Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T09:12:47.769Z Has data issue: false hasContentIssue false

Section I - General Principles and a Phenomenology-Based Approach to Movement Disorders and Inherited Metabolic Disorders

Published online by Cambridge University Press:  24 September 2020

Darius Ebrahimi-Fakhari
Affiliation:
Harvard Medical School
Phillip L. Pearl
Affiliation:
Harvard Medical School
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Movement Disorders and Inherited Metabolic Disorders
Recognition, Understanding, Improving Outcomes
, pp. 1 - 170
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Garrod, AE. The incidence of alkaptonuria: A study in chemical individuality. Lancet. 1902;2:1616–20.Google Scholar
Garrod, AE. The Croonian lectures on inborn errors of metabolism. Lancet. 1908;2:17.Google Scholar
Ferreira, CR, van Karnebeek, CDM, Vockley, J, Blau, N. A proposed nosology of inborn errors of metabolism. Genet Med. 2019;21(1):102–6.CrossRefGoogle Scholar
Ebrahimi-Fakhari, D, Saffari, A, Wahlster, L, et al. Congenital disorders of autophagy: An emerging novel class of inborn errors of neuro-metabolism. Brain. 2016;139(Pt 2):317–37.CrossRefGoogle ScholarPubMed
Ebrahimi-Fakhari, D, Van Karnebeek, C, Munchau, A. Movement disorders in treatable inborn errors of metabolism. Mov Disord. 2019;34:598613.Google Scholar
Patterson, MC, Mengel, E, Wijburg, FA, et al. Disease and patient characteristics in NP-C patients: Findings from an international disease registry. Orphanet J Rare Dis. 2013;8:12.Google Scholar
Stampfer, M, Theiss, S, Amraoui, Y, et al. Niemann–Pick disease type C clinical database: Cognitive and coordination deficits are early disease indicators. Orphanet J Rare Dis. 2013;8:35.CrossRefGoogle ScholarPubMed
Carstea, ED, Morris, JA, Coleman, KG, et al. Niemann–Pick C1 disease gene: Homology to mediators of cholesterol homeostasis. Science. 1997;277(5323):228-31.Google Scholar
Naureckiene, S, Sleat, DE, Lackland, H, et al. Identification of HE1 as the second gene of Niemann–Pick C disease. Science. 2000;290(5500):2298–301.CrossRefGoogle ScholarPubMed
Anheim, M, Lagha-Boukbiza, O, Fleury-Lesaunier, MC, et al. Heterogeneity and frequency of movement disorders in juvenile and adult-onset Niemann–Pick C disease. J Neurol. 2014;261(1):174–9.CrossRefGoogle ScholarPubMed
Ebrahimi-Fakhari, D, Hildebrandt, C, Davis, PE, et al. The spectrum of movement disorders in childhood-onset lysosomal storage diseases. Mov Disord Clin Pract. 2018;5(2):149–55.CrossRefGoogle ScholarPubMed
Sevin, M, Lesca, G, Baumann, N, Millat, G, Lyon-Caen, O, Vanier, MT, et al. The adult form of Niemann–Pick disease type C. Brain. 2007;130(Pt 1):120–33.Google Scholar
Koens, LH, Kuiper, A, Coenen, MA, et al. Ataxia, dystonia and myoclonus in adult patients with Niemann–Pick type C. Orphanet J Rare Dis. 2016;11:121.Google Scholar
Patterson, MC, Clayton, P, Gissen, P, et al. Recommendations for the detection and diagnosis of Niemann–Pick disease type C: An update. Neurol Clin Pract. 2017;7(6):499511.CrossRefGoogle ScholarPubMed
Synofzik, M, Harmuth, F, Stampfer, M, et al. NPC1 is enriched in unexplained early onset ataxia: A targeted high-throughput screening. J Neurol. 2015;262(11):2557–63.CrossRefGoogle ScholarPubMed
Synofzik, M, Fleszar, Z, Schols, L, et al. Identifying Niemann-Pick type C in early-onset ataxia: two quick clinical screening tools. J Neurol. 2016;263(10):1911-8.Google Scholar
Canafoglia, L, Bugiani, M, Uziel, G, et al. Rhythmic cortical myoclonus in Niemann–Pick disease type C. Mov Disord. 2006;21(9):1453–6.Google Scholar
Pineda, M, Mengel, E, Jahnova, H, et al. A suspicion index to aid screening of early-onset Niemann–Pick disease type C (NP-C). BMC Pediatrics. 2016;16:107.CrossRefGoogle ScholarPubMed
Patterson, MC, Hendriksz, CJ, Walterfang, M, et al. Recommendations for the diagnosis and management of Niemann–Pick disease type C: An update. Mol Genet Metab. 2012;106(3):330–44.Google Scholar
Ory, DS, Ottinger, EA, Farhat, NY, et al. Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann–Pick disease, type C1: A non-randomised, open-label, phase 1-2 trial. Lancet. 2017;390(10104):1758–68.Google Scholar
Tuschl, K, Clayton, PT, Gospe, SM, Jr., et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90(3):457–66.Google Scholar
Quadri, M, Federico, A, Zhao, T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77.Google Scholar
Tuschl, K, Mills, PB, Parsons, H, et al. Hepatic cirrhosis, dystonia, polycythaemia and hypermanganesaemia: A new metabolic disorder. J Inherit Metab Dis. 2008;31(2):151–63.CrossRefGoogle ScholarPubMed
Gospe, SM, Jr., Caruso, RD, Clegg, MS, et al. Paraparesis, hypermanganesaemia, and polycythaemia: A novel presentation of cirrhosis. Arch Dis Child. 2000;83(5):439–42.Google Scholar
Brna, P, Gordon, K, Dooley, JM, Price, V. Manganese toxicity in a child with iron deficiency and polycythemia. J Child Neurol. 2011;26(7):891–4.Google Scholar
Quadri, M, Kamate, M, Sharma, S, et al. Manganese transport disorder: Novel SLC30A10 mutations and early phenotypes. Mov Disord. 2015;30(7):9961001.CrossRefGoogle ScholarPubMed
Zaki, MS, Issa, MY, Elbendary, HM, et al. Hypermanganesemia with dystonia, polycythemia and cirrhosis in 10 patients: Six novel SLC30A10 mutations and further phenotype delineation. Clin Genet. 2018; 93(4):905–12.CrossRefGoogle ScholarPubMed
Tuschl, K, Meyer, E, Valdivia, LE, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nature Commun. 2016;7:11601.Google Scholar
Aydemir, TB, Kim, MH, Kim, J, et al. Metal Transporter Zip14 (SlC39A14) deletion in mice increases manganese deposition and produces neurotoxic signatures and diminished motor activity. J Neurosci. 2017;37(25):59966006.Google Scholar
Jenkitkasemwong, S, Akinyode, A, Paulus, E, et al. SLC39A14 deficiency alters manganese homeostasis and excretion resulting in brain manganese accumulation and motor deficits in mice. Proc Natl Acad Sci USA. 2018;115(8):E1769–78.CrossRefGoogle ScholarPubMed
Xin, Y, Gao, H, Wang, J, et al. Manganese transporter SlC39A14 deficiency revealed its key role in maintaining manganese homeostasis in mice. Cell Discov. 2017;3:17025.Google Scholar
Rodan, LH, Hauptman, M, D’Gama, AMet al. Novel founder intronic variant in SLC39A14 in two families causing manganism and potential treatment strategies. Mol Genet Metab. 2018;124(2):161–7.Google Scholar
Stamelou, M, Tuschl, K, Chong, WK, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: A new treatable disorder. Mov Disord. 2012;27(10):1317–22.Google Scholar
Di Toro Mammarella, L, Mignarri, A, Battisti, C, et al. Two-year follow-up after chelating therapy in a patient with adult-onset parkinsonism and hypermanganesaemia due to SLC30A10 mutations. J Neurol. 2014;261(1):227–8.Google Scholar
Gulab, S, Kayyali, HR, Al-Said, Y. Atypical neurologic phenotype and novel SLC30A10 mutation in two brothers with hereditary hypermanganesemia. Neuropediatrics. 2018;49(1):72–5.Google Scholar
Marti-Sanchez, L, Ortigoza-Escobar, JD, Darling, A, et al. Hypermanganesemia due to mutations in SLC39A14: Further insights into Mn deposition in the central nervous system. Orphanet J Rare Dis. 2018;13:28.Google Scholar
Mukhtiar, K, Ibrahim, S, Tuschl, K, Mills, P. Hypermanganesemia with dystonia, polycythemia and cirrhosis (HMDPC) due to mutation in the SLC30A10 gene. Brain Dev. 2016;38(9):862–5.Google Scholar
Cali, JJ, Hsieh, CL, Francke, U, Russell, DW. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J Biol Chem. 1991;266(12):7779–83.CrossRefGoogle ScholarPubMed
Wong, JC, Walsh, K, Hayden, D, Eichler, FS. Natural history of neurological abnormalities in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2018;41(4):647–56.CrossRefGoogle ScholarPubMed
Degos, B, Nadjar, Y, Amador Mdel, M, et al. Natural history of cerebrotendinous xanthomatosis: A paediatric disease diagnosed in adulthood. Orphanet J Rare Dis. 2016;11:41.Google Scholar
Lagarde, J, Roze, E, Apartis, E, et al. Myoclonus and dystonia in cerebrotendinous xanthomatosis. Mov Disord. 2012;27(14):1805–10.Google Scholar
Rubio-Agusti, I, Kojovic, M, Edwards, MJ, et al. Atypical parkinsonism and cerebrotendinous xanthomatosis: Report of a family with corticobasal syndrome and a literature review. Mov Disord. 2012;27(14):1769–74.Google Scholar
Mignarri, A, Dotti, MT, Federico, A, et al. The spectrum of magnetic resonance findings in cerebrotendinous xanthomatosis: Redefinition and evidence of new markers of disease progression. J Neurol. 2017;264(5):862–74.Google Scholar
Berginer, VM, Gross, B, Morad, K, et al. Chronic diarrhea and juvenile cataracts: Think cerebrotendinous xanthomatosis and treat. Pediatrics. 2009;123(1):143–7.Google Scholar
Biery, BJ, Stein, DE, Morton, DH, Goodman, SI. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish. Am J Hum Genet. 1996;59(5):1006–11.Google Scholar
Kolker, S, Burgard, P, Sauer, SW, Okun, JG. Current concepts in organic acidurias: Understanding intra- and extracerebral disease manifestation. J Inherit Metab Dis. 2013;36(4):635-44.Google Scholar
Kolker, S, Garcia-Cazorla, A, Valayannopoulos, V, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 1: The initial presentation. J Inherit Metab Dis. 2015;38(6):1041–57.Google Scholar
Gitiaux, C, Roze, E, Kinugawa, K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1: A study of 16 patients. Mov Disord. 2008;23(16):2392–7.Google Scholar
Kulkens, S, Harting, I, Sauer, S, et al. Late-onset neurologic disease in glutaryl-CoA dehydrogenase deficiency. Neurology. 2005;64(12):2142–4.Google Scholar
Kolker, S, Valayannopoulos, V, Burlina, AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: The evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–74.Google Scholar
Harting, I, Neumaier-Probst, E, Seitz, A, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132(Pt 7):1764–82.Google Scholar
Heringer, J, Boy, SP, Ensenauer, R, et al. Use of guidelines improves the neurological outcome in glutaric aciduria type I. Ann Neurol. 2010;68(5):743–52.CrossRefGoogle ScholarPubMed
Boy, N, Muhlhausen, C, Maier, EM, et al. Proposed recommendations for diagnosing and managing individuals with glutaric aciduria type I: Second revision. J Inherit Metab Dis. 2017;40(1):75101.Google Scholar
Strauss, KA, Brumbaugh, J, Duffy, A, et al. Safety, efficacy and physiological actions of a lysine-free, arginine-rich formula to treat glutaryl-CoA dehydrogenase deficiency: Focus on cerebral amino acid influx. Mol Genet Metab. 2011;104(1-2):93106.Google Scholar
Mercimek-Mahmutoglu, S, Stoeckler-Ipsiroglu, S, Adami, A, et al. GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67(3):480–4.Google Scholar
Salomons, GS, van Dooren, SJ, Verhoeven, NM, et al. X-linked creatine-transporter gene (SLC6A8) defect: A new creatine-deficiency syndrome. Am J Hum Genet. 2001;68(6):1497–500.CrossRefGoogle ScholarPubMed
Khaikin, Y, Sidky, S, Abdenur, J, et al. Treatment outcome of twenty-two patients with guanidinoacetate methyltransferase deficiency: An international retrospective cohort study. Eur J Paed Neurol. 2018;22(3):369–79.Google Scholar
O’Rourke, DJ, Ryan, S, Salomons, G, et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Late onset of movement disorder and preserved expressive language. Dev Med Child Neurol. 2009;51(5):404–7.Google Scholar
van de Kamp, JM, Betsalel, OT, Mercimek-Mahmutoglu, S, et al. Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J Med Genet. 2013;50(7):463–72.Google Scholar
Ozand, PT, Gascon, GG, Al Essa, M, et al. Biotin-responsive basal ganglia disease: A novel entity. Brain. 1998;121(Pt 7):1267–79.Google Scholar
Zeng, WQ, Al-Yamani, E, Acierno, JS, Jr., et al. Biotin-responsive basal ganglia disease maps to 2q36.3 and is due to mutations in SLC19A3. Am J Hum Genet. 2005;77(1):1626.CrossRefGoogle ScholarPubMed
Kono, S, Miyajima, H, Yoshida, K, et al. Mutations in a thiamine-transporter gene and Wernicke’s-like encephalopathy. N Engl J Med. 2009;360(17):1792–4.Google Scholar
Debs, R, Depienne, C, Rastetter, A, et al. Biotin-responsive basal ganglia disease in ethnic Europeans with novel SLC19A3 mutations. Arch Neurol. 2010;67(1):126–30.Google Scholar
Serrano, M, Rebollo, M, Depienne, C, et al. Reversible generalized dystonia and encephalopathy from thiamine transporter 2 deficiency. Mov Disord. 2012;27(10):1295–8.Google Scholar
Ortigoza-Escobar, JD, Serrano, M, Molero, M, et al. Thiamine transporter-2 deficiency: Outcome and treatment monitoring. Orphanet J Rare Dis. 2014;9:92.Google Scholar
Alfadhel, M, Almuntashri, M, Jadah, RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin–thiamine-responsive basal ganglia disease: A retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.Google Scholar
Tabarki, B, Al-Shafi, S, Al-Shahwan, S, et al. Biotin-responsive basal ganglia disease revisited: Clinical, radiologic, and genetic findings. Neurology. 2013;80(3):261–7.Google Scholar
Hentati, A, Deng, HX, Hung, WY, et al. Human alpha-tocopherol transfer protein: Gene structure and mutations in familial vitamin E deficiency. Ann Neurol. 1996;39(3):295300.Google Scholar
Harding, AE, Matthews, S, Jones, S, et al. Spinocerebellar degeneration associated with a selective defect of vitamin E absorption. N Engl J Med. 1985;313(1):32–5.Google Scholar
El Euch-Fayache, G, Bouhlal, Y, Amouri, R, Feki, M, Hentati, F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain. 2014;137(Pt 2):402–10.Google Scholar
Becker, AE, Vargas, W, Pearson, TS. Ataxia with vitamin e deficiency may present with cervical dystonia. Tremor Other Hyperkinet Mov (NY). 2016;6:374.Google Scholar
Angelini, L, Erba, A, Mariotti, C, et al. Myoclonic dystonia as unique presentation of isolated vitamin E deficiency in a young patient. Mov Disord. 2002;17(3):612–4.Google Scholar
Mariotti, C, Gellera, C, Rimoldi, M, Mineri, R, Uziel, G, Zorzi, G, et al. Ataxia with isolated vitamin E deficiency: Neurological phenotype, clinical follow-up and novel mutations in TTPA gene in Italian families. Neurol Sci. 2004;25(3):130–7.Google Scholar
Yokota, T, Uchihara, T, Kumagai, J, et al. Postmortem study of ataxia with retinitis pigmentosa by mutation of the alpha-tocopherol transfer protein gene. J Neurol Neurosurg Psychiatry. 2000;68(4):521–5.Google Scholar
Schuelke, M. Ataxia with vitamin E deficiency. GeneReviews®. 2005;May 20 (updated 16 Oct 2013).Google Scholar
Gabsi, S, Gouider-Khouja, N, Belal, S, et al. Effect of vitamin E supplementation in patients with ataxia with vitamin E deficiency. Eur J Neurol. 2001;8(5):477–81.Google Scholar
De Vivo, DC, Trifiletti, RR, Jacobson, RI, et al. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N Engl J Med. 1991;325(10):703–9.Google Scholar
Pearson, TS, Akman, C, Hinton, VJ, Engelstad, K, De Vivo, DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.Google Scholar
Suls, A, Dedeken, P, Goffin, K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter Glut1. Brain. 2008;131(Pt 7):1831–44.Google Scholar
Pong, AW, Geary, BR, Engelstad, KM, et al. Glucose transporter type I deficiency syndrome: Epilepsy phenotypes and outcomes. Epilepsia. 2012;53(9):1503–10.Google Scholar
Pons, R, Collins, A, Rotstein, M, Engelstad, K, De Vivo, DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81.CrossRefGoogle ScholarPubMed
Pearson, TS, Pons, R, Engelstad, K, et al. Paroxysmal eye–head movements in Glut1 deficiency syndrome. Neurology. 2017;88(17):1666–73.Google Scholar
Leen, WG, Klepper, J, Verbeek, MM, et al. Glucose transporter-1 deficiency syndrome: The expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.Google Scholar
Weber, YG, Storch, A, Wuttke, TV, et al. Glut1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118(6):2157–68.Google Scholar
Perez-Duenas, B, Prior, C, Ma, Q, et al. Childhood chorea with cerebral hypotrophy: A treatable Glut1 energy failure syndrome. Arch Neurol. 2009;66(11):1410–4.Google Scholar
Friedman, JR, Thiele, EA, Wang, D, et al. Atypical Glut1 deficiency with prominent movement disorder responsive to ketogenic diet. Mov Disord. 2006;21(2):241–5.Google Scholar
Rotstein, M, Doran, J, Yang, H, et al. Glut1 deficiency and alternating hemiplegia of childhood. Neurology. 2009;73(23):2042-4.CrossRefGoogle ScholarPubMed
Weller, CM, Leen, WG, Neville, BG, et al. A novel SLC2A1 mutation linking hemiplegic migraine with alternating hemiplegia of childhood. Cephalalgia. 2015;35(1):10–5.Google Scholar
Urbizu, A, Cuenca-Leon, E, Raspall-Chaure, M, et al. Paroxysmal exercise-induced dyskinesia, writer’s cramp, migraine with aura and absence epilepsy in twin brothers with a novel SLC2A1 missense mutation. J Neurol Sci. 2010;295(1-2):110–3.Google Scholar
Pascual, JM, Van Heertum, RL, Wang, D, Engelstad, K, De Vivo, DC. Imaging the metabolic footprint of Glut1 deficiency on the brain. Ann Neurol. 2002;52(4):458–64.CrossRefGoogle ScholarPubMed
Leen, WG, Mewasingh, L, Verbeek, MM, et al. Movement disorders in Glut1 deficiency syndrome respond to the modified Atkins diet. Mov Disord. 2013;28(10):1439–42.Google Scholar
Machado, A, Chien, HF, Deguti, MM, et al. Neurological manifestations in Wilson’s disease: Report of 119 cases. Mov Disord. 2006;21(12):2192–6.Google Scholar
Taly, AB, Meenakshi-Sundaram, S, Sinha, S, Swamy, HS, Arunodaya, GR. Wilson disease: Description of 282 patients evaluated over 3 decades. Medicine. 2007;86(2):112–21.Google Scholar
Svetel, M, Kozic, D, Stefanova, E, et al. Dystonia in Wilson’s disease. Mov Disord 2001;16(4):719–23.Google Scholar
Walshe, JM, Yealland, M. Wilson’s disease: The problem of delayed diagnosis. J Neurol Neurosurg Psychiatry. 1992;55(8):692–6.Google Scholar
Pearl, PL. Monoamine neurotransmitter deficiencies. Handbook Clin Neurol. 2013;113:1819–25.Google Scholar
Ng, J, Papandreou, A, Heales, SJ, Kurian, MA. Monoamine neurotransmitter disorders: Clinical advances and future perspectives. Nature Rev Neurol. 2015;11(10):567–84.Google Scholar
Jan, MM. Misdiagnoses in children with Dopa-responsive dystonia. Pediatr Neurol. 2004;31(4):298303.Google Scholar
Segawa, M, Nomura, Y, Nishiyama, N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol. 2003;54(Suppl 6):S3245.Google Scholar
Assmann, B, Surtees, R, Hoffmann, GF. Approach to the diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann Neurol. 2003;54(Suppl 6):S1824.Google Scholar
Tadic, V, Kasten, M, Bruggemann, N, et al. Dopa-responsive dystonia revisited: Diagnostic delay, residual signs, and nonmotor signs. Arch Neurol. 2012;69(12):1558–62.Google Scholar
Nygaard, TG, Marsden, CD, Fahn, S. Dopa-responsive dystonia: Long-term treatment response and prognosis. Neurology. 1991;41(2 Pt 1)):174–81.Google Scholar
Trender-Gerhard, I, Sweeney, MG, Schwingenschuh, P, et al. Autosomal-dominant GTPCH1-deficient DRD: Clinical characteristics and long-term outcome of 34 patients. J Neurol Neurosurg Psychiatry. 2009;80(8):839–45.Google Scholar
Patterson, MC, Vecchio, D, Prady, H, Abel, L, Wraith, JE. Miglustat for treatment of Niemann–Pick C disease: A randomised controlled study. Lancet Neurol. 2007;6(9):765–72.CrossRefGoogle ScholarPubMed
Geberhiwot, T, Moro, A, Dardis, A, et al. Consensus clinical management guidelines for Niemann–Pick disease type C. Orphanet J Rare Dis. 2018;13:50.Google Scholar
Tuschl, K, Clayton, PT, Gospe, SM Jr., Mills, PB. Dystonia/parkinsonism, hypermanganesemia, polycythemia, and chronic liver disease. GeneReviews. 2003 Jul 16 (updated Apr 14, 2016).Google Scholar
Federico, A, Dotti, MT, Gallus, GN. Cerebrotendinous xanthomatosis. GeneReviews®. 2003;Jul 16 (updated Apr 14, 2016).Google Scholar
Tabarki, B, Al-Hashem, A, Alfadhel, M. Biotin-thiamine-responsive basal ganglia disease. GeneReviews®. 2013;Nov 21 (initial posting).Google Scholar
Weiss, KH. Wilson disease GeneReviews®. 1999; October 22 (updated Jul 29, 2016).Google Scholar
Furukawa, Y. GTP Cyclohydrolase 1-deficient dopa-responsive dystonia. GeneReviews®. 2002; Feb 21 (updated Jan 24, 2019).Google Scholar

References

Rosenberg, E. Legacies of Garrod’s brilliance. One hundred years – and counting.J Inherit Metab Dis. 2008;31(5):574–9.Google Scholar
Garcia-Cazorla, A, Wolf, NI, Serrano, M, et al. Inborn errors of metabolism and motor disturbances in children. J Inherit Metab Dis. 2009;32(5):618–29.Google Scholar
Sedel, F, Baumann, N, Turpin, JC, et al. Psychiatric manifestations revealing inborn errors of metabolism in adolescents and adults. J Inherit Metab Dis. 2007;30(5):631–41.Google Scholar
Sedel, F, Fontaine, B, Saudubray, JM, Lyon-Caen, O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: A diagnostic approach. J Inherit Metab Dis. 2007;30(6):855–64.Google Scholar
Sedel, F, Gourfinkel-An, I, Lyon-Caen, O, et al. Epilepsy and inborn errors of metabolism in adults: A diagnostic approach. J Inherit Metab Dis. 2007;30(6):846–54.Google Scholar
Ferreira, CR, van Karnebeek, CDM, Vockley, J, Blau, N. A proposed nosology of inborn errors of metabolism. Genet Med. 2019;21(1):102–6.Google Scholar
Mink, JW, Sanger, TD. Movement disorders: An overview. In Swaiman, K, Ashwal, S, Ferriero, D, et al., editors. Swaiman’s Pediatric Neurology, 6th edn. Elsevier; 2017, pp. 706–17.Google Scholar
Christensen, CK, Walsh, L. Movement disorders and neurometabolic diseases. Semin Pediatr Neurol. 2018;25:8291.Google Scholar
Fernandez-Alvarez, E, Aicardi, J. Movement Disorders in Children. Mac Keith Press; 2001.Google Scholar
Yanagisawa, N. Functions and dysfunctions of the basal ganglia in humans. Proc Jpn Acad Ser B Phys Biol Sci. 2018;94(7):275304.Google Scholar
Balint, B, Mencacci, NE, Valente, EM, et al. Dystonia. Nat Rev Dis Primers. 2018;4(1):25.Google Scholar
Lamari, F, Mochel, F, Saudubray, JM. An overview of inborn errors of complex lipid biosynthesis and remodelling. J Inherit Metab Dis. 2015;38(1):318.Google Scholar
Brimblecombe, KR, Cragg, SJ. The striosome and matrix compartments of the striatum: A path through the labyrinth from neurochemistry toward function. ACS Chem Neurosci. 2017;8(2):235–42.Google Scholar
Bolam, JP, Izzo, PN, Graybiel, AM. Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: A combined Golgi and immunocytochemical study in cat and ferret. Neuroscience. 1988;24(3):853–75.Google Scholar
Davis, MI, Puhl, HL, 3rd. Nr4a1-eGFP is a marker of striosome–matrix architecture, development and activity in the extended striatum. PLoS One. 2011;6(1):e16619.Google Scholar
Holt, DJ, Graybiel, AM, Saper, CB. Neurochemical architecture of the human striatum. J Comp Neurol. 1997;384(1):125.Google Scholar
Crittenden, J, Graybiel, AM. Disease-associated changes in the striosome and matrix compartments of the dorsal striatum. In Steine, H, Tseng, K, editors. Handbook of Basal Ganglia Structure and Function, 2nd edn. Amsterdam: Elsevier; 2016, pp. 801–15.Google Scholar
Holmes, MJ, Robertson, FC, Little, F, et al. Longitudinal increases of brain metabolite levels in 5–10 year old children. PLoS One. 2017;12(7):e0180973.Google Scholar
Moffett, JR, Ross, B, Arun, P, Madhavarao, CN, Namboodiri, AM. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog Neurobiol. 2007;81(2):89131.Google Scholar
Benarroch, EE. Basic Neurosciences with Clinical Applications. Philadelphia, PA: Butterworth-Heinemann; 2006.Google Scholar
Saudubray, JM, Garcia-Cazorla, A. Inborn errors of metabolism overview: Pathophysiology, manifestations, evaluation, and management. Pediatr Clin North Am. 2018;65(2):179208.Google Scholar
Boycott, KM, Beaulieu, CL, Kernohan, KD, et al. Autosomal-recessive intellectual disability with cerebellar atrophy syndrome caused by mutation of the manganese and zinc transporter gene SLC39A8. Am J Hum Genet. 2015;97(6):886–93.Google Scholar
Park, JH, Hogrebe, M, Gruneberg, M, et al. SLC39A8 Deficiency: A disorder of manganese transport and glycosylation. Am J Hum Genet. 2015;97(6):894903.CrossRefGoogle ScholarPubMed
Harayama, T, Riezman, H. Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 2018;19(5):281–96.Google Scholar
Sasarman, F, Maftei, C, Campeau, PM, et al. Biosynthesis of glycosaminoglycans: Associated disorders and biochemical tests. J Inherit Metab Dis. 2016;39(2):173–88.Google Scholar
Garcia-Cazorla, A, Mochel, F, Lamari, F, Saudubray, JM. The clinical spectrum of inherited diseases involved in the synthesis and remodeling of complex lipids. A tentative overview.J Inherit Metab Dis. 2015;38(1):1940.Google Scholar
Sprecher, E, Ishida-Yamamoto, A, Mizrahi-Koren, M, et al. A mutation in SNAP29, coding for a SNARE protein involved in intracellular trafficking, causes a novel neurocutaneous syndrome characterized by cerebral dysgenesis, neuropathy, ichthyosis, and palmoplantar keratoderma. Am J Hum Genet. 2005;77(2):242–51.Google Scholar
Hirst, J, Edgar, JR, Esteves, T, Darios, F, Madeo, M, Chang, J, et al. Loss of AP-5 results in accumulation of aberrant endolysosomes: Defining a new type of lysosomal storage disease. Hum Mol Genet. 2015;24(17):4984–96.Google Scholar
Stockler, S, Corvera, S, Lambright, D, Fogarty, K, Nosova, E, Leonard, D, et al. Single point mutation in Rabenosyn-5 in a female with intractable seizures and evidence of defective endocytotic trafficking. Orphanet J Rare Dis. 2014;9:141.Google Scholar
Cortes-Saladelafont, E, Lipstein, N, Garcia-Cazorla, A. Presynaptic disorders: A clinical and pathophysiological approach focused on the synaptic vesicle. J Inherit Metab Dis. 2018;41(6):1131–45.Google Scholar
Ebrahimi-Fakhari, D, Saffari, A, Wahlster, L, Lu, J, Byrne, S, Hoffmann, GF, et al. Congenital disorders of autophagy: An emerging novel class of inborn errors of neuro-metabolism. Brain. 2016;139(Pt 2):317–37.Google Scholar
Garcia-Cazorla, A, Saudubray, JM. Cellular neurometabolism: A tentative to connect cell biology and metabolism in neurology. J Inherit Metab Dis. 2018;41(6):1043–54.Google Scholar
Mochel, F, Sedel, F. Inborn errors of metabolism in adults: A diagnostic approach to neurological and psychiatric presentations. In Saudubray, JM, Baumgartner, M, Walter, JH, editors. Inborn Metabolic Diseases: Diagnosis and Treatment. Berlin: Springer-Verlag; 2016, pp. 7189.Google Scholar
Albanese, A, Bhatia, K, Bressman, SB, et al. Phenomenology and classification of dystonia: A consensus update. Mov Disord. 2013;28(7):863–73.Google Scholar
Jinnah, HA, Albanese, A. The new classification system for the dystonias: Why was it needed and how was it developed? Mov Disord Clin Pract. 2014;1(4):280–4.Google Scholar
Garcia-Cazorla, A, Duarte, ST. Parkinsonism and inborn errors of metabolism. J Inherit Metab Dis. 2014;37(4):627–42.Google Scholar
Poretti, A, Boltshauser, E, Huisman, TA. Prenatal cerebellar disruptions: Neuroimaging spectrum of findings in correlation with likely mechanisms and etiologies of injury. Neuroimaging Clin N Am. 2016;26(3):359–72.Google Scholar
Synofzik, M, Nemeth, AH. Recessive ataxias. Handb Clin Neurol. 2018;155:7389.Google Scholar
Jen, JC, Wan, J. Episodic ataxias. Handb Clin Neurol. 2018;155:205–15.Google Scholar
Ghaoui, R, Sue, CM. Movement disorders in mitochondrial disease. J Neurol. 2018;265(5):1230–40.Google Scholar

References

Sanderson, S, Green, A, Preece, MA, Burton, H. The incidence of inherited metabolic disorders in the West Midlands, UK. Arch Dis Child. 2006;91(11):896–9.Google Scholar
Gouider-Khouja, N, Kraoua, I, Benrhouma, H, Fraj, N, Rouissi, A. Movement disorders in neuro-metabolic diseases. Eur J Paediatr Neurol. 2010;14(4):304–7.Google Scholar
Jinnah, HA, Albanese, A, Bhatia, KP, et al. Treatable inherited rare movement disorders. Mov Disord. 2018;33(1):2135.Google Scholar
Marras, C, Lang, A, van de Warrenburg, BP, et al. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force. Mov Disord. 2016;31(4):436–57.CrossRefGoogle ScholarPubMed
El Euch-Fayache, G, Bouhlal, Y, Amouri, R, Feki, M, Hentati, F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain. 2014;137(Pt 2):402–10.Google Scholar
Lee, J, Hegele, RA. Abetalipoproteinemia and homozygous hypobetalipoproteinemia: A framework for diagnosis and management. J Inherit Metab Dis. 2014;37(3):333–9.Google Scholar
Albanese, A, Bhatia, K, Bressman, SB, et al. Phenomenology and classification of dystonia: A consensus update. Mov Disord. 2013;28(7):863–73.Google Scholar
Wijemanne, S, Jankovic, J. Dopa-responsive dystonia: Clinical and genetic heterogeneity. Nat Rev Neurol. 2015;11(7):414–24.Google Scholar
Gitiaux, C, Roze, E, Kinugawa, K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1: A study of 16 patients. Mov Disord. 2008;23(16):2392–7.Google Scholar
Kolker, S, Valayannopoulos, V, Burlina, AB, et al. The phenotypic spectrum of organic acidurias and urea cycle disorders. Part 2: The evolving clinical phenotype. J Inherit Metab Dis. 2015;38(6):1059–74.Google Scholar
Martikainen, MH, Ng, YS, Gorman, GS, et al. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 2016;73(6):668–74.Google Scholar
Ng, J, Heales, SJ, Kurian, MA. Clinical features and pharmacotherapy of childhood monoamine neurotransmitter disorders. Paediatr Drugs. 2014;16(4):275–91.Google Scholar
Jinnah, HA, Visser, JE, Harris, JC, et al. Delineation of the motor disorder of Lesch–Nyhan disease. Brain. 2006;129(Pt 5):1201–17.Google Scholar
Mercimek-Mahmutoglu, S, Stoeckler-Ipsiroglu, S, Adami, A, et al. GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67(3):480–4.Google Scholar
Allen, NM, Lin, JP, Lynch, T, King, MD. Status dystonicus: A practice guide. Dev Med Child Neurol. 2014;56(2):105–12.Google Scholar
Sanger, TD, Chen, D, Fehlings, DL, et al. Definition and classification of hyperkinetic movements in childhood. Mov Disord. 2010;25(11):1538–49.Google Scholar
Crossman, AR. Functional anatomy of movement disorders. J Anat. 2000;196 (Pt 4):519–25.Google Scholar
Munchau, A. Transient (benign) infantile chorea – a physiological phenomenon during motor development? International Symposium on Pediatric Movement Disorders. Barcelona: The Movement Disorder Society; 2004.Google Scholar
Klepper, J, Leiendecker, B, Eltze, C, Heussinger, N. Paroxysmal nonepileptic events in Glut1 deficiency. Mov Disord Clin Pract. 2016;3(6):607–10.Google Scholar
Keogh, MJ, Morris, CM, Chinnery, PF. Neuroferritinopathy. Int Rev Neurobiol. 2013;110:91123.Google Scholar
Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.Google Scholar
Di Meo, I, Tiranti, V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol. 2018;22(2):272–84.Google Scholar
Ebrahimi-Fakhari, D, Hildebrandt, C, Davis, PE, et al. The spectrum of movement disorders in childhood-onset lysosomal storage diseases. Mov Disord Clin Pract. 2018;5(2):149–55.Google Scholar
Garcia-Cazorla, A, Duarte, ST. Parkinsonism and inborn errors of metabolism. J Inherit Metab Dis. 2014;37(4):627–42.Google Scholar
Ghaoui, R, Sue, CM. Movement disorders in mitochondrial disease. J Neurol. 2018;265(5):1230–40.Google Scholar
Sidransky, E, Nalls, MA, Aasly, JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361(17):1651–61.Google Scholar
Bhatia, KP, Bain, P, Bajaj, N, et al. Consensus statement on the classification of tremors from the Task Force on Tremor of the International Parkinson and Movement Disorder Society. Mov Disord. 2018;33(1):7587.Google Scholar
European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Wilson’s disease. J Hepatol. 2012;56(3):671–85.Google Scholar
Tilikete, C, Desestret, V. Hypertrophic olivary degeneration and palatal or oculopalatal tremor. Front Neurol. 2017;8:302.Google Scholar
Mink, JW, Augustine, EF, Adams, HR, Marshall, FJ, Kwon, JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.Google Scholar
Ferreira, CR, Gahl, WA. Lysosomal storage diseases. Transl Sci Rare Dis. 2017;2(1–2):171.Google Scholar
Leach, EL, Shevell, M, Bowden, K, Stockler-Ipsiroglu, S, van Karnebeek, CD. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: Systematic literature review. Orphanet J Rare Dis. 2014;9:197.Google Scholar
Rosenbaum, P, Paneth, N, Leviton, A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:814.Google Scholar
Kolker, S, Christensen, E, Leonard, JV, et al. Diagnosis and management of glutaric aciduria type I: Revised recommendations. J Inherit Metab Dis. 2011;34(3):677–94.Google Scholar
Alfadhel, M, Almuntashri, M, Jadah, RH, et al. Biotin-responsive basal ganglia disease should be renamed biotin–thiamine-responsive basal ganglia disease: A retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.Google Scholar
Pons, R, Collins, A, Rotstein, M, Engelstad, K, De Vivo, DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81.Google Scholar
Castiglioni, C, Verrigni, D, Okuma, C, et al. Pyruvate dehydrogenase deficiency presenting as isolated paroxysmal exercise induced dystonia successfully reversed with thiamine supplementation. Case report and mini-review. Eur J Paediatr Neurol. 2015;19(5):497503.Google Scholar
Darras, BT, Ampola, MG, Dietz, WH, Gilmore, HE. Intermittent dystonia in Hartnup disease. Pediatr Neurol. 1989;5(2):118–20.Google Scholar
Carecchio, M, Schneider, SA, Chan, H, et al. Movement disorders in adult surviving patients with maple syrup urine disease. Mov Disord. 2011;26(7):1324–8.Google Scholar
Slow, EJ, Lang, AE. Oculogyric crises: A review of phenomenology, etiology, pathogenesis, and treatment. Mov Disord. 2017;32(2):193202.Google Scholar
Watson, MS, Mann, MY, Lloyd-Puryear, MA, Rinaldo, P, Howell, RR.Executive summary. Genet Med. 2006;8:1S.Google Scholar
Therrell, BL, Padilla, CD, Loeber, JG, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39(3):171–87.CrossRefGoogle ScholarPubMed
Neveling, K, Feenstra, I, Gilissen, C, et al. A post-hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34(12):1721–6.Google Scholar
van Egmond, ME, Lugtenberg, CHA, Brouwer, OF, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017;32(4):569–75.Google Scholar

References

Parikh, S, Bernard, G, Leventer, RJ, et al. A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies. Mol Genet Metab. 2015;114(4):501–15.Google Scholar
Sedel, F, Saudubray, JM, Roze, E, Agid, Y, Vidailhet, M. Movement disorders and inborn errors of metabolism in adults: A diagnostic approach. J Inherit Metab Dis. 2008;31(3):308–18.Google Scholar
van der Knaap, MS, Breiter, SN, Naidu, S, Hart, AA, Valk, J. Defining and categorizing leukoencephalopathies of unknown origin: MR imaging approach. Radiology. 1999;213(1):121–33.Google Scholar
van der Knaap, MS, Valk, J. Magnetic Resonance of Myelination and Myelin Disorders. 3rd edn. Berlin: Springer; 2005.Google Scholar
Barkovich, AJ, Metabolic, Patay Z., Toxic, and autoimmune/inflammatory brain disorders. In Barkovich, AJ, Raybaud, C, editors. Pediatric Neuroimaging. Philadelphia, PA: Wolters Kluwer; 2019, pp. 405632.Google Scholar
Yang, E, Prabhu, SP. Imaging manifestations of the leukodystrophies, inherited disorders of white matter. Radiol Clin North Am. 2014;52(2):279319.Google Scholar
Barkovich, MJ, Barkovich, AJ. Normal development of the fetal, neonatal, and infant brain, skull, and spine. In Barkovich, AJ, Raybaud, C, editors. Pediatric Neuroimaging. Philadelphia: Wolters Kluwer; 2019, pp. 1880.Google Scholar
Haacke, EM, Mittal, S, Wu, Z, Neelavalli, J, Cheng, YC. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol. 2009;30(1):1930.Google Scholar
Mittal, S, Wu, Z, Neelavalli, J, Haacke, EM. Susceptibility-weighted imaging: Technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.Google Scholar
Aoki, S, Okada, Y, Nishimura, K, et al. Normal deposition of brain iron in childhood and adolescence: MR imaging at 1.5 T. Radiology. 1989;172(2):381–5.Google Scholar
Aquino, D, Bizzi, A, Grisoli, M, et al. Age-related iron deposition in the basal ganglia: Quantitative analysis in healthy subjects. Radiology. 2009;252(1):165–72.Google Scholar
Harder, SL, Hopp, KM, Ward, H, et al. Mineralization of the deep gray matter with age: A retrospective review with susceptibility-weighted MR imaging. AJNR Am J Neuroradiol. 2008;29(1):176–83.Google Scholar
Legido, A, Zimmerman, RA, Packer, RJ, et al. Significance of basal ganglia calcification on computed tomography in children. Pediatr Neurosci. 1988;14(2):6470.Google Scholar
McKinney, AM. Basal ganglia: Physiologic calcification. In McKinney, AM, editor. Atlas of Normal Imaging Variation of the Brain, Skull, and Craniocervical Vasculature. Berlin: Springer; 2017, pp. 427–40.Google Scholar
Chen, W, Zhu, W, Kovanlikaya, I, et al. Intracranial calcifications and hemorrhages: Characterization with quantitative susceptibility mapping. Radiology. 2014;270(2):496505.Google Scholar
Saudubray, JM, van den Bergh, G, Walter, JH. Inborn Metabolic Diseases: Diagnosis and Treatment, 5th edn. Berlin: Springer; 2012.Google Scholar
Brismar, J, Ozand, PT. CT and MR of the brain in the diagnosis of organic acidemias. Experiences from 107 patients. Brain Dev. 1994;16 Suppl:104–24.Google Scholar
Harting, I, Neumaier-Probst, E, Seitz, A, et al. Dynamic changes of striatal and extrastriatal abnormalities in glutaric aciduria type I. Brain. 2009;132(Pt 7):1764–82.Google Scholar
Harting, I, Seitz, A, Geb, S, et al. Looking beyond the basal ganglia: The spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis. 2008;31(3):368–78.Google Scholar
Radmanesh, A, Zaman, T, Ghanaati, H, et al. Methylmalonic acidemia: Brain imaging findings in 52 children and a review of the literature. Pediatr Radiol. 2008;38(10):1054–61.Google Scholar
Schreiber, J, Chapman, KA, Summar, ML, et al. Neurologic considerations in propionic acidemia. Mol Genet Metab. 2012;105(1):10–5.Google Scholar
Strauss, KA, Lazovic, J, Wintermark, M, Morton, DH. Multimodal imaging of striatal degeneration in Amish patients with glutaryl-CoA dehydrogenase deficiency. Brain. 2007;130(Pt 7):1905–20.Google Scholar
Bonfante, E, Koenig, MK, Adejumo, RB, Perinjelil, V, Riascos, RF. The neuroimaging of Leigh syndrome: Case series and review of the literature. Pediatr Radiol. 2016;46(4):443–51.Google Scholar
Bricout, M, Grevent, D, Lebre, AS, et al. Brain imaging in mitochondrial respiratory chain deficiency: Combination of brain MRI features as a useful tool for genotype/phenotype correlations. J Med Genet. 2014;51(7):429–35.Google Scholar
Morava, E, van den Heuvel, L, Hol, F, et al. Mitochondrial disease criteria: Diagnostic applications in children. Neurology. 2006;67(10):1823–6.Google Scholar
Tabarki, B, Al-Shafi, S, Al-Shahwan, S, et al. Biotin-responsive basal ganglia disease revisited: Clinical, radiologic, and genetic findings. Neurology. 2013;80(3):261–7.Google Scholar
Kobayashi, O, Takashima, S. Thalamic hyperdensity on CT in infantile GM1-gangliosidosis. Brain Dev. 1994;16(6):472–4.Google Scholar
Muthane, U, Chickabasaviah, Y, Kaneski, C, et al. Clinical features of adult GM1 gangliosidosis: Report of three Indian patients and review of 40 cases. Mov Disord. 2004;19(11):1334–41.Google Scholar
van Wassenaer-van Hall, HN, van den Heuvel, AG, Algra, A, Hoogenraad, TU, Mali, WP. Wilson disease: Findings at MR imaging and CT of the brain with clinical correlation. Radiology. 1996;198(2):531–6.Google Scholar
Prashanth, LK, Sinha, S, Taly, AB, Vasudev, MK. Do MRI features distinguish Wilson’s disease from other early onset extrapyramidal disorders? An analysis of 100 cases. Mov Disord. 2010;25(6):672–8.Google Scholar
Skowronska, M, Litwin, T, Dziezyc, K, Wierzchowska, A, Czlonkowska, A. Does brain degeneration in Wilson disease involve not only copper but also iron accumulation? Neurol Neurochir Pol. 2013;47(6):542–6.Google Scholar
Mercimek-Mahmutoglu, S, Stoeckler-Ipsiroglu, S, Adami, A, et al. GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis. Neurology. 2006;67(3):480–4.Google Scholar
van Toorn, R, Brink, P, Smith, J, Ackermann, C, Solomons, R. Bilirubin-induced neurological dysfunction: A clinico-radiological-neurophysiological correlation in 30 consecutive children. J Child Neurol. 2016;31(14):1579–83.Google Scholar
Zuccoli, G, Santa Cruz, D, Bertolini, M, et al. MR imaging findings in 56 patients with Wernicke encephalopathy: Nonalcoholics may differ from alcoholics. AJNR Am J Neuroradiol. 2009;30(1):171–6.Google Scholar
Lai, PH, Tien, RD, Chang, MH, et al. Chorea-ballismus with nonketotic hyperglycemia in primary diabetes mellitus. AJNR Am J Neuroradiol. 1996;17(6):1057–64.Google Scholar
Pearl, PL, Vezina, LG, Saneto, RP, et al. Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia. 2009;50(2):184–94.Google Scholar
Krageloh-Mann, I, Horber, V. The role of magnetic resonance imaging in elucidating the pathogenesis of cerebral palsy: A systematic review. Dev Med Child Neurol. 2007;49(2):144–51.Google Scholar
Schwartz, ES, Barkovich, AJ. Brain and spine injuries in infancy and childhood. In Barkovich, AJ, Raybaud, C, editors. Pediatric Neuroimaging. Philadelphia, PA: Wolters Kluwer; 2019, pp. 405632.Google Scholar
Gonzalez-Alegre, P, Afifi, AK. Clinical characteristics of childhood-onset (juvenile) Huntington disease: Report of 12 patients and review of the literature. J Child Neurol. 2006;21(3):223–9.Google Scholar
Basel-Vanagaite, L, Muncher, L, Straussberg, R, et al. Mutated NUP62 causes autosomal recessive infantile bilateral striatal necrosis. Ann Neurol. 2006;60(2):214–22.Google Scholar
Neilson, DE. The interplay of infection and genetics in acute necrotizing encephalopathy. Curr Opin Pediatr. 2010;22(6):751–7.Google Scholar
Gregory, A, Hayflick, S. Neurodegeneration with brain iron accumulation. GeneReviews®. 2013;Feb 28 (updated Oct 21, 2019).Google Scholar
Di Meo, I, Tiranti, V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol. 2018;22(2):272–84.Google Scholar
Kruer, MC, Boddaert, N, Schneider, SA, et al. Neuroimaging features of neurodegeneration with brain iron accumulation. AJNR Am J Neuroradiol. 2012;33(3):407–14.Google Scholar
Hayflick, SJ, Hartman, M, Coryell, J, Gitschier, J, Brain, Rowley H. MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol. 2006;27(6):1230–3.Google Scholar
Hayflick, SJ, Westaway, SK, Levinson, B, et al. Genetic, clinical, and radiographic delineation of Hallervorden–Spatz syndrome. N Engl J Med. 2003;348(1):3340.Google Scholar
Iodice, A, Spagnoli, C, Salerno, GG, et al. Infantile neuroaxonal dystrophy and PLA2G6-associated neurodegeneration: An update for the diagnosis. Brain Dev. 2017;39(2):93100.Google Scholar
McNeill, A, Birchall, D, Hayflick, SJ, et al. T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70(18):1614–9.Google Scholar
Wynn, DP, Pulst, SM. A novel WDR45 mutation in a patient with beta-propeller protein-associated neurodegeneration. Neurol Genet. 2017;3(1):e124.Google Scholar
Quadri, M, Federico, A, Zhao, T, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77.Google Scholar
Tuschl, K, Meyer, E, Valdivia, LE, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nat Commun. 2016;7:11601.Google Scholar
Rodan, LH, Hauptman, M, D’Gama, AM, et al. Novel founder intronic variant in SLC39A14 in two families causing manganism and potential treatment strategies. Mol Genet Metab. 2018;124(2):161–7.Google Scholar
Ramos, EM, Carecchio, M, Lemos, R, et al. Primary brain calcification: An international study reporting novel variants and associated phenotypes. Eur J Hum Genet. 2018;26(10):1462–77.Google Scholar
Yao, XP, Cheng, X, Wang, C, et al. Mutations in MYORG cause autosomal recessive primary familial brain calcification. Neuron. 2018;98(6):1116–23 e5.Google Scholar
Steenweg, ME, Vanderver, A, Blaser, S, et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133(10):2971–82.Google Scholar
De Grandis, E, Di Rocco, M, Pessagno, A, Veneselli, E, Rossi, A. MR imaging findings in 2 cases of late infantile GM1 gangliosidosis. AJNR Am J Neuroradiol. 2009;30(7):1325–7.Google Scholar
Livingston, JH, Stivaros, S, van der Knaap, MS, Crow, YJ. Recognizable phenotypes associated with intracranial calcification. Dev Med Child Neurol. 2013;55(1):4657.Google Scholar
Nelson, MD, Jr., Wolff, JA, Cross, CA, Donnell, GN, Kaufman, FR. Galactosemia: Evaluation with MR imaging. Radiology. 1992;184(1):255–61.Google Scholar
Berry, GT, Hunter, JV, Wang, Z, et al. In vivo evidence of brain galactitol accumulation in an infant with galactosemia and encephalopathy. J Pediatr. 2001;138(2):260–2.Google Scholar
Morton, DH, Strauss, KA, Robinson, DL, Puffenberger, EG, Kelley, RI. Diagnosis and treatment of maple syrup disease: A study of 36 patients. Pediatrics. 2002;109(6):9991008.Google Scholar
Carecchio, M, Schneider, SA, Chan, H, et al. Movement disorders in adult surviving patients with maple syrup urine disease. Mov Disord. 2011;26(7):1324–8.Google Scholar
Cavalleri, F, Berardi, A, Burlina, AB, Ferrari, F, Mavilla, L. Diffusion-weighted MRI of maple syrup urine disease encephalopathy. Neuroradiology. 2002;44(6):499502.Google Scholar
Khong, PL, Lam, BC, Chung, BH, Wong, KY, Ooi, GC. Diffusion-weighted MR imaging in neonatal nonketotic hyperglycinemia. AJNR Am J Neuroradiol. 2003;24(6):1181–3.Google Scholar
Santavuori, P, Vanhanen, SL, Autti, T. Clinical and neuroradiological diagnostic aspects of neuronal ceroid lipofuscinoses disorders. Eur J Paediatr Neurol. 2001;5 Suppl A:157–61.Google Scholar
Fu, J, Dumitrescu, AM. Inherited defects in thyroid hormone cell-membrane transport and metabolism. Best Pract Res Clin Endocrinol Metab. 2014;28(2):189201.Google Scholar
Vaurs-Barriere, C, Deville, M, Sarret, C, et al. Pelizaeus–Merzbacher-like disease presentation of MCT8 mutated male subjects. Ann Neurol. 2009;65(1):114–8.Google Scholar
Hao, J, Kelly, DI, Su, J, Pascual, JM. Clinical aspects of glucose transporter type 1 deficiency: Information from a global registry. JAMA Neurol. 2017;74(6):727–32.Google Scholar
Group, N-CGW, Wraith, JE, Baumgartner, MR, et al. Recommendations on the diagnosis and management of Niemann–Pick disease type C. Mol Genet Metab. 2009;98(1–2):152–65.Google Scholar
Harris, JC, Lee, RR, Jinnah, HA, et al. Craniocerebral magnetic resonance imaging measurement and findings in Lesch–Nyhan syndrome. Arch Neurol. 1998;55(4):547–53.Google Scholar
Jurecka, A, Zikanova, M, Kmoch, S, Tylki-Szymanska, A. Adenylosuccinate lyase deficiency. J Inherit Metab Dis. 2015;38(2):231–42.Google Scholar
Waisbren, SE, Prabhu, SP, Greenstein, P, et al. Improved measurement of brain phenylalanine and tyrosine related to neuropsychological functioning in phenylketonuria. JIMD Rep. 2017;34:7786.Google Scholar
Jang, D-H. AB052. Application of facial dysmorphology analysis technology (Face2gene) in Korean rare genetic diseases. Ann Transl Med. 2017;Sep 5(Suppl 2):AB052.Google Scholar
Faria, AV, Liang, Z, Miller, MI, Mori, S. Brain MRI pattern recognition translated to clinical scenarios. Front Neurosci. 2017;11:578.Google Scholar

References

Garcia-Cazorla, A, Wolf, NI, Mochel, F, Hoffmann, GF. Neurological disease. In Hoffmann, GF, editor. Inherited Metabolic Diseases. Berlin: Springer-Verlag; 2017, pp. 251–92.Google Scholar
Ebrahimi-Fakhari, D, Van Karnebeek, C, Munchau, A. Movement disorders in treatable inborn errors of metabolism. Mov Disord. 2019;34:598613.Google Scholar
Christensen, CK, Walsh, L. Movement disorders and neurometabolic diseases. Semin Pediatr Neurol. 2018;25:8291.Google Scholar
Jinnah, HA, Albanese, A, Bhatia, KP, et al. Treatable inherited rare movement disorders. Mov Disord. 2018;33(1):2135.Google Scholar
Lee, JJY, Wasserman, WW, Hoffmann, GF, van Karnebeek, CDM, Blau, N. Knowledge base and mini-expert platform for the diagnosis of inborn errors of metabolism. Genet Med. 2018;20(1):151–8.Google Scholar
Ferreira, CR, van Karnebeek, CDM, Vockley, J, Blau, N. A proposed nosology of inborn errors of metabolism. Genet Med. 2019;21(1):102–6.Google Scholar
Ferreira, CR, Hoffmann, GF, Blau, N. Clinical and biochemical footprints of inherited metabolic diseases. I. Movement disorders. Mol Genet Metab. 2019;127(1):2830.Google Scholar
Hoffmann, FG, Blau, N. Signs and symptoms of neurotransmitter disorders: Approach to diagnosis. In Hoffmann, FG, Blau, N, editors. Congenital Neurotransmitter Disorders: A Clinical Approach. Huppauge, NY: Nova Publishers Inc; 2014.Google Scholar
Wevers, RA, Blau, N. Think big: Think omics. J Inherit Metab Dis. 2018;41(3):281–3.Google Scholar

References

Pareek, CS, Smoczynski, R, Tretyn, A. Sequencing technologies and genome sequencing. J Appl Genet. 2011;52(4):413–35.Google Scholar
van Diemen, CC, Kerstjens-Frederikse, WS, Bergman, KA, et al. Rapid targeted genomics in critically ill newborns. Pediatrics. 2017;140(4).Google Scholar
Montaut, S, Tranchant, C, Drouot, N, et al. Assessment of a targeted gene panel for identification of genes associated with movement disorders. JAMA Neurol. 2018;75(10):1234–45.CrossRefGoogle ScholarPubMed
Richards, S, Aziz, N, Bale, S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.Google Scholar
Biesecker, LG, Nussbaum, RL, Rehm, HL. Distinguishing variant pathogenicity from genetic diagnosis: How to know whether a variant causes a condition. JAMA. 2018;320(18):1929–30.CrossRefGoogle ScholarPubMed
Zeiger, WA, Jamal, NI, Scheuner, MT, et al. Probable diagnosis of a patient with Niemann–Pick disease type C: Managing pitfalls of exome sequencing. JIMD Rep. 2018;41:4751.Google Scholar
Dale, RC, Grattan-Smith, P, Nicholson, M, Peters, GB. Microdeletions detected using chromosome microarray in children with suspected genetic movement disorders: A single-centre study. Dev Med Child Neurol. 2012;54(7):618–23.Google Scholar
Asmus, F, Hjermind, LE, Dupont, E, et al. Genomic deletion size at the epsilon-sarcoglycan locus determines the clinical phenotype. Brain. 2007;130(Pt 10):2736–45.Google Scholar
Campbell, IM, Yatsenko, SA, Hixson, P, et al. Novel 9q34.11 gene deletions encompassing combinations of four Mendelian disease genes: STXBP1, SPTAN1, ENG, and TOR1A. Genet Med. 2012;14(10):868–76.Google Scholar
Poisson, A, Lesca, G, Chatron, N, et al. 12q13.12q13.13 microdeletion encompassing ACVRL1 and SCN8A genes: Clinical report of a new contiguous gene syndrome. Eur J Med Genet. 2019;62(11):103565.Google Scholar
Kharbanda, M, Hermanns, P, Jones, J, Pohlenz, J, Horrocks, I, Donaldson, M. A further case of brain–lung–thyroid syndrome with deletion proximal to NKX2-1. Eur J Med Genet. 2017;60(5):257–60.Google Scholar
Kremer, LS, Bader, DM, Mertes, C, et al. Genetic diagnosis of Mendelian disorders via RNA sequencing. Nat Commun. 2017;8:15824.Google Scholar
Cummings, BB, Marshall, JL, Tukiainen, T, et al. Improving genetic diagnosis in Mendelian disease with transcriptome sequencing. Sci Transl Med. 2017;9(386): pii: eaal5209.Google Scholar
Bergant, G, Maver, A, Lovrecic, L, Comprehensive use of extended exome analysis improves diagnostic yield in rare disease: A retrospective survey in 1,059 cases. Genet Med. 2018;20(3):303–12.Google Scholar
Cordeiro, D, Bullivant, G, Siriwardena, K, et al. Genetic landscape of pediatric movement disorders and management implications. Neurol Genet. 2018;4(5):e265.CrossRefGoogle ScholarPubMed
Mercimek-Mahmutoglu, S, Sidky, S, Hyland, K, et al. Prevalence of inherited neurotransmitter disorders in patients with movement disorders and epilepsy: A retrospective cohort study. Orphanet J Rare Dis. 2015;10:12.Google Scholar
Reid, ES, Papandreou, A, Drury, S, et al. Advantages and pitfalls of an extended gene panel for investigating complex neurometabolic phenotypes. Brain. 2016;139(11):2844–54.Google Scholar
van Egmond, ME, Lugtenberg, CHA, Brouwer, OF, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017;32(4):569–75.Google Scholar
Bodzioch, M, Lapicka-Bodzioch, K, Rudzinska, M, et al. Severe dystonic encephalopathy without hyperphenylalaninemia associated with an 18-bp deletion within the proximal GCH1 promoter. Mov Disord. 2011;26(2):337–40.Google Scholar
Willemsen, MA, Verbeek, MM, Kamsteeg, EJ, et al. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis. Brain. 2010;133(Pt 6):1810–22.Google Scholar
Mukherjee, S, Dutta, S, Majumdar, S, et al. Genetic defects in Indian Wilson disease patients and genotype–phenotype correlation. Parkinsonism Relat Disord. 2014;20(1):7581.Google Scholar
Grieco, GS, Gagliardi, S, Ricca, I, et al. New CACNA1A deletions are associated to migraine phenotypes. J Headache Pain. 2018;19(1):75.Google Scholar
Koenig, MK. Presentation and diagnosis of mitochondrial disorders in children. Pediatr Neurol. 2008;38(5):305–13.CrossRefGoogle ScholarPubMed
Theunissen, TEJ, Nguyen, M, Kamps, R, et al. Whole exome sequencing is the preferred strategy to identify the genetic defect in patients with a probable or possible mitochondrial cause. Front Genet. 2018;9:400.Google Scholar
Coutelier, M, Goizet, C, Durr, A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138(Pt 8):2191–205.Google Scholar
Falkenberg, KD, Braverman, NE, Moser, AB, et al. Allelic expression imbalance promoting a mutant PEX6 allele causes Zellweger spectrum disorder. Am J Hum Genet. 2017;101(6):965–76.CrossRefGoogle ScholarPubMed
Cen, Z, Jiang, Z, Chen, Y, et al. Intronic pentanucleotide TTTCA repeat insertion in the SAMD12 gene causes familial cortical myoclonic tremor with epilepsy type 1. Brain. 2018;141(8):2280–8.Google Scholar
LaCroix, AJ, Stabley, D, Sahraoui, R, et al. GGC repeat expansion and exon 1 methylation of XYLT1 is a common pathogenic variant in Baratela–Scott syndrome. Am J Hum Genet. 2019;104(1):3544.Google Scholar
Middleton, A, Morley, KI, Bragin, E, et al. Attitudes of nearly 7000 health professionals, genomic researchers and publics toward the return of incidental results from sequencing research. Eur J Hum Genet. 2016;24(1):21–9.CrossRefGoogle ScholarPubMed
Kalia, SS, Adelman, K, Bale, SJ, et al. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics. Genet Med. 2017;19(2):249–55.CrossRefGoogle ScholarPubMed
Ghosh, A, Schlecht, H, Heptinstall, LE, et al. Diagnosing childhood-onset inborn errors of metabolism by next-generation sequencing. Arch Dis Child. 2017;102(11):1019–29.Google Scholar
Parikh, S, Goldstein, A, Koenig, MK, et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet Med. 2015;17(9):689701.Google Scholar
de Koning, TJ. Amino acid synthesis deficiencies. J Inherit Metab Dis. 2017;40(4):609–20.Google Scholar
Dard, R, Mignot, C, Durr, A, et al. Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation. Dev Med Child Neurol. 2015;57(12):1183–6.Google Scholar
Boemer, F, Fasquelle, C, d’Otreppe, S, et al. A next-generation newborn screening pilot study: NGS on dried blood spots detects causal mutations in patients with inherited metabolic diseases. Sci Rep. 2017;7(1):17641.Google Scholar
van Karnebeek, CDM, Wortmann, SB, Tarailo-Graovac, M, et al. The role of the clinician in the multi-omics era: Are you ready? J Inherit Metab Dis. 2018;41(3):571–82.Google Scholar

References

Poretti, A, Benson, JE, Huisman, TA, Boltshauser, E. Acute ataxia in children: Approach to clinical presentation and role of additional investigations. Neuropediatrics. 2013;44(3):127–41.Google Scholar
Garcia-Cazorla, A, Wolf, NI, Serrano, M, et al. Inborn errors of metabolism and motor disturbances in children. J Inherit Metab Dis. 2009;32(5):618–29.Google Scholar
Saudubray, JM, Sedel, F, Walter, JH. Clinical approach to treatable inborn metabolic diseases: An introduction. J Inherit Metab Dis. 2006;29(2–3):261–74.Google Scholar
Parker, CC, Evans, OB. Metabolic disorders causing childhood ataxia. Semin Pediatr Neurol. 2003;10(3):193–9.Google Scholar
van Gaalen, J, Kerstens, FG, Maas, RP, Harmark, L, van de Warrenburg, BP. Drug-induced cerebellar ataxia: A systematic review. CNS Drugs. 2014;28(12):1139–53.Google Scholar
Gray, RG, Preece, MA, Green, SH, et al. Inborn errors of metabolism as a cause of neurological disease in adults: An approach to investigation. J Neurol Neurosurg Psychiatry. 2000;69(1):512.Google Scholar
Espinos, C, Pineda, M, Martinez-Rubio, D, et al. Mutations in the urocanase gene UROC1 are associated with urocanic aciduria. J Med Genet. 2009;46(6):407–11.Google Scholar
Cheon, CK, Lee, BH, Ko, JM, Kim, HJ, Yoo, HW. Novel mutation in SLC6A19 causing late-onset seizures in Hartnup disorder. Pediatr Neurol. 2010;42(5):369–71.Google Scholar
Strauss, KA, Puffenberger, EG, Morton, DH. Maple syrup urine disease. GeneReviews®. 2006;Jan 30 (updated May 9, 2013).Google Scholar
Simon, E, Flaschker, N, Schadewaldt, P, Langenbeck, U, Wendel, U. Variant maple syrup urine disease (MSUD): The entire spectrum. J Inherit Metab Dis. 2006;29(6):716–24.Google Scholar
Superti-Furga, A, Hoffmann, GF. Glutaric aciduria type 1 (glutaryl-CoA-dehydrogenase deficiency): Advances and unanswered questions. Report from an international meeting. Eur J Pediatr. 1997;156(11):821–8.Google Scholar
Rowe, PC, Newman, SL, Brusilow, SW. Natural history of symptomatic partial ornithine transcarbamylase deficiency. N Engl J Med. 1986;314(9):541–7.Google Scholar
Patel, KP, O’Brien, TW, Subramony, SH, Shuster, J, Stacpoole, PW. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012;106(3):385–94.Google Scholar
Debray, FG, Lambert, M, Gagne, R, et al. Pyruvate dehydrogenase deficiency presenting as intermittent isolated acute ataxia. Neuropediatrics. 2008;39(1):20–3.Google Scholar
Marin-Valencia, I, Roe, CR, Pascual, JM. Pyruvate carboxylase deficiency: Mechanisms, mimics and anaplerosis. Mol Genet Metab. 2010;101(1):917.Google Scholar
Sofou, K, de Coo, IFM, Ostergaard, E, et al. Phenotype–genotype correlations in Leigh syndrome: New insights from a multicentre study of 96 patients. J Med Genet. 2018;55(1):21–7.Google Scholar
Wolf, B. Biotinidase deficiency. GeneReviews®. 2000;Mar 24 (updated Jun 9, 2016).Google Scholar
Wolf, B. “Think metabolic” in adults with diagnostic challenges: Biotinidase deficiency as a paradigm disorder. Neurol Clin Pract. 2017;7(6):518–22.Google Scholar
Tabarki, B, Al-Shafi, S, Al-Shahwan, S, et al. Biotin-responsive basal ganglia disease revisited: Clinical, radiologic, and genetic findings. Neurology. 2013;80(3):261–7.CrossRefGoogle ScholarPubMed
Leen, WG, Klepper, J, Verbeek, MM, et al. Glucose transporter-1 deficiency syndrome: The expanding clinical and genetic spectrum of a treatable disorder. Brain. 2010;133(Pt 3):655–70.CrossRefGoogle ScholarPubMed
Leen, WG, Mewasingh, L, Verbeek, MM, et al. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov Disord. 2013;28(10):1439–42.Google Scholar
Verrips, A, van Engelen, BG, Wevers, RA, et al. Presence of diarrhea and absence of tendon xanthomas in patients with cerebrotendinous xanthomatosis. Arch Neurol. 2000;57(4):520–4.Google Scholar
Yahalom, G, Tsabari, R, Molshatzki, N, et al. Neurological outcome in cerebrotendinous xanthomatosis treated with chenodeoxycholic acid: Early versus late diagnosis. Clin Neuropharmacol. 2013;36(3):7883.Google Scholar
Hentati, F, El-Euch, G, Bouhlal, Y, Amouri, R. Ataxia with vitamin E deficiency and abetalipoproteinemia. Handb Clin Neurol. 2012;103:295305.Google Scholar
Seo, GH, Kim, YM, Oh, SH, et al. Biochemical and molecular characterisation of neurological Wilson disease. J Med Genet. 2018;55(9):587–93.Google Scholar
Bandmann, O, Weiss, KH, Kaler, SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–13.Google Scholar
Vroegindeweij, LHP, Langendonk, JG, Langeveld, M, et al. New insights in the neurological phenotype of aceruloplasminemia in Caucasian patients. Parkinsonism Relat Disord. 2017;36:3340.Google Scholar
Poli, L, Alberici, A, Buzzi, P, Marchina, E, Lanari, A, Arosio, C, et al. Is aceruloplasminemia treatable? Combining iron chelation and fresh-frozen plasma treatment. Neurol Sci. 2017;38(2):357–60.Google Scholar
Wanders, RJA, Waterham, HR, Leroy, BP. Refsum disease. GeneReviews®. 2006;Mar 20 (updated Jun 11, 2015).Google Scholar
Patterson, MC, Mengel, E, Wijburg, FA, et al. Disease and patient characteristics in NP-C patients: Findings from an international disease registry. Orphanet J Rare Dis. 2013;8:12.Google Scholar
Emmanuele, V, Lopez, LC, Berardo, A, et al. Heterogeneity of coenzyme Q10 deficiency: Patient study and literature review. Arch Neurol. 2012;69(8):978–83.Google Scholar
Balreira, A, Boczonadi, V, Barca, E, et al. ANO10 mutations cause ataxia and coenzyme Q(1)(0) deficiency. J Neurol. 2014;261(11):2192–8.Google Scholar
Raymond, GV, Moser, AB, Fatemi, A. X-linked adrenoleukodystrophy. GeneReviews®. 1999;Mar 26 (updated Feb 15, 2018).Google Scholar
Mahmood, A, Berry, J, Wenger, DA, et al. Metachromatic leukodystrophy: A case of triplets with the late infantile variant and a systematic review of the literature. J Child Neurol. 2010;25(5):572–80.Google Scholar
Sedel, F, Tourbah, A, Fontaine, B, et al. Leukoencephalopathies associated with inborn errors of metabolism in adults. J Inherit Metab Dis. 2008;31(3):295307.Google Scholar
Kwon, JM, Matern, D, Kurtzberg, J, et al. Consensus guidelines for newborn screening, diagnosis and treatment of infantile Krabbe disease. Orphanet J Rare Dis. 2018;13:30.Google Scholar
Malm, D, Nilssen, O. Alpha-mannosidosis. Orphanet J Rare Dis. 2008;3:21.Google Scholar
Mercimek-Mahmutogly, S, Salamons, GS. Creatine deficiency syndromes. GeneReviews®. 2009;Jan 15 (updated Dec 10, 2015).Google Scholar
Hyland, K, Shoffner, J, Heales, SJ. Cerebral folate deficiency. J Inherit Metab Dis. 2010;33(5):563–70.Google Scholar
Synofzik, M, Srulijes, K, Godau, J, Berg, D, Schols, L. Characterizing POLG ataxia: Clinics, electrophysiology and imaging. Cerebellum. 2012;11(4):1002–11.Google Scholar
Steenweg, ME, Jakobs, C, Errami, A, et al. An overview of L-2-hydroxyglutarate dehydrogenase gene (L2HGDH) variants: A genotype–phenotype study. Hum Mutat. 2010;31(4):380–90.Google Scholar
Miossec-Chauvet, E, Mikaeloff, Y, Heron, D, et al. Neurological presentation in pediatric patients with congenital disorders of glycosylation type Ia. Neuropediatrics. 2003;34(1):16.Google Scholar
Drouin-Garraud, V, Belgrand, M, Grunewald, S, et al. Neurological presentation of a congenital disorder of glycosylation CDG-Ia: Implications for diagnosis and genetic counseling. Am J Med Genet. 2001;101(1):46–9.Google Scholar
Maegawa, GH, Stockley, T, Tropak, M, et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118(5):e1550-62.Google Scholar
Thorburn, DR, Rahman, J, Rahman, S. Mitochondrial DNA-associated Leigh syndrome and NARP. GeneReviews®. 2003;Oct 30 (updated Sep 28, 2017).Google Scholar
Craig, K, Elliott, HR, Keers, SM, et al. Episodic ataxia and hemiplegia caused by the 8993 T→C mitochondrial DNA mutation. J Med Genet. 2007;44(12):797–9.Google Scholar
Yamashita, T, Mitsui, J, Shimozawa, N, et al. Ataxic form of autosomal recessive PEX10-related peroxisome biogenesis disorders with a novel compound heterozygous gene mutation and characteristic clinical phenotype. J Neurol Sci. 2017;375:424–9.Google Scholar
Lapalme-Remis, S, Lewis, EC, De Meulemeester, C, et al. Natural history of succinic semialdehyde dehydrogenase deficiency through adulthood. Neurology. 2015;85(10):861–5.Google Scholar
Pearl, PL, Wiwattanadittakul, N, Roullet, JB, Gibson, KM. Succinic semialdehyde dehydrogenase deficiency. GeneReviews®. 2004;May 5 (updated Apr 28, 2016).Google Scholar
van der Veen, S, Zutt, R, Elting, JWJ, et al. Progressive myoclonus ataxia: Time for a new definition? Mov Disord. 2018;33(8):1281–6.Google Scholar
Seyrantepe, V, Poupetova, H, Froissart, R, et al. Molecular pathology of NEU1 gene in sialidosis. Hum Mutat. 2003;22(5):343–52.Google Scholar
Turnbull, J, Tiberia, E, Striano, P, et al. Lafora disease. Epileptic Disord. 2016;18(S2):3862.Google Scholar
DiMauro, S, Hirano, M. MERRF. GeneReviews®. 2003;Jun 3 (updated Jan 29, 2015).Google Scholar
Mancini, C, Nassani, S, Guo, Y, et al. Adult-onset autosomal recessive ataxia associated with neuronal ceroid lipofuscinosis type 5 gene (CLN5) mutations. J Neurol. 2015;262(1):173–8.Google Scholar
Roshan Lal, T, Sidransky, E. The spectrum of neurological manifestations associated with Gaucher disease. Diseases. 2017;5(1).Google Scholar

References

Garcia-Cazorla, A, Wolf, NI, Serrano, M, et al. Inborn errors of metabolism and motor disturbances in children. J Inherit Metab Dis. 2009;32(5):618–29.Google Scholar
Eggink, H, Kuiper, A, Peall, KJ, et al. Rare inborn errors of metabolism with movement disorders: A case study to evaluate the impact upon quality of life and adaptive functioning. Orphanet J Rare Dis. 2014;9:177.Google Scholar
Albanese, A, Bhatia, K, Bressman, SB, et al. Phenomenology and classification of dystonia: A consensus update. Mov Disord. 2013;28(7):863–73.Google Scholar
Lehericy, S, Tijssen, MA, Vidailhet, M, Kaji, R, Meunier, S. The anatomical basis of dystonia: Current view using neuroimaging. Mov Disord. 2013;28(7):944–57.Google Scholar
Steeves, TD, Day, L, Dykeman, J, Jette, N, Pringsheim, T. The prevalence of primary dystonia: A systematic review and meta-analysis. Mov Disord. 2012;27(14):1789–96.Google Scholar
Gouider-Khouja, N, Kraoua, I, Benrhouma, H, Fraj, N, Rouissi, A. Movement disorders in neuro-metabolic diseases. Eur J Paediatr Neurol. 2010;14(4):304–7.Google Scholar
Fung, VS, Jinnah, HA, Bhatia, K, Vidailhet, M. Assessment of patients with isolated or combined dystonia: An update on dystonia syndromes. Mov Disord. 2013;28(7):889–98.Google Scholar
van Egmond, ME, Kuiper, A, Eggink, H, et al. Dystonia in children and adolescents: A systematic review and a new diagnostic algorithm. J Neurol Neurosurg Psychiatry. 2015;86(7):774–81.Google Scholar
Kuiper, MJ, Brandsma, R, Vrijenhoek, L, et al. Physiological movement disorder-like features during typical motor development. Eur J Paediatr Neurol. 2018;22(4):595601.Google Scholar
Rosenbaum, P, Paneth, N, Leviton, A, et al. A report: The definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:814.Google Scholar
Bax, M, Tydeman, C, Flodmark, O. Clinical and MRI correlates of cerebral palsy: The European Cerebral Palsy Study. JAMA. 2006;296(13):1602–8.Google Scholar
Schneider, SA, Bhatia, KP. Secondary dystonia: Clinical clues and syndromic associations. Eur J Neurol. 2010;17 Suppl 1:52–7.Google Scholar
Kuiper, A, Eggink, H, Tijssen, MA, de Koning, TJ. Neurometabolic disorders are treatable causes of dystonia. Rev Neurol (Paris). 2016;172(8–9):455–64.Google Scholar
van Egmond, ME, Eggink, H, Kuiper, A, et al. Crossing barriers: A multidisciplinary approach to children and adults with young-onset movement disorders. J Clin Mov Disord. 2018;5:3.Google Scholar
Maas, R, Wassenberg, T, Lin, JP, van de Warrenburg, BPC, Willemsen, M. L-dopa in dystonia: A modern perspective. Neurology. 2017;88(19):1865–71.Google Scholar
Koy, A, Lin, JP, Sanger, TD, et al. Advances in management of movement disorders in children. Lancet Neurol. 2016;15(7):719–35.Google Scholar
van Egmond, ME, Lugtenberg, CHA, Brouwer, OF, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017;32(4):569–75.Google Scholar
Hennekam, RC, Biesecker, LG. Next-generation sequencing demands next-generation phenotyping. Hum Mutat. 2012;33(5):884–6.Google Scholar
Ng, J, Papandreou, A, Heales, SJ, Kurian, MA. Monoamine neurotransmitter disorders: Clinical advances and future perspectives. Nat Rev Neurol. 2015;11(10):567–84.Google Scholar
Lee, WW, Jeon, BS. Clinical spectrum of dopa-responsive dystonia and related disorders. Curr Neurol Neurosci Rep. 2014;14(7):461.Google Scholar
Taly, AB, Meenakshi-Sundaram, S, Sinha, S, Swamy, HS, Arunodaya, GR. Wilson disease: Description of 282 patients evaluated over 3 decades. Medicine (Baltimore). 2007;86(2):112–21.Google Scholar
Stamelou, M, Tuschl, K, Chong, WK, et al. Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: A new treatable disorder. Mov Disord. 2012;27(10):1317–22.Google Scholar
Schneider, SA, Bhatia, KP. Rare causes of dystonia parkinsonism. Curr Neurol Neurosci Rep. 2010;10(6):431–9.Google Scholar
Viau, K, Ernst, SL, Vanzo, RJ, et al. Glutaric acidemia type 1: Outcomes before and after expanded newborn screening. Mol Genet Metab. 2012;106(4):430–8.Google Scholar
Dionisi-Vici, C, Deodato, F, Roschinger, W, Rhead, W, Wilcken, B. ‘Classical’ organic acidurias, propionic aciduria, methylmalonic aciduria and isovaleric aciduria: Long-term outcome and effects of expanded newborn screening using tandem mass spectrometry. J Inherit Metab Dis. 2006;29(2–3):383–9.Google Scholar
Koens, LH, Kuiper, A, Coenen, MA, et al. Ataxia, dystonia and myoclonus in adult patients with Niemann–Pick type C. Orphanet J Rare Dis. 2016;11:121.Google Scholar
Patterson, MC, Hendriksz, CJ, Walterfang, M, et al. Recommendations for the diagnosis and management of Niemann–Pick disease type C: An update. Mol Genet Metab. 2012;106(3):330–44.Google Scholar
Roze, E, Paschke, E, Lopez, N, et al. Dystonia and parkinsonism in GM1 type 3 gangliosidosis. Mov Disord. 2005;20(10):1366–9.Google Scholar
Gautschi, M, Merlini, L, Calza, AM, et al. Late diagnosis of fucosidosis in a child with progressive fixed dystonia, bilateral pallidal lesions and red spots on the skin. Eur J Paediatr Neurol. 2014;18(4):516–9.Google Scholar
Martikainen, MH, Ng, YS, Gorman, GS, et al. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 2016;73(6):668–74.Google Scholar
Rahman, S, Thorburn, D. Nuclear gene-encoded Leigh syndrome overview. GeneReviews®. 2015; Oct 1.Google Scholar
Ortigoza-Escobar, JD, Molero-Luis, M, Arias, A, et al. Free-thiamine is a potential biomarker of thiamine transporter-2 deficiency: A treatable cause of Leigh syndrome. Brain. 2016;139(Pt 1):31–8.Google Scholar
Synofzik, M, Srulijes, K, Godau, J, Berg, D, Schols, L. Characterizing POLG ataxia: Clinics, electrophysiology and imaging. Cerebellum. 2012;11(4):1002–11.Google Scholar
Barnerias, C, Saudubray, JM, Touati, G, et al. Pyruvate dehydrogenase complex deficiency: Four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52(2):e19.Google Scholar
Pearson, TS, Akman, C, Hinton, VJ, Engelstad, K, De Vivo, DC. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr Neurol Neurosci Rep. 2013;13(4):342.Google Scholar
van de Kamp, JM, Mancini, GM, Salomons, GS. X-linked creatine transporter deficiency: Clinical aspects and pathophysiology. J Inherit Metab Dis. 2014;37(5):715–33.Google Scholar
Lagarde, J, Roze, E, Apartis, E, Pothalil, D, Sedel, F, Couvert, P, et al. Myoclonus and dystonia in cerebrotendinous xanthomatosis. Mov Disord. 2012;27(14):1805–10.Google Scholar
Rubio-Agusti, I, Carecchio, M, Bhatia, KP, et al. Movement disorders in adult patients with classical galactosemia. Mov Disord. 2013;28(6):804–10.Google Scholar
Peall, KJ, Kuiper, A, de Koning, TJ, Tijssen, MA. Non-motor symptoms in genetically defined dystonia: Homogenous groups require systematic assessment. Parkinsonism Relat Disord. 2015;21(9):1031–40.Google Scholar
Timmers, ER, Kuiper, A, Smit, M, et al. Non-motor symptoms and quality of life in dopa-responsive dystonia patients. Parkinsonism Relat Disord. 2017;45:5762.Google Scholar
Balash, Y, Giladi, N. Efficacy of pharmacological treatment of dystonia: Evidence-based review including meta-analysis of the effect of botulinum toxin and other cure options. Eur J Neurol. 2004;11(6):361–70.Google Scholar
Liow, NY, Gimeno, H, Lumsden, DE, et al. Gabapentin can significantly improve dystonia severity and quality of life in children. Eur J Paediatr Neurol. 2016;20(1):100–7.Google Scholar
Sayer, C, Lumsden, DE, Kaminska, M, Lin, JP. Clonidine use in the outpatient management of severe secondary dystonia. Eur J Paediatr Neurol. 2017;21(4):621–6.Google Scholar
Mink, JW. Treatment of paroxysmal dyskinesias in children. Curr Treat Options Neurol. 2015;17(6):350.Google Scholar
Jankovic, J. Medical treatment of dystonia. Mov Disord. 2013;28(7):1001–12.Google Scholar
Jinnah, HA, Alterman, R, Klein, C, et al. Deep brain stimulation for dystonia: A novel perspective on the value of genetic testing. J Neural Transm (Vienna). 2017;124(4):417–30.Google Scholar
Ge, M, Zhang, K, Ma, Y, et al. Bilateral subthalamic nucleus stimulation in the treatment of neurodegeneration with brain iron accumulation type 1. Stereotact Funct Neurosurg. 2011;89(3):162–6.Google Scholar
Lumsden, DE, Gimeno, H, Tustin, K, Kaminska, M, Lin, JP. Interventional studies in childhood dystonia do not address the concerns of children and their carers. Eur J Paediatr Neurol. 2015;19(3):327–36.Google Scholar
Lumsden, DE, Allen, NM. Rethinking status dystonicus: A welcome start to a challenging problem. Mov Disord. 2018;33(2):344.Google Scholar
Lumsden, DE, King, MD, Allen, NM. Status dystonicus in childhood. Curr Opin Pediatr. 2017;29(6):674–82.Google Scholar

References

Fahn, S, Jankovic, J, Hallett, M. Principles and Practice of Movement Disorders, 2nd edn. Philadelphia, PA: Elsevier; 2011.Google Scholar
Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.Google Scholar
Kang, SY, Wasaka, T, Shamim, EA, et al. Characteristics of the sequence effect in Parkinson’s disease. Mov Disord. 2010;25(13):2148–55.Google Scholar
Golbe, LI. Young-onset Parkinson’s disease: A clinical review. Neurology. 1991;41(2(Pt 1)):168–73.Google Scholar
Quinn, N, Critchley, P, Marsden, CD. Young onset Parkinson’s disease. Mov Disord. 1987;2(2):7391.Google Scholar
Paviour, DC, Surtees, RA, Lees, AJ. Diagnostic considerations in juvenile parkinsonism. Mov Disord. 2004;19(2):123–35.Google Scholar
Correia Guedes, L, Ferreira, JJ, Rosa, MM, et al. Worldwide frequency of G2019S LRRK2 mutation in Parkinson’s disease: A systematic review. Parkinsonism Relat Disord. 2010;16(4):237–42.Google Scholar
Schneider, SA, Alcalay, RN. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov Disord. 2017;32(11):1504–23.Google Scholar
Mandemakers, W, Quadri, M, Stamelou, M, Bonifati, V. TMEM230: How does it fit in the etiology and pathogenesis of Parkinson’s disease? Mov Disord. 2017;32(8):1159–62.Google Scholar
Kumaran, R, Cookson, MR. Pathways to Parkinsonism redux: Convergent pathobiological mechanisms in genetics of Parkinson’s disease. Hum Mol Genet. 2015;24(R1):R3244.Google Scholar
Garcia-Cazorla, A, Duarte, ST. Parkinsonism and inborn errors of metabolism. J Inherit Metab Dis. 2014;37(4):627–42.Google Scholar
Schrag, A, Schott, JM. Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. Lancet Neurol. 2006;5(4):355–63.Google Scholar
Fernandez-Alvarez, E. Frequency of movement disorders in children. Rev Neurol. 2001;33(3):228–9.Google Scholar
Fernandez-Alvarez, E, Aicardi, J. Movement Disorders in Children. London: Mac Keith Press; 2001.Google Scholar
Garcia-Cazorla, A, Ortez, C, Perez-Duenas, B, et al. Hypokinetic–rigid syndrome in children and inborn errors of metabolism. Eur J Paediatr Neurol. 2011;15(4):295302.Google Scholar
Kurian, MA, Gissen, P, Smith, M, Heales, S, Jr., Clayton, PT. The monoamine neurotransmitter disorders: An expanding range of neurological syndromes. Lancet Neurol. 2011;10(8):721–33.Google Scholar
Ng, J, Papandreou, A, Heales, SJ, Kurian, MA. Monoamine neurotransmitter disorders: Clinical advances and future perspectives. Nat Rev Neurol. 2015;11(10):567–84.Google Scholar
Rodan, LH, Gibson, KM, Pearl, PL. Clinical use of CSF neurotransmitters. Pediatr Neurol. 2015;53(4):277–86.Google Scholar
Wijemanne, S, Jankovic, J. Dopa-responsive dystonia: Clinical and genetic heterogeneity. Nat Rev Neurol. 2015;11(7):414–24.Google Scholar
Rilstone, JJ, Alkhater, RA, Minassian, BA. Brain dopamine–serotonin vesicular transport disease and its treatment. N Engl J Med. 2013;368(6):543–50.Google Scholar
Brun, L, Ngu, LH, Keng, WT, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010;75(1):6471.Google Scholar
Segawa, M, Nomura, Y, Nishiyama, N. Autosomal dominant guanosine triphosphate cyclohydrolase I deficiency (Segawa disease). Ann Neurol. 2003;54 Suppl 6:S3245.Google Scholar
Furukawa, Y, Kish, SJ, Bebin, EM, et al. Dystonia with motor delay in compound heterozygotes for GTP-cyclohydrolase I gene mutations. Ann Neurol. 1998;44(1):10–6.Google Scholar
Opladen, T, Hoffmann, G, Horster, F, et al. Clinical and biochemical characterization of patients with early infantile onset of autosomal recessive GTP cyclohydrolase I deficiency without hyperphenylalaninemia. Mov Disord. 2011;26(1):157–61.Google Scholar
Friedman, J, Roze, E, Abdenur, JE, et al. Sepiapterin reductase deficiency: A treatable mimic of cerebral palsy. Ann Neurol. 2012;71(4):520–30.Google Scholar
Opladen, T, Hoffmann, GF, Blau, N. An international survey of patients with tetrahydrobiopterin deficiencies presenting with hyperphenylalaninaemia. J Inherit Metab Dis. 2012;35(6):963–73.Google Scholar
Takahashi, Y, Manabe, Y, Nakano, Y, et al. Parkinsonism in association with dihydropteridine reductase deficiency. Case Rep Neurol. 2017;9(1):1721.Google Scholar
Willemsen, MA, Verbeek, MM, Kamsteeg, EJ, et al. Tyrosine hydroxylase deficiency: A treatable disorder of brain catecholamine biosynthesis. Brain. 2010;133(Pt 6):1810–22.Google Scholar
Hoffmann, GF, Assmann, B, Brautigam, C, et al. Tyrosine hydroxylase deficiency causes progressive encephalopathy and dopa-nonresponsive dystonia. Ann Neurol. 2003;54 Suppl 6:S5665.Google Scholar
Pons, R, Syrengelas, D, Youroukos, S, et al. Levodopa-induced dyskinesias in tyrosine hydroxylase deficiency. Mov Disord. 2013;28(8):1058–63.Google Scholar
Chien, YH, Lee, NC, Tseng, SH, et al. Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: An open-label, phase 1/2 trial. Lancet Child Adolesc Health. 2017;1(4):265–73.Google Scholar
Jacobsen, JC, Wilson, C, Cunningham, V, et al. Brain dopamine–serotonin vesicular transport disease presenting as a severe infantile hypotonic parkinsonian disorder. J Inherit Metab Dis. 2016;39(2):305–8.Google Scholar
Saito, T. Presenting symptoms and natural history of Wilson disease. Eur J Pediatr. 1987;146(3):261–5.Google Scholar
Czlonkowska, A, Litwin, T, Chabik, G. Wilson disease: Neurologic features. Handb Clin Neurol. 2017;142:101–19.Google Scholar
Machado, A, Chien, HF, Deguti, MM, et al. Neurological manifestations in Wilson’s disease: Report of 119 cases. Mov Disord. 2006;21(12):2192–6.Google Scholar
Hayflick, SJ, Kurian, MA, Hogarth, P. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2018;147:293305.Google Scholar
Hogarth, P, Gregory, A, Kruer, MC, et al. New NBIA subtype: Genetic, clinical, pathologic, and radiographic features of MPAN. Neurology. 2013;80(3):268–75.Google Scholar
Hayflick, SJ, Kruer, MC, Gregory, A, et al. Beta-propeller protein-associated neurodegeneration: A new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(Pt 6):1708–17.Google Scholar
Costello, DJ, Walsh, SL, Harrington, HJ, Walsh, CH. Concurrent hereditary haemochromatosis and idiopathic Parkinson’s disease: A case report series. J Neurol Neurosurg Psychiatry. 2004;75(4):631–3.Google Scholar
Sedel, F, Saudubray, JM, Roze, E, Agid, Y, Vidailhet, M. Movement disorders and inborn errors of metabolism in adults: A diagnostic approach. J Inherit Metab Dis. 2008;31(3):308–18.Google Scholar
Marti-Sanchez, L, Ortigoza-Escobar, JD, Darling, A, et al. Hypermanganesemia due to mutations in SLC39A14: Further insights into Mn deposition in the central nervous system. Orphanet J Rare Dis. 2018;13:28.Google Scholar
Tuschl, K, Meyer, E, Valdivia, LE, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism–dystonia. Nat Commun. 2016;7:11601.Google Scholar
Tuschl, K, Clayton, PT, Gospe, SM, Jr., et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2016;99(2):521.Google Scholar
Ebrahimi-Fakhari, D, Hildebrandt, C, Davis, PE, et al. The spectrum of movement disorders in childhood-onset lysosomal storage diseases. Mov Disord Clin Pract. 2018;5(2):149–55.Google Scholar
Dehay, B, Martinez-Vicente, M, Caldwell, GA, et al. Lysosomal impairment in Parkinson’s disease. Mov Disord. 2013;28(6):725–32.Google Scholar
Liu, JP, Tang, Y, Zhou, S, et al. Cholesterol involvement in the pathogenesis of neurodegenerative diseases. Mol Cell Neurosci. 2010;43(1):3342.Google Scholar
Kraoua, I, Stirnemann, J, Ribeiro, MJ, et al. Parkinsonism in Gaucher’s disease type 1: Ten new cases and a review of the literature. Mov Disord. 2009;24(10):1524–30.Google Scholar
Hendriksz, CJ, Anheim, M, Bauer, P, et al. The hidden Niemann–Pick type C patient: Clinical niches for a rare inherited metabolic disease. Curr Med Res Opin. 2017;33(5):877–90.Google Scholar
Coleman, RJ, Robb, SA, Lake, BD, Brett, EM, Harding, AE. The diverse neurological features of Niemann–Pick disease type C: A report of two cases. Mov Disord. 1988;3(4):295–9.Google Scholar
Mole, SE, Williams, RE. Neuronal ceroid-lipofuscinoses. GeneReviews®. 2001;Oct 10 (updated Aug 1, 2013).Google Scholar
Bras, J, Verloes, A, Schneider, SA, Mole, SE, Guerreiro, RJ. Mutation of the parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–50.CrossRefGoogle ScholarPubMed
Mink, JW, Augustine, EF, Adams, HR, Marshall, FJ, Kwon, JM. Classification and natural history of the neuronal ceroid lipofuscinoses. J Child Neurol. 2013;28(9):1101–5.Google Scholar
Behrens, MI, Bruggemann, N, Chana, P, et al. Clinical spectrum of Kufor–Rakeb syndrome in the Chilean kindred with ATP13A2 mutations. Mov Disord. 2010;25(12):1929–37.Google Scholar
Roze, E, Paschke, E, Lopez, N, et al. Dystonia and parkinsonism in GM1 type 3 gangliosidosis. Mov Disord. 2005;20(10):1366–9.Google Scholar
Gravel, RA, Kaback, MM, Proia, RL, et al. The GM2 gangliosidoses. In Beaudet, AL, Vogelstein, B, Kinzler, KW, et al., editors. The Online Metabolic and Molecular Bases of Inherited Disease. New York, NY: McGraw-Hill; 2014. [Online, accessed Dec 1, 2019;doi:10.1036/ommbid.184.]Google Scholar
Inzelberg, R, Korczyn, AD. Parkinsonism in adult-onset GM2 gangliosidosis. Mov Disord. 1994;9(3):375–7.Google Scholar
Silveira-Moriyama, L, Moriyama, TS, Gabbi, TV, Ranvaud, R, Barbosa, ER. Chédiak–Higashi syndrome with parkinsonism. Mov Disord. 2004;19(4):472–5.Google Scholar
Hara, M, Inokuchi, T, Taniwaki, T, et al. An adult patient with mucolipidosis III alpha/beta presenting with parkinsonism. Brain Dev. 2013;35(5):462–5.Google Scholar
Finsterer, J. Parkinson’s syndrome and Parkinson’s disease in mitochondrial disorders. Mov Disord. 2011;26(5):784–91.Google Scholar
Martikainen, MH, Ng, YS, Gorman, GS, et al. Clinical, genetic, and radiological features of extrapyramidal movement disorders in mitochondrial disease. JAMA Neurol. 2016;73(6):668–74.Google Scholar
Ghaoui, R, Sue, CM. Movement disorders in mitochondrial disease. J Neurol. 2018;265(5):1230–40.Google Scholar
Luoma, PT, Eerola, J, Ahola, S, et al. Mitochondrial DNA polymerase gamma variants in idiopathic sporadic Parkinson disease. Neurology. 2007;69(11):1152–9.Google Scholar
Luoma, P, Melberg, A, Rinne, JO, et al. Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: Clinical and molecular genetic study. Lancet. 2004;364(9437):875–82.Google Scholar
Garcia-Cazorla, A, Rabier, D, Touati, G, et al. Pyruvate carboxylase deficiency: Metabolic characteristics and new neurological aspects. Ann Neurol. 2006;59(1):121–7.Google Scholar
Sakaue, S, Kasai, T, Mizuta, I, et al. Early-onset parkinsonism in a pedigree with phosphoglycerate kinase deficiency and a heterozygous carrier: Do PGK-1 mutations contribute to vulnerability to parkinsonism? NPJ Parkinsons Dis. 2017;3:13.Google Scholar
Sotiriou, E, Greene, P, Krishna, S, Hirano, M, DiMauro, S. Myopathy and parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve. 2010;41(5):707–10.Google Scholar
Pons, R, Collins, A, Rotstein, M, Engelstad, K, De Vivo, DC. The spectrum of movement disorders in Glut-1 deficiency. Mov Disord. 2010;25(3):275–81.Google Scholar
Tabarki, B, Al-Shafi, S, Al-Shahwan, S, et al. Biotin-responsive basal ganglia disease revisited: Clinical, radiologic, and genetic findings. Neurology. 2013;80(3):261–7.Google Scholar
Ozand, PT, Gascon, GG, Al Essa, M, et al. Biotin-responsive basal ganglia disease: A novel entity. Brain. 1998;121 (Pt 7):1267–79.Google Scholar
Kikuchi, K, Hamano, S, Mochizuki, H, Ichida, K, Ida, H. Molybdenum cofactor deficiency mimics cerebral palsy: Differentiating factors for diagnosis. Pediatr Neurol. 2012;47(2):147–9.Google Scholar
Alkufri, F, Harrower, T, Rahman, Y, et al. Molybdenum cofactor deficiency presenting with a parkinsonism–dystonia syndrome. Mov Disord. 2013;28(3):399401.Google Scholar
Nie, S, Chen, G, Cao, X, Zhang, Y. Cerebrotendinous xanthomatosis: A comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2014;9:179.Google Scholar
Federico, A, Dotti, MT, Gallus, GN. Cerebrotendinous xanthomatosis. GeneReviews®. 2003; Jul 16 (updated Apr 14, 2016).Google Scholar
Su, CS, Chang, WN, Huang, SH, et al. Cerebrotendinous xanthomatosis patients with and without parkinsonism: Clinical characteristics and neuroimaging findings. Mov Disord. 2010;25(4):452–8.Google Scholar
Gitiaux, C, Roze, E, Kinugawa, K, et al. Spectrum of movement disorders associated with glutaric aciduria type 1: A study of 16 patients. Mov Disord. 2008;23(16):2392–7.Google Scholar
Gascon, GG, Ozand, PT, Brismar, J. Movement disorders in childhood organic acidurias. Clinical, neuroimaging, and biochemical correlations. Brain Dev. 1994;16 Suppl:94–103.Google Scholar
Sinclair, AJ, Barling, L, Nightingale, S. Recurrent dystonia in homocystinuria: A metabolic pathogenesis. Mov Disord. 2006;21(10):1780–2.Google Scholar
Ekinci, B, Apaydin, H, Vural, M, Ozekmekci, S. Two siblings with homocystinuria presenting with dystonia and parkinsonism. Mov Disord. 2004;19(8):962–4.Google Scholar
Ramos, EM, Carecchio, M, Lemos, R, et al. Primary brain calcification: An international study reporting novel variants and associated phenotypes. Eur J Hum Genet. 2018;26(10):1462–77.Google Scholar
Batla, A, Tai, XY, Schottlaender, L, et al. Deconstructing Fahr’s disease/syndrome of brain calcification in the era of new genes. Parkinsonism Relat Disord. 2017;37:110.Google Scholar
Manyam, BV, Walters, AS, Keller, IA, Ghobrial, M. Parkinsonism associated with autosomal dominant bilateral striopallidodentate calcinosis. Parkinsonism Relat Disord. 2001;7(4):289–95.Google Scholar
Ramos, EM, Oliveira, JR, Sobrido, MJ, Coppola, G. Primary familial brain calcification. GeneReviews®. 2004;Apr 18 (updated Aug 24, 2017).Google Scholar

References

Sedel, F, Fontaine, B, Saudubray, JM, Lyon-Caen, O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: A diagnostic approach. J Inherit Metab Dis. 2007;30(6):855–64.Google Scholar
Martinelli, D, Diodato, D, Ponzi, E, et al. The hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Orphanet J Rare Dis. 2015;10:29.Google Scholar
Huemer, M, Diodato, D, Schwahn, B, et al. Guidelines for diagnosis and management of the cobalamin-related remethylation disorders cblC, cblD, cblE, cblF, cblG, cblJ and MTHFR deficiency. J Inherit Metab Dis. 2017;40(1):2148.Google Scholar
Wolf, B. The neurology of biotinidase deficiency. Mol Genet Metab. 2011;104(1–2):2734.Google Scholar
Chedrawi, AK, Ali, A, Al Hassnan, ZN, Faiyaz-Ul-Haque, M, Wolf, B. Profound biotinidase deficiency in a child with predominantly spinal cord disease. J Child Neurol. 2008;23(9):1043–8.Google Scholar
Ramaekers, VT, Brab, M, Rau, G, Heimann, G. Recovery from neurological deficits following biotin treatment in a biotinidase Km variant. Neuropediatrics. 1993;24(2):98102.Google Scholar
Ramaekers, V, Sequeira, JM, Quadros, EV. Clinical recognition and aspects of the cerebral folate deficiency syndromes. Clin Chem Lab Med. 2013;51(3):497511.Google Scholar
Federico, A, Dotti, MT, Gallus, GN. Cerebrotendinous xanthomatosis. GeneReviews®. 2003;Jul 16 (updated Apr 14, 2016).Google Scholar
Wong, JC, Walsh, K, Hayden, D, Eichler, FS. Natural history of neurological abnormalities in cerebrotendinous xanthomatosis. J Inherit Metab Dis. 2018;41(4):647–56.Google Scholar
Abe, R, Sekijima, Y, Kinoshita, T, et al. Spinal form cerebrotendinous xanthomatosis patient with long spinal cord lesion. J Spinal Cord Med. 2016;39(6):726–9.Google Scholar
McCombe, PA, McLaughlin, DB, Chalk, JB, et al. Spasticity and white matter abnormalities in adult phenylketonuria. J Neurol Neurosurg Psychiatry. 1992;55(5):359–61.Google Scholar
Atwal, PS, Scaglia, F. Molybdenum cofactor deficiency. Mol Genet Metab. 2016;117(1):14.Google Scholar
Duffner, PK, Barczykowski, A, Jalal, K, et al. Early infantile Krabbe disease: Results of the World-Wide Krabbe Registry. Pediatr Neurol. 2011;45(3):141–8.Google Scholar
Duffner, PK, Jalal, K, Carter, RL. The Hunter’s Hope Krabbe family database. Pediatr Neurol. 2009;40(1):13–8.Google Scholar
Abdelhalim, AN, Alberico, RA, Barczykowski, AL, Duffner, PK. Patterns of magnetic resonance imaging abnormalities in symptomatic patients with Krabbe disease correspond to phenotype. Pediatr Neurol. 2014;50(2):127–34.Google Scholar
Husain, AM, Altuwaijri, M, Aldosari, M. Krabbe disease: Neurophysiologic studies and MRI correlations. Neurology. 2004;63(4):617–20.Google Scholar
Wright, MD, Poe, MD, DeRenzo, A, Haldal, S, Escolar, ML. Developmental outcomes of cord blood transplantation for Krabbe disease: A 15-year study. Neurology. 2017;89(13):1365–72.Google Scholar
Mahmood, A, Berry, J, Wenger, DA, Escolar, M, Sobeih, M, Raymond, G, et al. Metachromatic leukodystrophy: A case of triplets with the late infantile variant and a systematic review of the literature. J Child Neurol. 2010;25(5):572–80.Google Scholar
Cameron, CL, Kang, PB, Burns, TM, Darras, BT, Jones, HR, Jr. Multifocal slowing of nerve conduction in metachromatic leukodystrophy. Muscle Nerve. 2004;29(4):531–6.Google Scholar
Eichler, F, Grodd, W, Grant, E, et al. Metachromatic leukodystrophy: A scoring system for brain MR imaging observations. AJNR Am J Neuroradiol. 2009;30(10):1893–7.Google Scholar
van Rappard, DF, Bugiani, M, Boelens, JJ, et al. Gallbladder and the risk of polyps and carcinoma in metachromatic leukodystrophy. Neurology. 2016;87(1):103–11.Google Scholar
Groeschel, S, Kuhl, JS, Bley, AE, et al. Long-term outcome of allogeneic hematopoietic stem cell transplantation in patients with juvenile metachromatic leukodystrophy compared with nontransplanted control patients. JAMA Neurol. 2016;73(9):1133–40.Google Scholar
Ahrens-Nicklas, R, Schlotawa, L, Ballabio, A, et al. Complex care of individuals with multiple sulfatase deficiency: Clinical cases and consensus statement. Mol Genet Metab. 2018;123(3):337–46.Google Scholar
Brunetti-Pierri, N, Scaglia, F. GM1 gangliosidosis: Review of clinical, molecular, and therapeutic aspects. Mol Genet Metab. 2008;94(4):391–6.Google Scholar
Steenweg, ME, Vanderver, A, Blaser, S, et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010;133(10):2971–82.Google Scholar
Roze, E, Paschke, E, Lopez, N, et al. Dystonia and parkinsonism in GM1 type 3 gangliosidosis. Mov Disord. 2005;20(10):1366–9.Google Scholar
Deodato, F, Procopio, E, Rampazzo, A, et al. The treatment of juvenile/adult GM1-gangliosidosis with miglustat may reverse disease progression. Metab Brain Dis. 2017;32(5):1529–36.Google Scholar
Smith, NJ, Winstone, AM, Stellitano, L, Cox, TM, Verity, CM. GM2 gangliosidosis in a UK study of children with progressive neurodegeneration: 73 cases reviewed. Dev Med Child Neurol. 2012;54(2):176–82.Google Scholar
Maegawa, GH, Stockley, T, Tropak, M, et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics. 2006;118(5):e1550-62.Google Scholar
Frey, LC, Ringel, SP, Filley, CM. The natural history of cognitive dysfunction in late-onset GM2 gangliosidosis. Arch Neurol. 2005;62(6):989–94.Google Scholar
Willems, PJ, Gatti, R, Darby, JK, et al. Fucosidosis revisited: A review of 77 patients. Am J Med Genet. 1991;38(1):111–31.Google Scholar
Moser, HW, Raymond, GV, Dubey, P. Adrenoleukodystrophy: New approaches to a neurodegenerative disease. JAMA. 2005;294(24):3131–4.Google Scholar
Loes, DJ, Fatemi, A, Melhem, ER, et al. Analysis of MRI patterns aids prediction of progression in X-linked adrenoleukodystrophy. Neurology. 2003;61(3):369–74.Google Scholar
Mahmood, A, Raymond, GV, Dubey, P, Peters, C, Moser, HW. Survival analysis of haematopoietic cell transplantation for childhood cerebral X-linked adrenoleukodystrophy: A comparison study. Lancet Neurol. 2007;6(8):687–92.Google Scholar
Engelen, M, Barbier, M, Dijkstra, IM, et al. X-linked adrenoleukodystrophy in women: A cross-sectional cohort study. Brain. 2014;137(Pt 3):693706.Google Scholar
Steinberg, SJ, Dodt, G, Raymond, GV, et al. Peroxisome biogenesis disorders. Biochim Biophys Acta. 2006;1763(12):1733–48.Google Scholar
Ebberink, MS, Csanyi, B, Chong, WK, et al. Identification of an unusual variant peroxisome biogenesis disorder caused by mutations in the PEX16 gene. J Med Genet. 2010;47(9):608–15.Google Scholar
Patel, KP, O’Brien, TW, Subramony, SH, Shuster, J, Stacpoole, PW. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol Genet Metab. 2012;106(3):385–94.Google Scholar
Cross, JH, Connelly, A, Gadian, DG, et al. Clinical diversity of pyruvate dehydrogenase deficiency. Pediatr Neurol. 1994;10(4):276–83.Google Scholar
Boczonadi, V, Jennings, MJ, Horvath, R. The role of tRNA synthetases in neurological and neuromuscular disorders. FEBS Lett. 2018;592(5):703–17.Google Scholar
Diodato, D, Ghezzi, D, Tiranti, V. The mitochondrial aminoacyl tRNA synthetases: Genes and syndromes. Int J Cell Biol. 2014;2014:787956.Google Scholar
Bayat, V, Thiffault, I, Jaiswal, M, et al. Mutations in the mitochondrial methionyl-tRNA synthetase cause a neurodegenerative phenotype in flies and a recessive ataxia (ARSAL) in humans. PLoS Biol. 2012;10(3):e1001288.Google Scholar
Matalon, RM, Michals-Matalon, K. Spongy degeneration of the brain, Canavan disease: Biochemical and molecular findings. Front Biosci. 2000;5:D307-11.Google Scholar
Hennermann, JB, Berger, JM, Grieben, U, Scharer, G, Van Hove, JL. Prediction of long-term outcome in glycine encephalopathy: A clinical survey. J Inherit Metab Dis. 2012;35(2):253–61.Google Scholar
Steiman, GS, Yudkoff, M, Berman, PH, Blazer-Yost, B, Segal, S. Late-onset nonketotic hyperglycinemia and spinocerebellar degeneration. J Pediatr. 1979;94(6):907–11.Google Scholar
Bank, WJ, Morrow, G, 3rd. A familial spinal cord disorder with hyperglycinemia. Arch Neurol. 1972;27(2):136–44.Google Scholar
Chiong, MA, Procopis, P, Carpenter, K, Wilcken, B. Late-onset nonketotic hyperglycinemia with leukodystrophy and an unusual clinical course. Pediatr Neurol. 2007;37(4):283–6.Google Scholar
van der Crabben, SN, Verhoeven-Duif, NM, Brilstra, EH, et al. An update on serine deficiency disorders. J Inherit Metab Dis. 2013;36(4):613–9.Google Scholar
de Koning, TJ, Jaeken, J, Pineda, M, et al. Hypomyelination and reversible white matter attenuation in 3-phosphoglycerate dehydrogenase deficiency. Neuropediatrics. 2000;31(6):287–92.Google Scholar
Ruzzo, EK, Capo-Chichi, JM, Ben-Zeev, B, et al. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron. 2013;80(2):429–41.Google Scholar
Alfadhel, M, Alrifai, MT, Trujillano, D, et al. Asparagine synthetase deficiency: New inborn errors of metabolism. JIMD Rep. 2015;22:11–6.Google Scholar
Fraser, JL, Venditti, CP. Methylmalonic and propionic acidemias: Clinical management update. Curr Opin Pediatr. 2016;28(6):682–93.Google Scholar
Cherin, P, Rose, C, de Roux-Serratrice, C, et al. The neurological manifestations of Gaucher disease type 1: The French Observatoire on Gaucher disease (FROG). J Inherit Metab Dis. 2010;33(4):331–8.Google Scholar
Mignot, C, Doummar, D, Maire, I, De Villemeur, TB, French Type 2 Gaucher Disease Study Group. Type 2 Gaucher disease: 15 new cases and review of the literature. Brain Dev. 2006;28(1):3948.Google Scholar
Roshan Lal, T, Sidransky, E. The spectrum of neurological manifestations associated with Gaucher disease. Diseases. 2017;5(1).Google Scholar
Nagappa, M, Bindu, PS, Taly, AB, Sinha, S. Oculomotor apraxia in Gaucher disease. Pediatr Neurol. 2015;52(4):468–9.Google Scholar
Perucca, G, Soares, BP, Stagliano, S, et al. Thalamic and dentate nucleus abnormalities in the brain of children with Gaucher disease. Neuroradiology. 2018;60(12):1353–6.Google Scholar
Weiss, K, Gonzalez, A, Lopez, G, et al. The clinical management of type 2 Gaucher disease. Mol Genet Metab. 2015;114(2):110–22.Google Scholar
Hogarth, P, Kurian, MA, Gregory, A, et al. Consensus clinical management guideline for pantothenate kinase-associated neurodegeneration (PKAN). Mol Genet Metab. 2017;120(3):278–87.Google Scholar
Illingworth, MA, Meyer, E, Chong, WK, et al. PLA2G6-associated neurodegeneration (PLAN): Further expansion of the clinical, radiological and mutation spectrum associated with infantile and atypical childhood-onset disease. Mol Genet Metab. 2014;112(2):183–9.Google Scholar
Fuijkschot, J, Theelen, T, Seyger, MM, van der Graaf, M, de Groot, IJ, Wevers, RA, et al. Sjögren–Larsson syndrome in clinical practice. J Inherit Metab Dis. 2012;35(6):955–62.Google Scholar

References

Caviness, JN, Alving, LI, Maraganore, DM, et al. The incidence and prevalence of myoclonus in Olmsted County, Minnesota. Mayo Clin Proc. 1999;74(6):565–9.Google Scholar
Gouider-Khouja, N, Kraoua, I, Benrhouma, H, Fraj, N, Rouissi, A. Movement disorders in neuro-metabolic diseases. Eur J Paediatr Neurol. 2010;14(4):304–7.Google Scholar
Zutt, R, van Egmond, ME, Elting, JW, et al. A novel diagnostic approach to patients with myoclonus. Nat Rev Neurol. 2015;11(12):687–97.Google Scholar
Apartis, E, Vercueil, L. To jerk or not to jerk: A clinical pathophysiology of myoclonus. Rev Neurol (Paris). 2016; 172 (8–9): 465–76.Google Scholar
Minassian, BA. The progressive myoclonus epilepsies. Prog Brain Res. 2014;213:113–22.Google Scholar
van der Veen, S, Zutt, R, Elting, JWJ, et al. Progressive myoclonus ataxia: Time for a new definition? Mov Disord. 2018;33(8):1281–6.Google Scholar
Caviness, JN. Treatment of myoclonus. Neurotherapeutics. 2014;11(1):188200.Google Scholar
Koens, LH, Kuiper, A, Coenen, MA, et al. Ataxia, dystonia and myoclonus in adult patients with Niemann–Pick type C. Orphanet J Rare Dis. 2016;11:121.Google Scholar
Ritz, K, Gerrits, MC, Foncke, EM, et al. Myoclonus-dystonia: Clinical and genetic evaluation of a large cohort. J Neurol Neurosurg Psychiatry. 2009;80(6):653–8.Google Scholar
Dreissen, YE, Tijssen, MA. The startle syndromes: Physiology and treatment. Epilepsia. 2012;53 Suppl 7:311.Google Scholar
Neveling, K, Feenstra, I, Gilissen, C, et al. A post-hoc comparison of the utility of Sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat. 2013;34(12):1721–6.Google Scholar
van Egmond, ME, Lugtenberg, CHA, Brouwer, OF, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017;32(4):569–75.Google Scholar
Coutelier, M, Goizet, C, Durr, A, et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain. 2015;138(Pt 8):2191–205.Google Scholar
Campistol, J. Epilepsy in inborn errors of metabolism with therapeutic options. Semin Pediatr Neurol. 2016;23(4):321–31.Google Scholar
Malek, N, Stewart, W, Greene, J. The progressive myoclonic epilepsies. Pract Neurol. 2015;15(3):164–71.Google Scholar
Sedel, F, Gourfinkel-An, I, Lyon-Caen, O, et al. Epilepsy and inborn errors of metabolism in adults: A diagnostic approach. J Inherit Metab Dis. 2007;30(6):846–54.Google Scholar
Beal, JC, Cherian, K, Moshe, SL. Early-onset epileptic encephalopathies: Ohtahara syndrome and early myoclonic encephalopathy. Pediatr Neurol. 2012;47(5):317–23.Google Scholar
Koens, LH, Tijssen, MAJ, Lange, F, et al. Eye movement disorders and neurological symptoms in late-onset inborn errors of metabolism. Mov Disord. 2018;33(12):1844–56.Google Scholar
Hollak, CEM, Lachman, R. Inherited Metabolic Disease in Adults: A Clinical Guide. New York, NY: Oxford University Press; 2016.Google Scholar
Sedel, F, Lyon-Caen, O, Saudubray, JM. Therapy insight: Inborn errors of metabolism in adult neurology. A clinical approach focused on treatable diseases. Nat Clin Pract Neurol. 2007;3(5):279–90.Google Scholar
Poll-The, BT, de Buy, Maillette Wenniger-Prick, LJ. The eye in metabolic diseases: Clues to diagnosis. Eur J Paediatr Neurol. 2011;15(3):197204.Google Scholar
Poll-The, BT, de Buy, Maillette Wenniger-Prick, LJ, Barth, PG, Duran, M. The eye as a window to inborn errors of metabolism. J Inherit Metab Dis. 2003; 26 (2–3): 229–44.Google Scholar
Schultz, M L, Tecedor, L, Chang, M, Davidson, BL. Clarifying lysosomal storage diseases. Trends Neurosci. 2011;34(8):401–10.Google Scholar
Accardo, A, Pensiero, S, Ciana, G, Parentin, F, Bembi, B. Eye movement impairment recovery in a Gaucher patient treated with miglustat. Neurol Res Int. 2010;2010:358534.Google Scholar
Park, JK, Orvisky, E, Tayebi, N, et al. Myoclonic epilepsy in Gaucher disease: Genotype–phenotype insights from a rare patient subgroup. Pediatr Res. 2003;53(3):387–95.Google Scholar
Stelten, BML, van de Warrenburg, BPC, Wevers, RA, Verrips, A. Movement disorders in cerebrotendinous xanthomatosis. Parkinsonism Relat Disord. 2019;58:12–6.Google Scholar
Van Hove, J, Coughlin, C, II, Scharer, G. Glycine encephalopathy. GeneReviews®. 2002;Nov 14 (updated Jul 11, 2013).Google Scholar
Wang, D, Pascual, JM, De Vivo, D. Transporter type 1 deficiency syndrome. GeneReviews®. 2002;Jul 30 (updated Mar 1, 2018 ).Google Scholar
Toelle, SP, Wille, D, Schmitt, B, et al. Sensory stimulus-sensitive drop attacks and basal ganglia calcification: New findings in a patient with FOLR1 deficiency. Epileptic Disord. 2014;16(1):8892.Google Scholar
Mastrangelo, M. Actual insights into treatable inborn errors of metabolism causing epilepsy. J Pediatr Neurosci. 2018;13(1):1323.Google Scholar
Desai, S, Ganesan, K, Hegde, A. Biotinidase deficiency: A reversible metabolic encephalopathy. Neuroimaging and MR spectroscopic findings in a series of four patients. Pediatr Radiol. 2008;38(8):848–56.Google Scholar
Bahi-Buisson, N, Kaminska, A, Nabbout, R, et al. Epilepsy in Menkes disease: Analysis of clinical stages. Epilepsia. 2006;47(2):380–6.Google Scholar
Demarquay, G, Setiey, A, Morel, Y, et al. Clinical report of three patients with hereditary hemochromatosis and movement disorders. Mov Disord. 2000;15(6):1204–9.Google Scholar
Veerapandiyan, A, Winchester, SA, Gallentine, WB, et al. Electroencephalographic and seizure manifestations of pyridoxal 5’-phosphate-dependent epilepsy. Epilepsy Behav. 2011;20(3):494501.Google Scholar
Brautigam, C, Hyland, K, Wevers, R, et al. Clinical and laboratory findings in twins with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency. Neuropediatrics. 2002;33(3):113–7.Google Scholar
Stamelou, M, Mencacci, NE, Cordivari, C, et al. Myoclonus-dystonia syndrome due to tyrosine hydroxylase deficiency. Neurology. 2012;79(5):435–41.Google Scholar
Mancuso, M, Orsucci, D, Angelini, C, et al. Myoclonus in mitochondrial disorders. Mov Disord. 2014;29(6):722–8.Google Scholar
Cohen, BH, Chinnery, PF, Copeland, WC. POLG-related disorders. GeneReviews®. 2010;Mar 16 (updated Mar 1, 2018).Google Scholar
Salviati, L, Trevisson, E, Doimo, M, Navas, P. Primary coenzyme Q10 deficiency. GeneReviews®. 2017;Jan 26.Google Scholar
Walker, MA, Mohler, KP, Hopkins, KW, et al. Novel compound heterozygous mutations expand the recognized phenotypes of FARS2-linked disease. J Child Neurol. 2016;31(9):1127–37.Google Scholar
Coughlin, CR, 2nd, Scharer, GH, Friederich, MW, et al. Mutations in the mitochondrial cysteinyl-tRNA synthase gene, CARS2, lead to a severe epileptic encephalopathy and complex movement disorder. J Med Genet. 2015;52(8):532–40.Google Scholar
Schultz, A, Ajavi, T, Specchio, N, et al. Study of intraventricular cerliponase alfa for CLN2 disease. N Engl J Med. 2018;378:1898–907.Google Scholar
Kim, J, Hu, C, Moufawad El Achkar, C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med. 2019;381:1644–52.Google Scholar
Monbaliu, E, De Cock, P, Mailleux, L, Dan, B, Feys, H. The relationship of dystonia and choreoathetosis with activity, participation and quality of life in children and youth with dyskinetic cerebral palsy. Eur J Paediatr Neurol. 2017;21(2):327–35.Google Scholar
Eggink, H, Kuiper, A, Peall, KJ, et al. Rare inborn errors of metabolism with movement disorders: A case study to evaluate the impact upon quality of life and adaptive functioning. Orphanet J Rare Dis. 2014;9:177.Google Scholar
Dijk, JM, Tijssen, MA. Management of patients with myoclonus: Available therapies and the need for an evidence-based approach. Lancet Neurol. 2010;9(10):1028–36.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×