Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2011
  • Online publication date: July 2011

Chapter 8 - Cardiac output and intravascular volume

Related content

Powered by UNSILO


1. Dueck R. Noninvasive cardiac output monitoring. Chest 2001;120:339–40.
2. Pinsky MR, Teboul JL. Assessment of indices of preload and volume responsiveness. Curr Opin Crit Care 2005;11:235–9.
3. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients. A critical analysis of the evidence. Chest 2002;121:2000–8.
4. Kumar A, Anel R, Bunnell E, Habet K, et al. Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 2004;32:419–28.
5. Fick A. Ueber die Messung des Blutquantums in der Herzenventrikeln. Sitzung der Phys Med Gesell zu Wurzburg. 1870;16.
6. Ganz, W, Donoso R, Marcos H, Forrester J, Swan HJC. A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 1971;27:392–5.
7. Ehlers KC, Mylrea KC, Waterson CK, Calkins JM. Cardiac output measurements. A review of current techniques and research. Ann Biomed Eng 1986;14:219–39.
8. Botero M, Lobato EB. Advances in noninvasive cardiac output monitoring: an update. J Cardiothorac Vasc Anesth 2001;15:631–40.
9. Jaffe MB, Partial CO2 rebreathing cardiac output – operating principles of the NICO system. J Clin Monit 1999;15:387–401.
10. Haryadi DG, Orr JA, Kuck K, McJames S, Westenskow DR. Partial CO2 rebreathing indirect Fick technique for non-invasive measurement of cardiac output. J Clin Monit Comput 2000;16:361–74.
11. Russell AE, Smith SA, West MJ, et al. Automated non-invasive measurement of cardiac output by the carbon dioxide rebreathing method: Comparison with dye-dilution and thermodilution. Br Heart J 1990;63:195–9.
12. Van Heerden PV, Baker S, Lim SI, et al. Clinical evaluation of the non-invasive cardiac output (NICO) monitor in the intensive care unit. Anaesth Intensive Care 2000;28:427–30.
13. Tachibana K, Imanaka H, Takeuchi M, Takauchi Y, Miyano H, Nishimura M. Noninvasive cardiac output measurement using partial carbon dioxide rebreathing is less accurate at settings of reduced minute ventilation and when spontaneous breathing is present. Anesthesiology 2003;98:830–7.
14. Ng JM, Chow MY, Ip-Yam PC, Goh MH, Agasthian T. Evaluation of partial carbon dioxide rebreathing cardiac output measurement during thoracic surgery. J Cardiothorac Vasc Anesth 2007;21:655–8.
15. Kotake Y, Moriyama K, Innami Y, et al. Performance of noninvasive partial CO2 rebreathing cardiac output and continuous thermodilution cardiac output in patients undergoing aortic reconstruction surgery. Anesthesiology 2003;99:283–8.
16. Mielck F, Buhre W, Hanekop G, Tirilomis T, Hilgers R, Sonntag H. Comparison of continuous cardiac output measurements in patients after cardiac surgery. J Cardiothorac Vasc Anesth 2003;17:211–6.
17. Stewart GN. Researches on the circulation time and on the influences which offset it. IV. The output of the heart. J Physiol 1897;22:159–83.
18. Moore FA, Haenel JB, Moore EE. Alternatives to Swan-Ganz cardiac output monitoring. Surg Clin North Am 1991;71:699–721.
19. Burchell SA, Yu M, Takiguchi SA, Ohta RM, Myers SA. Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 1997;25:388–91.
20. Gardner PE, Bridges ET. Hemodynamic monitoring. In Woods SL, Sivarajan-Froelicher ES, Halpenny CJ, Motzer SU, eds. Cardiac Nursing. 3rd ed. Philadelphia: J. B. Lippincott, 1995, pp. 424–58.
21. Pearl RG, Rosenthal MH, Nielson L, Ashton JPA, Brown BW Jr. Effect of injectate volume and temperature on thermodilution cardiac output determination. Anesthesiology 1986;64:798–801.
22. Vennix CV, Nelson DH, Pierpont GL. Thermodilution cardiac output in critically ill patients: comparison of room temperature and iced injectate. Heart Lung 1984;13:574–8.
23. Greim CA, Roewer N, Thiel H, Laux G, Schulte am Esch J. Continuous cardiac output monitoring during adult liver transplantation: Thermal filament technique versus bolus thermodilution. Anesth Analg 1997;85:483–8.
24. Yelderman M. Continuous measurement of cardiac output with the use of stochastic system identification techniques. J Clin Monit 1990;6:322–32.
25. Thrush D, Downs JB and Smith RA. Continuous thermodilution cardiac output: agreement with Fick and bolus thermodilution methods. J Cardiothorac Vasc Anesth 1995;9:399–404.
26. Michard F, Alaya S, Zarka V, et al. Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 2003;124:1900–8.
27. Goldwyn RM, Watt T. Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans Biomed Eng 1967;14:11–17.
28. Watt T, Burrus C. Arterial pressure contour analysis for estimating human vascular properties. J Appl Physiol 1976;40:171–6.
29. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology 2005;103:419–28.
30. Bendjelid K, Suter PM, Romand JA. The respiratory changes preejection period: a new method to predict fluid responsiveness. J Appl Physiol 2004;96:337–42.
31. De Backer D, Heenen S, Piagnerelli M, Koch M, Vincent JL. Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 2005;31:517–23.
32. Berkenstadt H, Friedman Z, Preisman S, et al. Pulse pressure and stroke volume variations during severe haemorrhage in ventilated dogs. Br J Anaesth 2005;94:721–6.
33. van Leishout JJ, Wesselling KH. Continuous cardiac output by pulse contour analysis? Br J Anaesth 2001;86:467–9.
34. Manecke GR Jr. Cardiac output from the arterial catheter: deceptively simple. Cardiothorac Vasc Anesth 2007;21:629–31.
35. Wesseling KH, de Wit B, Weber JAP, Ty Smith N. A simple device for continuous measurement of cardiac output. Adv Cardiovasc Physiol 1983;5:16–52.
36. Wesseling KH, Jansen JRC, Settels JJ, Schreuder JJ. Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J Appl Physiol 1993;74:2566–73.
37. Rodig G, Prasser C, Keyl C, Liebold A, Hobbhahn J. Continuous cardiac output: pulse contour analysis vs. thermodilution technique in cardiac surgical patients. Br J Anaesth 1999;82:525–30.
38. Maus TM, Lee DE. Arterial pressure–based cardiac output assessment. J Cardiothorac Vasc Anesth 2008;22:468–73.
39. Yamashita K, Nishiyama T, Yokoyama T, Abe H, Manabe M. The effects of vasodilation on cardiac output. J Cardiothorac Vasc Anesth 2008;22:688–92.
40. Della Rocca G, Costa MG, Pompei L, Coccia C, Pietropaoli P. Continuous and intermittent cardiac output measurement: pulmonary artery catheter versus aortic transpulmonary technique. Br J Anaesth 2002:88:350–6.
41. Della Rocca G, Costa MG, Coccia C, et al. Cardiac output monitoring: aortic transpulmonary thermodilution and pulse contour analysis agree with standard thermodilution methods in patients undergoing lung transplantation. Can J Anesth 2003;50:707–11.
42. Jansen JRC, Schreuder JJ, Mulier JP, Smith NT, Settels JJ, Wesseling KH. A comparison of cardiac output derived from the arterial pressure wave against thermodilution in cardiac surgery patients. Br J Anaesth 2001;87:212–22.
43. Langewouters GJ, Wesseling KH, Goedhard WJ. The pressure-dependant dynamic elasticity of 35 thoracic and 16 abdominal human aortas invitro described by a five component model. J Biomech 1985;18:613–20.
44. Langewouters GJ, Wesseling KH, Goedhard WJ. The static elastic properties of 45 human thoracic and 20 abdominal aortas in vitro and the parameters of a new model. J Biomech 1984;17:425–35.
45. Remmen JJ, Aengevaeren WR, Verheugt FW, et al. Finapres arterial pulse wave analysis with Modelflow is not a reliable noninvasive method for assessment of cardiac output. Clin Sci (Lond) 2002;103:143–9.
46. Azabji Kenfack M, Lador F, Licker M, et al. Cardiac output by Modelflow method from intra-arterial and fingertip pulse pressure profiles. Clin Sci (Lond) 2004;106:365–9.
47. Tam E, Azabji Kenfack M, Cautero M, et al. Correction of cardiac output obtained by Modelflow from finger pulse pressure profiles with a respiratory method in humans. Clin Sci (Lond) 2004;106:371–6.
48. de Vaal JB, de Wilde RBP, Van Den Berg PCM, Schreuder JJ, Jansen JRC. Less invasive determination of cardiac output from the arterial pressure by aortic diameter-calibrated pulse contour. Br J Anaesth 2005;95:26–31.
49. Rhodes A, Sunderland R. Arterial pulse power analysis, the LiDCO™ plus system. In Pinsky MR, Pyen D, eds. Functional Hemodynamics. Berlin: Springer Verlag, 2005, pp. 183–92.
50. Button D, Weibel L, Reuthebuch O, Genoni M, Zollinger A, Hofer CK. Clinical evaluation of the FloTrac/VigileoTM system and two established continuous cardiac output monitoring devices in patients undergoing cardiac surgery. Br J Anaesth 2007; 99:329–36.
51. Chakravarthy M, Patil TA, Jayaprakash K, Kalligudd P, Prabhakumar D, Jawali V. Comparison of simultaneous estimation of cardiac output by four techniques in patients undergoing off-pump coronary artery bypass surgery – a prospective observational study. Ann Card Anaesth 2007;10:121–6.
52. Della Rocca G, Costa MG, Chiarandini P, et al. Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions. J Cardiothorac Vasc Anesth 2008;22:681–7.
53. Lorsomradee S, Lorsomradee S, Cromheecke S, De Hert SG. Uncalibrated arterial pulse contour analysis versus continuous thermodilution technique: effects of alterations in arterial waveform. J Cardiothorac Vasc Anesth 2007;21:636–43.
54. Breukers RMBGE, Sepehrkhouy S, Spiegelenberg SR, Groeneveld ABJ. Cardiac output measured by a new arterial pressure waveform analysis method without calibration compared with thermodilution after cardiac surgery. J Cardiothorac Vasc Anesth 2007;21:632–5.
55. Scolletta S, Romano SM, Biagioli B, Capannini G, Giomarelli P. Pressure recording analytical method (PRAM) for measurement of cardiac output during various haemodynamic states. Br J Anaesth 2005;95:159–65.
56. Kubicek WG. Development and evaluation of an impedance cardiac output system. Aerospace Med 1966;12:1208–12.
57. Sramek B. Cardiac output by impedance. Med Electronics 1982;4:93–7.
58. Atallah MM, Demain AD. Cardiac output measurement. Lack of agreement between thermodilution and thoracic electric bioimpedance in two clinical settings. J Clin Anesth 1995;7:182–5.
59. Young JD, McQuillan P. Comparison of thoracic electrical bioimpedance and thermodilution for the measurement of cardiac index in patients with severe sepsis. Br J Anaesth 1993;70:58–62.
60. Weiss S, Calloway E, Cairo J, Granger W, Winslow J. Comparison of cardiac output measurements by thermodilution and thoracic electrical bioimpedance in critically ill versus non-critically ill patients. Am J Emerg Med 1995; 13:626–31.
61. Critchley LA, Critchley JA. Lung fluid and impedance cardiography. Anaesthesia 1998; 53:369–72.
62. Easterling TR, Benedetti TJ, Carlson KL, Watts DH. Measurement of cardiac output in pregnancy by thermodilution and impedance techniques. Br J Obstet Gynaecol 1989;96:67–9.
63. Weiss SJ, Kulik JP, Calloway E. Bioimpedance cardiac output measurements in patients with presumed congestive heart failure. Acad Emerg Med 1997;4:568–73.
64. Critchley LA, Leung DH, Short TG. Abdominal surgery alters the calibration of bioimpedance cardiac output measurement. Int J Clin Monit Comput 1996; 13:1–8.
65. Wallace AW, Salahieh A, Lawrence A, Spector K, Owens C, Alonso D. Endotracheal cardiac output monitor. Anesthesiology 2000; 92:178–89.
66. Spiess BD, Patel MA, Soltow LO, Wright IH. Comparison of bioimpedance versus thermodilution cardiac output during cardiac surgery: evaluation of a second-generation bioimpedance device. J Cardiothorac Vasc Anesth 2001;15:567–73.
67. Sageman WS, Riffenburgh RH, Spiess BD. Equivalence of bioimpedance and thermodilution in measuring cardiac index after cardiac surgery. J Cardiothorac Vasc Anesth 2002;16:8–14.
68. Bein B, Worthmann F, Tonner PH, et al. Comparison of esophageal Doppler, pulse contour analysis and realtime pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anaesth 2004;18:185–9.
69. Singer M, Bennet ED. Noninvasive optimization of left ventricular filling using esophageal Doppler. Crit Care Med 1991;19:1132–7.
70. Cheung AT, Savino JS, Weiss SJ, Aukburg SJ, Berlin JA. Echocardiographic and hemodynamic indexes of left ventricular preload in patients with normal and abnormal ventricular function. Anesthesiology 1994;81:376–87.
71. Perrino AC Jr. Cardiac output monitoring by echocardiography: Should we pass on Swan-Ganz catheters? Yale J Biol Med 1993;66:397–413.
72. Tan HL, Pinder M, Parsons R, Roberts B and van Heerden PV. Clinical evaluation of USCOM ultrasonic cardiac output monitor in cardiac surgical patients in intensive care unit. Br J Anaesth 2005;94:287–91.
73. List W, Gravenstein N, Banner T, et al. Interaction in sheep between mean arterial pressure and cross-sectional area of the descending aorta: implications for esophageal monitoring. Anesthesiology 1987;67:A178.
74. Perrino AC, Fleming J, LaMantia KR. Transesophageal cardiac output monitoring: Performance during aortic reconstructive surgery. Anesth Analg 1991;73:705–10.
75. Seigel LC, Fitzgerald DC, Engstom RH. Simultaneous intraoperative measurement of cardiac output by thermodilution and transtracheal Doppler. Anesthesiology 1991;74:664–9.
76. Perrino AC, Harris SN, Luther MA. Intraoperative determination of cardiac output using multiplane transesophageal echocardiography: a comparison to thermodilution. Anesthesiology 1998;89:350–357.
77. Critchley LA, Peng ZY, Fok BS, Lee A, Phillips RA. Testing the reliability of a new ultrasonic cardiac cutput monitor, the USCOM, by using aortic flowprobes in anesthetized dogs. Anesth Analg 2005;100:748–53.
78. Phillips RA. Transcutaneous continuous-wave Doppler monitoring is feasible producing reliable and reproducible signals. J Am Coll Cardiol 2002; 39(Suppl B):283.
79. Spahn DR, Schmid ER, Tornic M, et al. Noninvasive versus invasive assessment of cardiac output after cardiac surgery: clinical validation. J Cardiothorac Anesth 1990;4:46–59.
80. Zimmermann A, Kufner C, Hofbauer S, et al. The accuracy of the Vigileo/FloTrac continuous cardiac output monitor. J Cardiothorac Vasc Anesth 2008;22:388–93
81. Eisenberg PR, Jaffe AS, Schuster DP. Clinical evaluation compared to pulmonary artery catheterisation in the haemodynamic assessment of critically-ill patients. Crit Care Med 1984;12:549–53
82. Bayliss J, Norell M, Ryan A, et al. Bedside haemodynamic monitoring: experience in a general hospital. Br Med J 1983;287:187–90.
83. Gan TJ, Soppitt A, Maroof M, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 2002;97:820–826.
84. Singer M. Cardiac output in 1998. Heart 1998;79:425–8.
85. Shoemaker WC, Appel PL, Kram HB, et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988;94:1176–86.
86. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA 1993;270:2699–707.
87. Mythen MG, Webb AR. Peroperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion in cardiac surgery. Arch Surg 1995;130:423–9.
88. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised, controlled trial. BMJ 1997;315:909–12.
89. Mimoz O, Rauss A, Rekik N, et al. Pulmonary artery catheterization in critically ill patients: a prospective analysis of outcome changes associated with catheter-prompted changes in therapy. Crit Care Med 1994;22:573–9.
90. Linton RAF, Linton NWF, Kelly F. Is clinical assessment of the circulation reliable in postoperative cardiac surgical patients? J Cardiothorac Vasc Anesth 2002;16:4–7.
91. Connors AF Jr, Speroff T, Dawson NV, et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996;276:889–97.
92. Dalen JE, Bone RC. Is it time to pull the pulmonary artery catheter? JAMA 1996;276:916–18.
93 Pulmonary artery catheter consensus conference: consensus statement. Crit Care Med 1997;25:910–25.
94. Harvey S, Harrison DA, Singer M, et al. Assessment of the clinical effectiveness of pulmonary artery catheters in management of patients in intensive care (PAC-Man): a randomized controlled trial. Lancet 2005;366:472–7.
95. Sandham JD, Hull, RD, Brant RF, et al. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med 2003;348:5–14.
96. The National Heart, Lung, and Blood Institute Adult Respiratory Distress Syndrome (ARDS) Clinical Trial Network: Pulmonary-artery vs central venous catheter to guide treatment of acute lung injury. N Engl J Med 2006;354:2213–24.
97. The ESCAPE Investigators and ESCAPE Study Coordinators: Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness. The ESCAPE trial. JAMA 2005;294:1625–33.
98. Shah MR, Hasselblad V, Stevenson LW, et al. Impact of the pulmonary artery catheter in critically ill patients. JAMA 2005;294:1664–70.
99. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001;345:1368–77.
100. Monnet X, Teboul JL. Volume responsiveness. Curr Opin Crit Care 2007;13:549–53.
101. Hadian H, Pinsky MR. Functional hemodynamic monitoring. Curr Opin Crit Care 2007;13:318–23.
102. Auler JOC Jr, Galas FRBG, Sundin MR, Hajjar LA. Arterial pulse pressure variation predicting fluid responsiveness in critically ill patients. Shock 2008;30(Suppl 1):18–22.
103. Feissel M, Teboul JL, Merlani P, Badie J, Faller JP, Bendjelid K. Plethysmography dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 2007;33:993–9.
104. Hofer CK, Muller SM, Furrer L, Klaghofer R, Genoni M, Zollinger A. Stroke volume and pulse pressure variation for prediction of fluid responsiveness in patients undergoing off-pump coronary artery bypass grafting. Chest 2005;128:848–54.
105. Feissel M, Badie J, Merlani PG, Faller JP, Bendjelid K. Preejection period variations predict the fluid responsiveness of septic ventilated patients. Crit Care Med 2005;33:2534–9.
106. Natalini G, Rosano A, Taranto M, Faggian B, Vittorielli E, Bernardini A. Arterial versus plethysmographic dynamic indices to test responsiveness for testing fluid administration in hypotensive patients: a clinical trial. Anesth Analg 2006;103:1478–84.
107. Auler JO, Galas F, Hajjar L, Santos L, Carvalho T, Michard F. Online monitoring of pulse pressure variation to guide fluid therapy after cardiac surgery. Anesth Analg 2008;106: 1201–6.
108. Lopes MR, Oliveira MA, Pereira VOS, Lemos IPB, Auler JOC Jr, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care 2007, 11:R100.
109. Cannesson M, Slieker J, Desebbe O, Farhat F, Bastien O, Lehot JJ. Prediction of fluid responsiveness using respiratory variations in left ventricular stroke area by transoesophageal echocardiographic automated border detection in mechanically ventilated patients. Crit Care 2006;10:R171.
110. Boyd KD, Thomas S, Gold J, et al. A prospective study of complications of pulmonary artery catheterizations in 500 consecutive patients. Chest 1983;84:245–9.
111. Abreu AR, Campos MA, Krieger BP. Pulmonary artery rupture induced by a pulmonary artery catheter: A case report and review of the literature. J Intensive Care Med 2004;19:291–6.
112. Arnau JG, Montero CG, Luengo C, et al. Retrograde dissection and rupture of pulmonary artery after catheter use in pulmonary hypertension. Crit Care Med 1982;10:694–5.
113. Damen J, Verhoef J, Bolton DT, et al. Microbiologic risk of invasive hemodynamic monitoring in patients undergoing open-heart operations. Crit Care Med 1985;13:548–55.
114. Iberti TJ, Fischer EP, Leibowitz AB, et al. A multicenter study of physicians’ knowledge of the pulmonary artery catheter. JAMA 1990;264:2928–32.
115. Mark JB, Steinbrook RA, Gugino LD, et al. Continuous noninvasive monitoring of cardiac output with esophageal Doppler ultrasound during cardiac surgery. Anesth Analg 1986;65:1013.
116. Freund PR. Transesophageal Doppler scanning versus thermodilution during general anesthesia. Am J Surg 1987;153:490–503.
117. Spahn DR, Schmid ER, Tornic M, et al. Noninvasive versus invasive assessment of cardiac output after cardiac surgery: Clinical validation. J Cardiothorac Anesth 1990;4:46–59.