. 1991;64(4):527–37.Google ScholarPubMed
Pirani, C. L., Valeri, A., D’Agati, V., Appel, G. B.Renal toxicity of nonsteroidal anti-inflammatory drugs. Contrib. Nephrol. 1987;55:159–75.CrossRefGoogle ScholarPubMed
Obici, L., Perfetti, V., Palladini, G., Moratti, R., Merlini, G.Clinical aspects of systemic amyloid diseases. Biochim. Biophys. Acta 2005;1753(1):11–22.CrossRefGoogle ScholarPubMed
Buxbaum, J. N., Chuba, J. V., Hellman, G. C., Solomon, A., Gallo, G. R.Monoclonal immunoglobulin deposition disease: light chain and light and heavy chain deposition diseases and their relation to light chain amyloidosis. Clinical features, immunopathology, and molecular analysis. Ann. Intern. Med. 1990;112(6):455–64.CrossRefGoogle ScholarPubMed
Ma, C. X., Lacy, M. Q., Rompala, J. F. et al. Acquired Fanconi syndrome is an indolent disorder in the absence of overt multiple myeloma. Blood 2004;104(1):40–2.CrossRefGoogle ScholarPubMed
Dimopoulos, M. A., Terpos, E.Renal insufficiency and failure. Hematology Am. Soc. Hematol. Educ. Program 2010;2010:431–6.Google ScholarPubMed
Ludwig, H., Adam, Z., Hajek, R. et al. Recovery of renal impairment by bortezomib-doxorubicin-dexamethasone (BDD) in multiple myeloma (MM) patients with acute renal failure. Results from an ongoing phase II study. ASH Annual Meeting Abstracts 2007 November 16;110(11):3603.Google Scholar
Dimopoulos, M. A., Roussou, M., Gavriatopoulou, M. et al. Reversibility of renal impairment in patients with multiple myeloma treated with bortezomib-based regimens: identification of predictive factors. Clin. Lymphoma Myeloma 2009;9(4):302–6.CrossRefGoogle ScholarPubMed
Roussou, M., Kastritis, E., Christoulas, D. et al. Reversibility of renal failure in newly diagnosed patients with multiple myeloma and the role of novel agents. Leuk. Res. 2010;34(10):1395–7.CrossRefGoogle ScholarPubMed
Durie, B. G., Kyle, R. A., Belch, A. et al. Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation. Hematol. J. 2003;4(6):379–98.CrossRefGoogle ScholarPubMed
Pozzi, C., Pasquali, S., Donini, U. et al. Prognostic factors and effectiveness of treatment in acute renal failure due to multiple myeloma: a review of 50 cases. Report of the Italien Renal Immunopathology Group. Clin. Nephrol. 1987;28(1):1–9.Google ScholarPubMed
Terpos, E., Cibeira, M. T., Blade, J., Ludwig, H.Management of complications in multiple myeloma. Semin. Hematol. 2009;46(2):176–89.CrossRefGoogle ScholarPubMed
Markowitz, G. S., Fine, P. L., Stack, J. I. et al. Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int. 2003;64(1):281–9.CrossRefGoogle Scholar
Terpos, E., Sezer, O., Croucher, P. I. et al. The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network. Ann. Oncol. 2009;20(8):1303–17.CrossRefGoogle Scholar
Zometa (zoledronic acid): Prescribing information: Novartis Pharmaceuticals Corporation; 2007.
Aredia (pamidronate): Prescribing information: Novartis Pharmaceuticals Corporation; 2007.
Feest, T. G., Burge, P. S., Cohen, S. L.Successful treatment of myeloma kidney by diuresis and plasmaphoresis. Br. Med. J. 1976;1(6008):503–4.CrossRefGoogle ScholarPubMed
Misiani, R., Remuzzi, G., Bertani, T. et al. Plasmapheresis in the treatment of acute renal failure in multiple myeloma. Am. J. Med. 1979;66(4):684–8.CrossRefGoogle ScholarPubMed
Locatelli, F., Pozzi, C., Pedrini, L. et al. Steroid pulses and plasmapheresis in the treatment of acute renal failure in multiple myeloma. Proc. Eur. Dial. Transplant Assoc. 1980;17:690–4.Google ScholarPubMed
Clark, W. F., Stewart, A. K., Rock, G. A. et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann. Intern. Med. 2005;143(11):777–84.CrossRefGoogle ScholarPubMed
Leung, N., Gertz, M. A., Zeldenrust, S. R. et al. Improvement of cast nephropathy with plasma exchange depends on the diagnosis and on reduction of serum free light chains. Kidney Int. 2008;73(11):1282–8.CrossRefGoogle ScholarPubMed
Sanders, P. W.Pathogenesis and treatment of myeloma kidney. J. Lab. Clin. Med. 1994;124(4):484–8.Google ScholarPubMed
Torra, R., Blade, J., Cases, A. et al. Patients with multiple myeloma requiring long-term dialysis: presenting features, response to therapy, and outcome in a series of 20 cases. Br. J. Haematol. 1995;91(4):854–9.CrossRefGoogle Scholar
Ying, W. Z., Sanders, P. W.Mapping the binding domain of immunoglobulin light chains for Tamm–Horsfall protein. Am. J. Pathol. 2001;158(5):1859–66.CrossRefGoogle ScholarPubMed
Herrera, G. A., Sanders, P. W.Paraproteinemic renal diseases that involve the tubulo-interstitium. Contrib. Nephrol. 2007;153:105–15.CrossRefGoogle ScholarPubMed
Hutchison, C. A., Bradwell, A. R., Cook, M. et al. Treatment of acute renal failure secondary to multiple myeloma with chemotherapy and extended high cut-off hemodialysis. Clin. J. Am. Soc. Nephrol. 2009;4(4):745–54.CrossRefGoogle ScholarPubMed
Winearls, C. G.. Myeloma kidney. In: Johnson, R., Feehally, J., editors, Comprehensive Clinical Nephrology: Mosby; 2003.Google Scholar
Katzmann, J. A., Clark, R. J., Abraham, R. S. et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin. Chem. 2002;48(9):1437–44.Google ScholarPubMed
Hutchison, C. A., Cockwell, P., Reid, S. et al. Efficient removal of immunoglobulin free light chains by hemodialysis for multiple myeloma: in vitro and in vivo studies. J. Am. Soc. Nephrol. 2007;18(3):886–95.CrossRefGoogle ScholarPubMed
Tanner, G. A., Evan, A. P.Glomerular and proximal tubular morphology after single nephron obstruction. Kidney Int. 1989;36(6):1050–60.CrossRefGoogle ScholarPubMed
Tsakiris, D. J., Stel, V. S., Finne, P. et al. Incidence and outcome of patients starting renal replacement therapy for end-stage renal disease due to multiple myeloma or light-chain deposit disease: an ERA-EDTA Registry study. Nephrol. Dial. Transplant 2010;25(4):1200–6.CrossRefGoogle ScholarPubMed
Passweg, J., Bock, H. A., Tichelli, A., Thiel, G.‘Transient multiple myeloma’ after intense immunosuppression in a renal transplant patient. Nephrol. Dial. Transplant 1993;8(12):1393–4.Google Scholar
Walker, F., Bear, R. A.Renal transplantation in light-chain multiple myeloma. Am. J. Nephrol. 1983;3(1):34–7.CrossRefGoogle ScholarPubMed
Penn, I.Evaluation of transplant candidates with pre-existing malignancies. Ann. Transplant 1997;2(4):14–17.Google ScholarPubMed
Foster, K., Cohen, D. J., D’Agati, V. D., Markowitz, G. S.Primary renal allograft dysfunction. Am. J. Kidney Dis. 2004;44(2):376–81.CrossRefGoogle ScholarPubMed
Dagher, F., Sammett, D., Abbi, R. et al. Renal transplantation in multiple myeloma. Case report and review of the literature. Transplantation 1996;62(11):1577–80.Google ScholarPubMed
Humphrey, R. L., Wright, J. R., Zachary, J. B., Sterioff, S., DeFronzo, R. A.Renal transplantation in multiple myeloma. A case report. Ann. Intern. Med. 1975;83(5):651–3.CrossRefGoogle ScholarPubMed
Kasiske, B. L., Cangro, C. B., Hariharan, S. et al. The evaluation of renal transplantation candidates: clinical practice guidelines. Am. J. Transplant 2001;1. Suppl 2:3–95.Google Scholar
Kastritis, E., Anagnostopoulos, A., Roussou, M. et al. Reversibility of renal failure in newly diagnosed multiple myeloma patients treated with high dose dexamethasone-containing regimens and the impact of novel agents. Haematologica 2007;92(4):546–9.CrossRefGoogle ScholarPubMed
Barosi, G., Boccadoro, M., Cavo, M. et al. Management of multiple myeloma and related-disorders: guidelines from the Italian Society of Hematology (SIE), Italian Society of Experimental Hematology (SIES) and Italian Group for Bone Marrow Transplantation (GITMO). Haematologica 2004;89(6):717–41.Google Scholar
Carlson, K., Hjorth, M., Knudsen, L. M.Toxicity in standard melphalan-prednisone therapy among myeloma patients with renal failure – a retrospective analysis and recommendations for dose adjustment. Br. J. Haematol. 2005;128(5):631–5.CrossRefGoogle ScholarPubMed
Dimopoulos, M., Spencer, A., Attal, M. et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 2007;357(21):2123–32.CrossRefGoogle ScholarPubMed
Macro, M., Divine, M., Uzunhan, Y. et al. Dexamethasone+thalidomide (Dex/Thal) compared to VAD as a pre-transplant treatment in newly diagnosed multiple myeloma (MM): a randomized trial. ASH Annual Meeting Abstracts 2006 November 16;108(11):57.Google Scholar
Rajkumar, S. V., Rosinol, L., Hussein, M. et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J. Clin. Oncol. 2008;26(13):2171–7.CrossRefGoogle ScholarPubMed
Richardson, P. G., Sonneveld, P., Schuster, M. et al. Extended follow-up of a phase 3 trial in relapsed multiple myeloma: final time-to-event results of the APEX trial. Blood 2007;110(10):3557–60.CrossRefGoogle ScholarPubMed
Weber, D. M., Chen, C., Niesvizky, R. et al. Lenalidomide plus dexamethasone for relapsed multiple myeloma in North America. N. Engl. J. Med. 2007;357(21):2133–42.CrossRefGoogle ScholarPubMed
Zonder, J. A., Crowley, J., Hussein, M. A. et al. Lenalidomide and high-dose dexamethasone compared with dexamethasone as initial therapy for multiple myeloma: a randomized Southwest Oncology Group trial (S0232). Blood 2010;116(26):5838–41.CrossRefGoogle Scholar
Harousseau, J. L., Attal, M., Avet-Loiseau, H. et al. Bortezomib plus dexamethasone is superior to vincristine plus doxorubicin plus dexamethasone as induction treatment prior to autologous stem-cell transplantation in newly diagnosed multiple myeloma: results of the IFM 2005–01 phase III trial. J. Clin. Oncol. 2010;28(30):4621–9.CrossRefGoogle ScholarPubMed
Sonneveld, P., Schmidt-Wolf, I., van der Holt, B. et al. HOVON-65/GMMG-HD4 randomized phase III trial comparing bortezomib, doxorubicin, dexamethasone (PAD) vs VAD followed by high-dose melphalan (HDM) and maintenance with bortezomib or thalidomide in patients with newly diagnosed multiple myeloma (MM). ASH Annual Meeting Abstracts 2010 November 19;116(21):40.Google Scholar
Boccadoro, M., Morgan, G., Cavenagh, J.Preclinical evaluation of the proteasome inhibitor bortezomib in cancer therapy. Cancer Cell Int. 2005;5(1):18.CrossRefGoogle ScholarPubMed
Chari, A., Mazumder, A., Jagannath, S.Proteasome inhibition and its therapeutic potential in multiple myeloma. Biologics 2010;4:273–87.Google ScholarPubMed
Mezzano, S. A., Barria, M., Droguett, M. A. et al. Tubular NF-kappaB and AP-1 activation in human proteinuric renal disease. Kidney Int. 2001;60(4):1366–77.CrossRefGoogle ScholarPubMed
Ludwig, H., Drach, J., Graf, H., Lang, A., Meran, J. G.Reversal of acute renal failure by bortezomib-based chemotherapy in patients with multiple myeloma. Haematologica 2007;92(10):1411–14.CrossRefGoogle ScholarPubMed
Millennium Pharmaceuticals Inc. VELCADE® (bortezomib) for Injection. Prescribing information. Cambridge, MA, USA 2009; Issued December 2009, Rev 10.Google Scholar
Labutti, J., Parsons, I., Huang, R. et al. Oxidative deboronation of the peptide boronic acid proteasome inhibitor bortezomib: contributions from reactive oxygen species in this novel cytochrome P450 reaction. Chem. Res. Toxicol. 2006;19(4):539–46.CrossRefGoogle ScholarPubMed
Uttamsingh, V., Lu, C., Miwa, G., Gan, L. S.Relative contributions of the five major human cytochromes P450, 1A2, 2C9, 2C19, 2D6, and 3A4, to the hepatic metabolism of the proteasome inhibitor bortezomib. Drug Metab. Dispos. 2005;33(11):1723–8.CrossRefGoogle ScholarPubMed
Pekol, T., Daniels, J. S., Labutti, J. et al. Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites. Drug Metab. Dispos. 2005;33(6):771–7.CrossRefGoogle ScholarPubMed
Mulkerin, D., Remick, S., Takimoto, C. et al. Safety, tolerability, and pharmacology of bortezomib in cancer patients with renal failure requiring dialysis: results from a prospective phase 1 study. ASH Annual Meeting Abstracts 2007;110(11):3477.Google Scholar
Dimopoulos, M. A., Richardson, P. G., Schlag, R. et al. VMP (bortezomib, melphalan, and prednisone) is active and well tolerated in newly diagnosed patients with multiple myeloma with moderately impaired renal function, and results in reversal of renal impairment: cohort analysis of the phase III VISTA study. J. Clin. Oncol. 2009;27(36):6086–93.CrossRefGoogle ScholarPubMed
San-Miguel, J. F., Richardson, P. G., Sonneveld, P. et al. Efficacy and safety of bortezomib in patients with renal impairment: results from the APEX phase 3 study. Leukemia 2008;22(4):842–9.CrossRefGoogle ScholarPubMed
Scheid, C., Sonneveld, P., Schmidt-Wolf, I. et al. Influence of renal function on outcome of VAD or bortezomib, doxorubicin, dexamethasone (PAD) induction treatment followed by high-dose melphalan (HDM): a subgroup analysis from the HOVON-65/GMMG-HD4 randomized phase III trial for newly diagnosed multiple myeloma. ASH Annual Meeting Abstracts 2010;116(21):2396.Google Scholar
Jagannath, S., Barlogie, B., Berenson, J. R. et al. Bortezomib in recurrent and/or refractory multiple myeloma. Initial clinical experience in patients with impared renal function. Cancer 2005;103(6):1195–200.CrossRefGoogle ScholarPubMed
Ludwig, H., Adam, Z., Hajek, R. et al. Light chain-induced acute renal failure can be reversed by bortezomib-doxorubicin-dexamethasone in multiple myeloma: results of a phase II study. J. Clin. Oncol. 2010;28(30):4635–41.CrossRefGoogle ScholarPubMed
Li, J., Zhou, D. B., Jiao, L. et al. Bortezomib and dexamethasone therapy for newly diagnosed patients with multiple myeloma complicated by renal impairment. Clin. Lymphoma Myeloma 2009;9(5):394–8.CrossRefGoogle ScholarPubMed
Stefanikova, Z., Roziakova, L.Reversibility of renal failure in multiple myeloma patients treated with bortezomib-based regimens: a single centre experience [abstract]. Haematologica 2010;95:593.Google Scholar
Ailawadhi, S., Mashtare, T. L., Coignet, M. V. et al. Renal dysfunction does not affect clinical response in multiple myeloma (MM) patients treated with bortezomib-based regimens. ASH Annual Meeting Abstracts 2007;110(11):1477.Google Scholar
Malani, A. K., Gupta, V., Rangineni, R.Bortezomib and dexamethasone in previously untreated multiple myeloma associated with renal failure and reversal of renal failure. Acta Haematol. 2006;116(4):255–8.CrossRefGoogle ScholarPubMed
Basu, S., Cook, M., Hutchison, C. A. et al. High rate of renal recovery in patients with cast nephropathy treated by removal of free light chains using extended hemodialysis: a phase 1/2 clinical trial [abstract]. Haematologica 2007;92:213.Google Scholar
Blade, J., Sonneveld, P., San Miguel, J. F. et al. Pegylated liposomal doxorubicin plus bortezomib in relapsed or refractory multiple myeloma: efficacy and safety in patients with renal function impairment. Clin. Lymphoma Myeloma. 2008;8(6):352–5.CrossRefGoogle ScholarPubMed
Knauf, W. U., Otremba, B., Overkamp, F., Kornacker, M.Bortezomib in relapsed multiple myeloma: results of a non-interventional study by office-based haematologists. Onkologie 2009;32(4):175–80.Google ScholarPubMed
Aggarwal, S., Jauhri, M., Negi, A., Kohli, S., Minhas, S.Frontline management of myeloma with bortezemib and dexamethasone – focus on renal failure – a study from India [abstract]. Blood 2010;116:5045.Google Scholar
Chanan-Khan, A. A., Kaufman, J. L., Mehta, J. et al. Activity and safety of bortezomib in multiple myeloma patients with advanced renal failure: a multicenter retrospective study. Blood 2007;109(6):2604–6.CrossRefGoogle ScholarPubMed
Kumar, S., Rajkumar, S. V.Thalidomide and lenalidomide in the treatment of multiple myeloma. Eur. J. Cancer 2006;42(11):1612–22.CrossRefGoogle ScholarPubMed
Li, Y., Hou, J., Jiang, H. et al. Polymorphisms of CYP2C19 gene are associated with the efficacy of thalidomide based regimens in multiple myeloma. Haematologica 2007;92(9):1246–9.CrossRefGoogle ScholarPubMed
Eriksson, T., Hoglund, P., Turesson, I. et al. Pharmacokinetics of thalidomide in patients with impaired renal function and while on and off dialysis. J. Pharm. Pharmacol 2003;55(12):1701–6.CrossRefGoogle ScholarPubMed
Tosi, P., Zamagni, E., Cellini, C. et al. Thalidomide alone or in combination with dexamethasone in patients with advanced, relapsed or refractory multiple myeloma and renal failure. Eur. J. Haematol. 2004;73(2):98–103.CrossRefGoogle ScholarPubMed
Harris, E., Behrens, J., Samson, D. et al. Use of thalidomide in patients with myeloma and renal failure may be associated with unexplained hyperkalaemia. Br. J. Haematol. 2003;122(1):160–1.CrossRefGoogle ScholarPubMed
Bartlett, J. B., Dredge, K., Dalgleish, A. G.The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat. Rev. Cancer 2004;4(4):314–22.CrossRefGoogle ScholarPubMed
Hussein, M. A.Lenalidomide: patient management strategies. Semin. Hematol. 2005;42(4 Suppl 4):S22–5.CrossRefGoogle ScholarPubMed
Chen, N., Lau, H., Kong, L. et al. Pharmacokinetics of lenalidomide in subjects with various degrees of renal impairment and in subjects on hemodialysis. J. Clin. Pharmacol. 2007;47(12):1466–75.CrossRefGoogle ScholarPubMed
Dimopoulos, M., Alegre, A., Stadtmauer, E. A. et al. The efficacy and safety of lenalidomide plus dexamethasone in relapsed and/or refractory multiple myeloma patients with impaired renal function. Cancer 2010;116(16):3807–14.CrossRefGoogle ScholarPubMed
Niesvizky, R., Naib, T., Christos, P. J. et al. Lenalidomide-induced myelosuppression is associated with renal dysfunction: adverse events evaluation of treatment-naive patients undergoing front-line lenalidomide and dexamethasone therapy. Br. J. Haematol. 2007;138(5):640–3.CrossRefGoogle ScholarPubMed
Reece, D. E., Masih-Khan, E., Chen, C. et al. Use of lenalidomide (Revlimid(R) +/− corticosteroids in relapsed/refractory multiple myeloma patients with elevated baseline serum creatinine levels. ASH Annual Meeting Abstracts 2006;108(11):3548.Google Scholar
Dimopoulos, M. A., Christoulas, D., Roussou, M. et al. Lenalidomide and dexamethasone for the treatment of refractory/relapsed multiple myeloma: dosing of lenalidomide according to renal function and effect on renal impairment. Eur. J. Haematol. 2010;85(1):1–5.Google ScholarPubMed
Quach, H., Fernyhough, L., Henderson, R. et al. Lower-dose lenalidomide and dexamethasone reduces toxicity without compromising efficacy in patients with relapsed/refractory myeloma, who are aged >=60 years or have renal impairment: planned interim results of a prospective multicentre phase II trial. ASH Annual Meeting Abstracts 2010;116(21):1961.Google Scholar
Klein, U., Neben, K., Hielscher, T. et al. Lenalidomide in combination with dexamethasone: effective regimen in patients with relapsed or refractory multiple myeloma complicated by renal impairment. Ann. Hematol. 2011;90(4):429–39.CrossRefGoogle ScholarPubMed
de la Rubia, J., Roig, M., Ibanez, A. et al. Activity and safety of lenalidomide and dexamethasone in patients with multiple myeloma requiring dialysis: a Spanish multicenter retrospective study. Eur. J. Haematol. 2010;85(4):363–5.CrossRefGoogle ScholarPubMed
Ludwig, H., Zojer, N.Renal recovery with lenalidomide in a patient with bortezomib-resistant multiple myeloma. Nat. Rev. Clin. Oncol. 2010;7(5):289–94.CrossRefGoogle Scholar
Patel, M., Sher, T., Ailawadhi, S. et al. Novel agents overcome the adverse prognosis imparted by compromised renal function in patients with multiple myeloma. ASH Annual Meeting Abstracts 2008;112(11):2726.Google Scholar
Lee, C. K., Zangari, M., Barlogie, B. et al. Dialysis-dependent renal failure in patients with myeloma can be reversed by high-dose myeloablative therapy and autotransplant. Bone Marrow Transplant 2004;33(8):823–8.CrossRefGoogle ScholarPubMed
Ballester, O. F., Tummala, R., Janssen, W. E. et al. High-dose chemotherapy and autologous peripheral blood stem cell transplantation in patients with multiple myeloma and renal insufficiency. Bone Marrow Transplant 1997;20(8):653–6.CrossRefGoogle ScholarPubMed
Royer, B., Arnulf, B., Martinez, F. et al. High dose chemotherapy in light chain or light and heavy chain deposition disease. Kidney Int. 2004;65(2):642–8.CrossRefGoogle ScholarPubMed
Carlson, K.Melphalan 200 mg/m2 with blood stem cell support as first-line myeloma therapy: impact of glomerular filtration rate on engraftment, transplantation-related toxicity and survival. Bone Marrow Transplant 2005;35(10):985–90.CrossRefGoogle Scholar
Raab, M. S., Breitkreutz, I., Hundemer, M. et al. The outcome of autologous stem cell transplantation in patients with plasma cell disorders and dialysis-dependent renal failure. Haematologica 2006;91(11):1555–8.Google ScholarPubMed
Bird, J. M., Fuge, R., Sirohi, B. et al. The clinical outcome and toxicity of high-dose chemotherapy and autologous stem cell transplantation in patients with myeloma or amyloid and severe renal impairment: a British Society of Blood and Marrow Transplantation study. Br. J. Haematol. 2006;134(4):385–90.CrossRefGoogle ScholarPubMed
Hassoun, H., Flombaum, C., D’Agati, V. D. et al. High-dose melphalan and auto-SCT in patients with monoclonal Ig deposition disease. Bone Marrow Transplant 2008;42(6):405–12.CrossRefGoogle ScholarPubMed
Parikh, G. C., Amjad, A. I., Saliba, R. M. et al. Autologous hematopoietic stem cell transplantation may reverse renal failure in patients with multiple myeloma. Biol. Blood Marrow Transplant 2009;15(7):812–16.CrossRefGoogle ScholarPubMed
Hutchinson, C. A., Cook, M., Heyne, N. et al. European trial of free light chain removal by extended hemodialysis in cast nephropathy (EuLITE): a randomized controlled trial. Trials 2008;9:55.CrossRefGoogle Scholar
Khan, M. L., Stewart, A. K.Carfilzomib: a novel second-generation proteasome inhibitor. Future Oncology 2011;7(5):607–12.CrossRefGoogle ScholarPubMed
Badros, A. Z., Vij, R., Martin, T. et al. Phase II study of carfilzomib in patients with relapsed/refractory multiple myeloma and renal insufficiency. ASCO Meeting Abstracts 2010;28(15 suppl):8128.Google Scholar
Tosi, P., Zamagni, E., Tacchetti, P. et al. Thalidomide-dexamethasone as induction therapy before autologous stem cell transplantation in patients with newly diagnosed multiple myeloma and renal insufficiency. Biol. Blood Marrow Transplant 2010;16(8):1115–21.CrossRefGoogle ScholarPubMed
Seol, Y., Chung, J., Kwon, B. et al. Treatment for patients with multiple myeloma complicated by renal failure by thalidomide-based regimens. [abstract]. J. Clin. Oncol. 2010;28:e13093.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×