Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T18:10:58.172Z Has data issue: false hasContentIssue false

Chapter 9 - Microsatellite instability in colorectal cancer

Published online by Cambridge University Press:  05 November 2015

John M. S. Bartlett
Affiliation:
Ontario Institute for Cancer Research, Toronto
Abeer Shaaban
Affiliation:
Queen Elizabeth Hospital Birmingham
Fernando Schmitt
Affiliation:
University of Porto
Get access
Type
Chapter
Information
Molecular Pathology
A Practical Guide for the Surgical Pathologist and Cytopathologist
, pp. 119 - 129
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E. and Forman, D. (2011). “Global cancer statistics.” CA Cancer J Clin 61(2): 6990.CrossRefGoogle ScholarPubMed
Vilar, E. and Gruber, S. B. (2010). “Microsatellite instability in colorectal cancer – the stable evidence.” Nat Rev Clin Oncol 7(3): 153–62.CrossRefGoogle ScholarPubMed
Ionov, Y., Peinado, M. A., Malkhosyan, S., Shibata, D. and Perucho, M. (1993). “Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis.” Nature 363(6429): 558–61.CrossRefGoogle ScholarPubMed
Thibodeau, S. N., Bren, G. and Schaid, D. (1993). “Microsatellite instability in cancer of the proximal colon.” Science 260(5109): 816–19.CrossRefGoogle ScholarPubMed
Kane, M. F., Loda, M. , Gaida, G. M., Lipman, J., Mishra, R., Goldman, H. et al. (1997). “Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines.” Cancer Res 57(5): 808–11.Google ScholarPubMed
Jiricny, J. (2006). “The multifaceted mismatch-repair system.” Nat Rev Mol Cell Biol 7(5): 335–46.CrossRefGoogle ScholarPubMed
Rustgi, A. (2007). “The genetics of hereditary colon cancer.” Genes Dev 21(20): 2525–38.CrossRefGoogle ScholarPubMed
Jascur, T. and Boland, C. R. (2006). “Structure and function of the components of the human DNA mismatch repair system.” Int J Cancer 119(9): 2030–5.CrossRefGoogle ScholarPubMed
Jiricny, J. (2006). “MutLalpha: at the cutting edge of mismatch repair.” Cell 126(2): 239–41.CrossRefGoogle ScholarPubMed
Peltomaki, P. (2001). “DNA mismatch repair and cancer.” Mutat Res 488(1): 7785.CrossRefGoogle ScholarPubMed
Duval, A. and Hamelin, R. (2002). “Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability.” Cancer Res 62(9): 2447–54.Google Scholar
Jakowlew, S. B. (2006). “Transforming growth factor-beta in cancer and metastasis.” Cancer Metastasis Rev 25(3): 435–57.CrossRefGoogle ScholarPubMed
Velho, S., Corso, G., Oliveira, C. and Seruca, R. (2010). “KRAS signaling pathway alterations in microsatellite unstable gastrointestinal cancers.” Adv Cancer Res 109: 123–43.CrossRefGoogle ScholarPubMed
Fearon, E. R. and Vogelstein, B. (1990). “A genetic model for colorectal tumorigenesis.” Cell 61(5): 759–67.CrossRefGoogle ScholarPubMed
Smith, G., Carey, F. A., Beattie, J., Wilkie, M. J., Lightfoot, T. J., Coxhead, J. et al. (2002). “Mutations in APC, Kirsten-ras, and p53 – alternative genetic pathways to colorectal cancer.” Proc Natl Acad Sci USA 99(14): 9433–8.CrossRefGoogle ScholarPubMed
Samowitz, W. S., Slattery, M. L., Sweeney, C., Herrick, J., Wolff, R. K. and Albertsen, H. (2007). “APC mutations and other genetic and epigenetic changes in colon cancer.” Mol Cancer Res 5(2): 165–70.CrossRefGoogle ScholarPubMed
Imai, K. and Yamamoto, H. (2008). “Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics.” Carcinogenesis 29(4): 673–80.CrossRefGoogle ScholarPubMed
Domingo, E., Espin, E., Armengol, M., Oliveira, C., Pinto, M., Duval, A. et al. (2004). “Activated BRAF targets proximal colon tumors with mismatch repair deficiency and MLH1 inactivation.” Gene Chromosome Canc 39(2): 138–42.CrossRefGoogle ScholarPubMed
Oliveira, C., Westra, J., Arango, D., Ollikainen, M., Domingo, E., Ferreira, A. et al. (2004). “Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status.” Hum Mol Genet 13(19): 2303–11.CrossRefGoogle ScholarPubMed
Samowitz, W. (2008). “Genetic and epigenetic changes in colon cancer.” Exp Mol Pathol 85(1): 64–7.CrossRefGoogle ScholarPubMed
Suehiro, Y., Wong, C. W., Chirieac, L. R., Kondo, Y., Shen, L., Webb, C. R. et al. (2008). “Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma.” Clin Cancer Res 14(9): 2560–9.CrossRefGoogle ScholarPubMed
Samowitz, W. S., Sweeney, C., Herrick, J., Albertsen, H., Levin, T. R., Murtaugh, M. A. et al. (2005). “Poor survival associated with the BRAF V600E mutation in microsatellite-stable colon cancers.” Cancer Res 65(14): 6063–9.CrossRefGoogle ScholarPubMed
Sanchez, J. A., Krumroy, L., Plummer, S., Aung, P., Merkulova, A., Skacel, M. et al. (2009). “Genetic and epigenetic classifications define clinical phenotypes and determine patient outcomes in colorectal cancer.” Br J Surg 96(10): 1196–204.CrossRefGoogle ScholarPubMed
Lee, S., Cho, N.-Y., Choi, M., Yoo, E. J., Kim, J. H. and Kang, G. H. (2008). “Clinicopathological features of CpG island methylator phenotype-positive colorectal cancer and its adverse prognosis in relation to KRAS BRAF mutation.” Pathol Int 58(2): 104–13.CrossRefGoogle ScholarPubMed
Jass, J. R. (2007). “Molecular heterogeneity of colorectal cancer: implications for cancer control.” Surg Oncol 16(Suppl. 1): S79.CrossRefGoogle ScholarPubMed
Tanaka, J., Watanabe, T., Kanazawa, T., Tada, T., Kazama, Y., Tanaka, T. et al. (2007). “Left-sided microsatellite unstable colorectal cancers show less frequent methylation of hMLH1 and CpG island methylator phenotype than right-sided ones.” J Surg Oncol 96(7): 611–18.CrossRefGoogle ScholarPubMed
Jass, J. (2006). “Hereditary non-polyposis colorectal cancer: the rise and fall of a confusing term.” World J Gastroenterol 12(31): 4943–50.CrossRefGoogle ScholarPubMed
Jass, J. R. (2005). “Serrated adenoma of the colorectum and the DNA-methylator phenotype.” Nat Clin Pract Oncol 2(8): 398405.CrossRefGoogle ScholarPubMed
O'Brien, M., Yang, S., Mack, C., Xu, H., Huang, C. S., Mulcahy, E. et al. (2006). “Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points.” Am J Surg Pathol 30(12): 1491–501.CrossRefGoogle ScholarPubMed
Bettington, M., Walker, N., Clouston, A., Brown, I., Leggett, B. and Whitehall, V. (2013). “The serrated pathway to colorectal carcinoma: current concepts and challenges.” Histopathology 62(3): 367–86.CrossRefGoogle ScholarPubMed
Kambara, T., Simms, L., Whitehall, V. L., Spring, K. J., Wynter, C. V., Walsh, M. D. et al. (2004). “BRAF mutation is associated with DNA methylation in serrated polyps and cancers of the colorectum.” Gut 53(8): 1137–44.CrossRefGoogle ScholarPubMed
Yang, S., Farraye, F. A., Mack, C., Posnik, O. and O'Brien, M. G. (2004). “BRAF and KRAS mutations in hyperplastic polyps and serrated adenomas of the colorectum: relationship to histology and CpG island methylation status.” Am J Surg Pathol 28(11): 1452–9.CrossRefGoogle ScholarPubMed
O'Brien, M. J. (2007). “Hyperplastic and serrated polyps of the colorectum.” Gastroenterol Clin North Am 36(4): 947–68.CrossRefGoogle ScholarPubMed
Kim, Y. H., Kakar, S., Cun, L., Deng, G. and Kim, Y. S. (2008). “Distinct CpG island methylation profiles and BRAF mutation status in serrated and adenomatous colorectal polyps.” Int J Cancer 123(11): 2587–93.CrossRefGoogle ScholarPubMed
Wynter, C., Walsh, M., Higuchi, T., Leggett, B. A., Young, J. and Jass, J. R. (2004). “Methylation patterns define two types of hyperplastic polyp associated with colorectal cancer.” Gut 53(4): 573–80.CrossRefGoogle ScholarPubMed
Dong, S. M., Lee, E. J., Jeon, E. S., Park, C. K. and Kim, K. M. (2004). “Progressive methylation during the serrated neoplasia pathway of the colorectum.” Mod Pathol 18(2): 170–8.Google Scholar
Rosenberg, D. W., Yang, S., Pleau, D. C., Greenspan, E. J., Stevens, R. G., Rajan, T. V. et al. (2007). “Mutations in BRAF and KRAS differentially distinguish serrated versus non-serrated hyperplastic aberrant crypt foci in humans.” Cancer Res 67(8): 3551–4.CrossRefGoogle ScholarPubMed
De Roock, W., De Vriendt, V., Normanno, M., Ciardiello, F. and Tejpar, S. (2011). “KRAS, BRAF, PIK3CA, and PTEN mutations: implications for targeted therapies in metastatic colorectal cancer.” Lancet Oncol 12(6): 594603.CrossRefGoogle ScholarPubMed
Lubomierski, N., Plotz, G., Wormek, M., Engels, K., Kriener, S., Trojan, J. et al. (2005). “BRAF mutations in colorectal carcinoma suggest two entities of microsatellite-unstable tumors.” Cancer 104(5): 952–61.CrossRefGoogle ScholarPubMed
Oliveira, C., Velho, S., Moutinho, C., Ferreira, A., Preto, A., Domingo, E. et al. (2007). “KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression.” Oncogene 26(1): 158–63.CrossRefGoogle ScholarPubMed
Velho, S., Moutinho, C., Cirnes, L., Albuquerque, C., Hamelin, R., Schmitt, F. et al. (2008). “BRAF, KRAS and PIK3CA mutations in colorectal serrated polyps and cancer: primary or secondary genetic events in colorectal carcinogenesis?BMC Cancer 8: 255.CrossRefGoogle ScholarPubMed
Rajagopalan, H., Bardelli, A., Lengauer, C., Kinzler, K. W., Vogelstein, B. and Velculescu, V. E. (2002). “Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status.” Nature 418(6901): 934.CrossRefGoogle ScholarPubMed
Velho, S., Oliveira, C., Ferreira, A., Ferreira, A. C., Suriano, G., Schwartz, S. Jr. et al. (2005). “The prevalence of PIK3CA mutations in gastric and colon cancer.” Eur J Cancer 41(11): 1649–54.CrossRefGoogle ScholarPubMed
Ekstrand, A. I., Jonsson, M., Lindblom, A., Borg, A. and Nilbert, M. (2010). “Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer.” Fam Cancer 9(2): 125–9.CrossRefGoogle ScholarPubMed
Velho, S., Oliveira, C., Paredes, J., Sousa, S., Leite, M., Matos, P. et al. (2010). “Mixed lineage kinase 3 gene mutations in mismatch repair deficient gastrointestinal tumours.” Hum Mol Genet 19(4): 697706.CrossRefGoogle ScholarPubMed
Cai, G., Xu, Y., Lu, H., Shi, Y., Lian, P., Peng, J., Du, X. et al. (2008). “Clinicopathologic and molecular features of sporadic microsatellite- and chromosomal-stable colorectal cancers.” Int J Colorectal Dis 23(4): 365–73.CrossRefGoogle ScholarPubMed
Banerjea, A., Hands, R. E., Powar, M. P., Bustin, S. A. and Dorudi, S. (2009). “Microsatellite and chromosomal stable colorectal cancers demonstrate poor immunogenicity and early disease recurrence.” Colorectal Dis 11(6): 601–8.CrossRefGoogle ScholarPubMed
Drescher, K., Sharma, P., Watson, P., Gatalica, Z., Thibodeau, S. N. and Lynch, H. T. (2009). “Lymphocyte recruitment into the tumor site is altered in patients with MSI-H colon cancer.” Fam Cancer 8(3): 231–9.CrossRefGoogle ScholarPubMed
Greenson, J. K., Huang, S.-C., Herron, C., Moreno, V., Bonner, J. D., Tomsho, L. P. et al. (2009). “Pathologic predictors of microsatellite instability in colorectal cancer.” Am J Surg Pathol 33(1): 126–33, 110.1097/PAS.1090b1013e31817ec31812b31811.CrossRefGoogle ScholarPubMed
Chang, E., Dorsey, P., Frankhouse, J., Lee, R. G., Walts, D., Johnson, W. et al. (2009). “Combination of microsatellite instability and lymphocytic infiltrate as a prognostic indicator in colon cancer.” Arch Surg 144(6): 511–15.CrossRefGoogle ScholarPubMed
Gryfe, R., Kim, H., Hsieh, E. T., Aronson, M. D., Holowaty, E. J., Bull, S. B. et al. (2000). “Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer.” New Engl J Med 342: 6977.CrossRefGoogle ScholarPubMed
Malesci, A., Laghi, L., Bianchi, P., Delconte, G., Randolph, A., Torri, V. et al. (2007). “Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer.” Clin Cancer Res 13(13): 3831–9.CrossRefGoogle ScholarPubMed
Clark, A. J., Barnetson, R., Farrington, S. M. and Dunlop, M. G. (2004). “Prognosis in DNA mismatch repair deficient colorectal cancer: are all MSI tumours equivalent?Fam Cancer 3(2): 8591.CrossRefGoogle ScholarPubMed
Carethers, J., Chauhan, D., Fink, D., Nebel, S., Bresalier, R. S., Howell, S. B. et al. (1999). “Mismatch repair proficiency and in vitro response to 5-fluorouracil.” Gastroenterology 117(1): 123–31.CrossRefGoogle ScholarPubMed
Arnold, C. N., Goel, A. and Boland, C. R. (2003). “Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines.” Int J Cancer 106(1): 6673.CrossRefGoogle ScholarPubMed
Ribic, C. M., Sargent, D. J., Moore, M. J., Thibodeau, S. N., French, A. J., Goldberg, R. M. et al. (2003). “Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer.” New Engl J Med 349(3): 247–57.CrossRefGoogle ScholarPubMed
Carethers, J. M., Smith, E. J., Behling, C. A., Nguyen, L., Tajima, A., Doctolero, R. T. et al. (2004). “Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer.” Gastroenterology 126(2): 394401.CrossRefGoogle ScholarPubMed
Des Guetz, G., Uzzan, B., Nicolas, P., Schischmanoff, O. and Morere, J.-F. (2009). “Microsatellite instability: a predictive marker in metastatic colorectal cancer?Target Oncol 4(1): 5762.CrossRefGoogle ScholarPubMed
Des Guetz, G. T., Uzzan, B., Nicolas, P., Schischmanoff, O., Perret, G. Y. and Morere, J.-F. (2009). “Microsatellite instability does not predict the efficacy of chemotherapy in metastatic colorectal cancer. A systematic review and meta-analysis.” Anticancer Res 29(5): 1615–20.Google Scholar
Sinicrope, F. A. and Sargent, D. J. (2009). “Clinical implications of microsatellite instability in sporadic colon cancers.” Curr Opin Oncol 21(4): 369–73, 310.1097/CCO.1090b1013e32832c32894bd.CrossRefGoogle ScholarPubMed
Jover, R., Nguyen, T. P., Pérez-Carbonell, L., Zapater, P., Payá, A., Alenda, C. et al. (2011). “5-Fluorouracil adjuvant chemotherapy does not increase survival in patients with CpG island methylator phenotype colorectal cancer.” Gastroenterology 140(4): 1174–81.CrossRefGoogle Scholar
Kim, Y.-H., Min, B.-H., Kim, S. J., Choi, H. K., Kim, K.-M., Chun, H.-K. et al. (2010). “Difference between proximal and distal microsatellite-unstable sporadic colorectal cancers: analysis of clinicopathological and molecular features and prognoses.” Ann Surg Oncol 17(5): 1435–41.CrossRefGoogle ScholarPubMed
Trautmann, K., Terdiman, J. P., French, A. J., Roydasgupta, R., Sein, N., Kakar, S. et al. (2006). “Chromosomal instability in microsatellite-unstable and stable colon cancer.” Clin Cancer Res 12(21): 6379–85.CrossRefGoogle ScholarPubMed
Jass, J., Biden, K., Cummings, M. C., Simms, L. A., Walsh, M., Schoch, E. et al. (1999). “Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways.” J Clin Pathol 52(6): 455–60.CrossRefGoogle ScholarPubMed
Kambara, T., Matsubara, N., Nakagawa, H., Notohara, K., Nagasaka, T., Yoshino, T. et al. (2001). “High frequency of low-level microsatellite instability in early colorectal cancer.” Cancer Res 61(21): 7743–6.Google ScholarPubMed
Mori, Y., Selaru, F. M., Sato, F., Yin, J., Simms, L. A., Xu, Y. et al. (2003). “The impact of microsatellite instability on the molecular phenotype of colorectal tumors.” Cancer Res 63(15): 4577–82.Google ScholarPubMed
Graham, T., Halford, S., Page, K. M. and Tomlinson, I. P. (2008). “Most low-level microsatellite instability in colorectal cancers can be explained without an elevated slippage rate.” J Pathol 215(2): 204–10.CrossRefGoogle ScholarPubMed
Dietmaier, W., Wallinger, S., Bocker, T., Kullmann, F., Fishel, R. and Rüschoff, J. (1997). “Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression.” Cancer Res 57(21): 4749–56.Google ScholarPubMed
Thibodeau, S. N., French, A. J., Cunningham, J. M., Tester, D., Burgart, L.J., Roche, P. C. et al. (1998). “Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1.” Cancer Res 58(8): 1713–18.Google ScholarPubMed
Parc, Y. R., Halling, K. C., Wang, L., Christensen, E. R., Cunningham, J. M., French, A. J. et al. (2000). “hMSH6 alterations in patients with microsatellite instability-low colorectal cancer.” Cancer Res 60(8): 2225–31.Google ScholarPubMed
Halford, S., Sasieni, P., Rowan, A., Wasan, H., Bodmer, W., Talbot, I. et al. (2002). “Low-level microsatellite instability occurs in most colorectal cancers and is a nonrandomly distributed quantitative trait.” Cancer Res 62(1): 53–7.Google ScholarPubMed
Laiho, P., Launonen, V., Lahermo, P., Esteller, M., Guo, M., Herman, J. G. et al. (2002). “Low-level microsatellite instability in most colorectal carcinomas.” Cancer Res 62(4): 1166–70.Google ScholarPubMed
Castells, A., Castellví-Bel, S. and Balaguer, F. (2009). “Concepts in familial colorectal cancer: where do we stand and what is the future?Gastroenterology 137(2): 404–9.CrossRefGoogle ScholarPubMed
Lynch, H. T. and de la Chapelle, A. (2003). “Hereditary colorectal cancer.” New Engl J Med 348(10): 919–32.CrossRefGoogle ScholarPubMed
Peltomäki, P. and Vasen, H. (2004). “Mutations associated with HNPCC predisposition – update of ICG-HNPCC/INSiGHT mutation database.” Dis Markers 20(4): 269–76.CrossRefGoogle ScholarPubMed
Vasen, H., Watson, P., Mecklin, J. P. and Lynch, H. T. (1999). “New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC.” Gastroenterology 116(6): 1453–6.CrossRefGoogle Scholar
Laghi, L., Bianchi, P., Roncalli, M. and Malesci, A. (2004). “Re: revised Bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability.” J Natl Cancer Inst 96(18): 1403–4.CrossRefGoogle ScholarPubMed
Laghi, L., Bianchi, P. and Malesci, A. (2008). “Differences and evolution of the methods for the assessment of microsatellite instability.” Oncogene 27(49): 6313–21.CrossRefGoogle ScholarPubMed
Lynch, H., Lynch, P., Lanspa, S. J., Snyder, C. L., Lynch, J. F. and Boland, C. R. (2009). “Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications.” Clin Genet 76(1): 118.CrossRefGoogle ScholarPubMed
Tops, C. M., Wijnen, J. T. and Hes, F. G. (2009). “Introduction to molecular and clinical genetics of colorectal cancer syndromes.” Best Pract Res Clin Gastroenterol 23(2): 127–46.CrossRefGoogle ScholarPubMed
Abdel-Rahman, W. and Peltomäki, P. (2008). “Lynch syndrome and related familial colorectal cancers.” Crit Rev Oncog 14(1): 122.CrossRefGoogle ScholarPubMed
Lindor, N. M. (2009). “Familial colorectal cancer type X: the other half of hereditary nonpolyposis colon cancer syndrome.” Surg Oncol Clin North Am 18(4): 637–45.CrossRefGoogle ScholarPubMed
Jass, J. R. (2006). “Colorectal cancer: a multipathway disease.” Crit Rev Oncog 12(3–4): 273–87.CrossRefGoogle ScholarPubMed
Ferreira, S., Lage, P., Sousa, R., Claro, I., Francisco, I., Filipe, B. et al. (2009). “Familial colorectal cancer type X: clinical, pathological and molecular characterization.” Acta Med Port 22(3): 207–14.Google ScholarPubMed
Boland, C. R., Thibodeau, S. N., Hamilton, S. R., Sidransky, D., Eshleman, J. R., Burt, R. W. et al. (1998). “A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.” Cancer Res 58(22): 5248–57.Google ScholarPubMed
Umar, A., Boland, C. R., Terdiman, J. P., Syngal, S., de la Chapelle, A., Rüschoff, J. et al. (2004). “Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability.” J Natl Cancer Inst 96(4): 261–8.Google ScholarPubMed
Vasen, H. F., Blanco, I., Aktan-Collan, K., Gopie, J. P., Alonso, A., Aretz, S. et al. (2013). “Revised guidelines for the clinical management of Lynch syndrome (HNPCC): recommendations by a group of European experts.” Gut 62(6): 812–23.CrossRefGoogle ScholarPubMed
Hegde, M., Ferber, M., Mao, R., Samowitz, W., Ganguly, A.; Working Group of the ACMG Laboratory Quality Assurance Committee (2014). “ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis).” Genet Med 16(1): 101–16.CrossRefGoogle ScholarPubMed
Perucho, M. (1999). “Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res., 58: 5248–5257, 1998.” Cancer Res 59(1): 249–56.Google ScholarPubMed
Brennetot, C., Buhard, O., Jourdan, F., Flejou, J. F., Duval, A. and Hamelin, R. (2005). “Mononucleotide repeats BAT-26 and BAT-25 accurately detect MSI-H tumors and predict tumor content: implications for population screening.” Int J Cancer 113(3): 446–50.CrossRefGoogle ScholarPubMed
Suraweera, N., Duval, A., Reperant, M., Vaury, C., Furlan, D., Leroy, K. et al. (2002). “Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR.” Gastroenterology 123(6): 1804–11.CrossRefGoogle ScholarPubMed
Buhard, O., Suraweera, N., Lectard, A., Duval, A. and Hamelin, R. (2004). “Quasimonomorphic mononucleotide repeats for high-level microsatellite instability analysis.” Dis Markers 20(4–5): 251–7.CrossRefGoogle ScholarPubMed
Ebinger, M., Sotlar, K., Weber, A., Bock, C. T., Bültmann, D. D. and Kandolf, R. (2006). “Simplified detection of microsatellite instability in colorectal cancer without the need for corresponding germline DNA analysis.” J Clin Pathol 59(10): 1114–15.CrossRefGoogle ScholarPubMed
Soreide, K. (2007). “Molecular testing for microsatellite instability and DNA mismatch repair defects in hereditary and sporadic colorectal cancers – ready for prime time?Tumour Biol 28(5): 290300.Google ScholarPubMed
Goel, A., Nagasaka, T., Hamelin, R. and Boland, C. R. (2010). “An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers.” PLoS ONE 5(2): e9393.CrossRefGoogle ScholarPubMed
Xicola, R. M., Llor, X., Pons, E., Castells, A., Alenda, C., Piñol, V. et al. (2007). “Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors.” J Natl Cancer Inst 99(3): 244–52.CrossRefGoogle ScholarPubMed
Pyatt, R., Chadwick, R. B., Johnson, C. K., Adebamowo, C., de la Chapelle, A. and Prior, T. W. (1999). “Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Implications for microsatellite instability testing.” Am J Pathol 155(2): 349–53.CrossRefGoogle ScholarPubMed
Murphy, K. M., Zhang, S., Geiger, T., Hafez, M. J., Bacher, J., Berg, K. D. et al. (2006). “Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers.” J Mol Diagn 8(3): 305–11.CrossRefGoogle ScholarPubMed
Shi, C. and Washington, K. (2012). “Molecular testing in colorectal cancer: diagnosis of Lynch syndrome and personalized cancer medicine.” Am J Clin Pathol 137(6): 847–59.CrossRefGoogle ScholarPubMed
Arends, M. J. (2013). “Pathways of colorectal carcinogenesis.” Appl Immunohistochem Mol Morphol 21(2): 97102.CrossRefGoogle ScholarPubMed
Shia, J., Tang, L. H., Vakiani, E., Guillem, J. G., Stadler, Z. K., Soslow, R. A. et al. (2009). “Immunohistochemistry as first-line screening for detecting colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: a 2-antibody panel may be as predictive as a 4-antibody panel.” Am J Surg Pathol 33(11): 1639–45.CrossRefGoogle ScholarPubMed
Hampel, H., Frankel, W. L., Martin, E., Arnold, M., Khanduja, K., Kuebler, P. et al. (2008). “Feasibility of screening for Lynch syndrome among patients with colorectal cancer.” J Clin Oncol 26(35): 5783–8.CrossRefGoogle ScholarPubMed
Mvundura, M., Grosse, S. D., Hampel, H. and Palomaki, G. E. (2010). “The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer.” Genet Med 12(2): 93104.CrossRefGoogle ScholarPubMed
Soreide, K., Nedrebo, B. S., Knapp, J. C., Glomsaker, T. B., Søreide, J. A. and Kørner, H. (2009). “Evolving molecular classification by genomic and proteomic biomarkers in colorectal cancer: potential implications for the surgical oncologist.” Surg Oncol 18(1): 3150.CrossRefGoogle ScholarPubMed
Herman, J. G., Umar, A., Polyak, K., Graff, J. R., Ahuja, N., Issa, J. P. et al. (1998). “Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma.” Proc Natl Acad Sci USA 95(12): 6870–5.CrossRefGoogle ScholarPubMed
Deng, G., Chen, A., Hong, J., Chae, H. S. and Kim, Y. S. (1999). “Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression.” Cancer Res 59(9): 2029–33.Google Scholar
Ogino, S., Kawasaki, T., Brahmandam, M., Cantor, M., Kirkner, G. J., Spiegelman, D. et al. (2006). “Precision and performance characteristics of bisulfite conversion and real-time PCR (MethyLight) for quantitative DNA methylation analysis.” J Mol Diagn 8(2): 209–17.CrossRefGoogle ScholarPubMed
Hitchins, M. P. and Ward, R. L. (2009). “Constitutional (germline) MLH1 epimutation as an aetiological mechanism for hereditary non-polyposis colorectal cancer.” J Med Genet 46(12): 793802.CrossRefGoogle ScholarPubMed
Bettstetter, M., Dechant, S., Ruemmele, P., Grabowski, M., Keller, G., Holinski-Feder, E. et al. (2007). “Distinction of hereditary nonpolyposis colorectal cancer and sporadic microsatellite-unstable colorectal cancer through quantification of MLH1 methylation by real-time PCR.” Clin Cancer Res 13(11): 3221–8.CrossRefGoogle ScholarPubMed
Gausachs, M., Mur, P., Corral, J., Pineda, M., González, S., Benito, L. et al. (2012). “MLH1 promoter hypermethylation in the analytical algorithm of Lynch syndrome: a cost-effectiveness study.” Eur J Hum Genet 20(7): 762–8.CrossRefGoogle ScholarPubMed
Oliveira, C., Pinto, M., Duval, A., Brennetot, C., Domingo, E., Espín, E. et al. (2003). “BRAF mutations characterize colon but not gastric cancer with mismatch repair deficiency.” Oncogene 22(57): 9192–6.CrossRefGoogle Scholar
Koinuma, K., Shitoh, K., Miyakura, Y., Furukawa, T., Yamashita, Y., Ota, J. et al. (2004). “Mutations of BRAF are associated with extensive hMLH1 promoter methylation in sporadic colorectal carcinomas.” Int J Cancer 108(2): 237–42.CrossRefGoogle ScholarPubMed
Weisenberger, D. J., Siegmund, K. D., Campan, M., Young, J., Long, T. I., Faasse, M. A. et al. (2006). “CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer.” Nat Genet 38(7): 787–93.CrossRefGoogle ScholarPubMed
Bouzourene, H., Hutter, P., Losi, L., Martin, P. and Benhattar, J. (2010). “Selection of patients with germline MLH1 mutated Lynch syndrome by determination of MLH1 methylation and BRAF mutation.” Fam Cancer 9(2): 167–72.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×