Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T05:12:46.170Z Has data issue: false hasContentIssue false

Chapter 11 - ATP Synthase – A Paradigmatic Molecular Machine

Published online by Cambridge University Press:  05 January 2012

Joachim Frank
Affiliation:
Columbia University, New York
Get access

Summary

ATP – An Energy-Rich Compound with a Long History

Phosphorylation of ribose sugars is central to life in its present form as well as throughout evolution. This reaction chemically activates sugars and hence plays a major role in the transmission of information and energy conservation. Nature has chosen adenosine-5ʹ-triphosphate (ATP) as a widely used energy source in a variety of cellular energy-converting processes. A few but important examples are the anabolic and catabolic biochemical pathways, solute and ion transport (osmotic work), and mechanical work (e.g., muscle contraction or cell motility).

ATP was first described by the German chemist Karl Lohmann in 1929, who isolated it from muscle and liver extracts (Langen and Hucho, 2008). The first chemical synthesis of ATP outside a living cell was performed by the Nobel Laureate Lord Alexander Robertus Todd in 1949 (Baddiley et al., 1949). Already in 1935, the Russian scientist Vladimir Engelhardt noted that muscle contraction requires ATP. Two years later, the Danish scientist Herman Moritz Kalckar established that ATP synthesis is linked with cell respiration and that ATP represents the final product of the catabolic reaction. In the years 1939–1941, Fritz Lipmann showed that ATP is the main bearer of chemical energy in the cell. He coined the phrase “energy-rich phosphate bonds” (Lipmann, 1941). The reason for this expression lies in the structure of ATP.

Type
Chapter
Information
Molecular Machines in Biology
Workshop of the Cell
, pp. 208 - 238
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, J. P.Leslie, A. G. W.Lutter, R.Walker, J. E. 1994 Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondriaNature 370 621CrossRefGoogle ScholarPubMed
Adachi, K.Oiwa, K.Nishizaka, T.Furuike, S.Noji, H.Itoh, H.Yoshida, M.Kinosita, K. 2007 Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulationCell 130 309CrossRefGoogle ScholarPubMed
Aggeler, R.Ogilvie, I.Capaldi, R. A. 1997 Rotation of a γ-ɛ subunit domain in the F1Fo-ATP synthase complex. The γ-ɛ subunits are essentially randomly distributed relative to the α3β3δ domain in the intact complexJ. Biol. Chem 272 19621CrossRefGoogle Scholar
Aggeler, R.Weinreich, F.Capaldi, R. A. 1995 Arrangement of the ɛ subunit in the ATP synthase from the reactivity of cysteine residues introduced at different positions in this subunitBiochim. Biophys. Acta 1230 62CrossRefGoogle Scholar
Angevine, C. M.Fillingame, R. H. 2003 Aqueous access channels in subunit a of rotary ATP synthaseJ. Biol. Chem 278 6066CrossRefGoogle ScholarPubMed
Angevine, C. M.Herold, K. A.Vincent, O. D.Fillingame, R. H. 2007 Aqueous access pathways in ATP synthase subunit a. Reactivity of cysteine substituted into transmembrane helices 1, 3, and 5J. Biol. Chem 282 9001CrossRefGoogle ScholarPubMed
Arechaga, I.Butler, P. J.Walker, J. E. 2002 Self-assembly of ATP synthase subunit c ringsFEBS Lett 515 189CrossRefGoogle ScholarPubMed
Ariga, T.Muneyuki, E.Yoshida, M. 2007 F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunitsNat. Struct. Mol. Biol 14 841CrossRefGoogle ScholarPubMed
Baddiley, J.Michelson, A. M.Todd, A. R. 1949 Synthesis of adenosine triphosphateNature 161 761CrossRefGoogle Scholar
Ballhausen, B.Altendorf, K.Deckers-Hebestreit, G. 2009 Constant c10 ring stoichiometry in the ATP synthase analyzed by cross-linkingJ. Bacteriol 191 2400CrossRefGoogle ScholarPubMed
Bernal, R. A.Stock, D. 2004 Three-dimensional structure of the intact H+-ATPase/synthase by electron microscopyStructure 12 1789CrossRefGoogle ScholarPubMed
Birkenhäger, R.Hoppert, M.Deckers-Hebestreit, G.Mayer, F.Altendorf, K. 1995 The Fo complex of the ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopyEur. J. Biochem 230 58CrossRefGoogle Scholar
Boekema, E. J.Ubbink-Kok, T.Lolkema, J. S.Brisson, A.Konings, W. N. 1997 Visualisation of the peripheral stalk in V-type ATPase: Evidence for a stator structure essential to rotational catalysisProc. Natl. Acad. Sci. U.S.A 94 14291CrossRefGoogle Scholar
Börsch, M.Diez, M.Zimmermann, B.Reuter, R.Gräber, P. 2002 Stepwise rotation of the γ-subunit of EFoF1-ATP synthase observed by intramolecular single-molecule fluorescence resonance energy transferFEBS Lett 527 147CrossRefGoogle ScholarPubMed
Boyer, P. D. 1993 The binding change mechanism for ATP synthase – some probabilities and possibilitiesBiochim. Biophys. Acta 1140 215CrossRefGoogle ScholarPubMed
Boyer, P. D. 1997 The ATP synthase – a splendid molecular machineAnnu. Rev. Biochem 66 717CrossRefGoogle ScholarPubMed
Boyer, P. D. 1997 Energy, Life, and ATPNobel Lecture, December 8, 1997Google Scholar
Boyer, P. D.Cross, R. L.Momsen, W. 1973 A new concept for energy coupling in oxidative phosphorylation based on a molecular explanation of the oxygen exchange reactionsProc. Natl. Acad. Sci. U.S.A 70 2837CrossRefGoogle ScholarPubMed
Cain, B. D. 2000 Mutagenic analysis of the Fo stator subunitsJ. Bioenerg. Biomembr 32 365CrossRefGoogle Scholar
Cain, B. D.Simoni, R. D. 1986 Impaired proton conductivity resulting from mutations in the a subunit of F1Fo ATPaseEscherichia coli. J. Biol. Chem 261 10043Google Scholar
Cain, B. D.Simoni, R. D. 1988 Interaction between Glu-219 and His-245 within the a subunit of F1Fo-ATPaseEscherichia coli. J. Biol. Chem 263 6606Google Scholar
Cain, B. D.Simoni, R. D. 1989 Proton translocation by the F1Fo ATPase of . Mutagenic analysis of the a subunitJ. Biol. Chem 264 3292Google Scholar
Capaldi, R. A.Aggeler, R. 2002 Mechanism of the F1Fo-type ATP synthase, a biological rotary motorTrends Biochem. Sci 27 154CrossRefGoogle Scholar
Cipriano, D. J.Wood, K. S.Bi, YDunn, S. D. 2006 Mutations in the dimerization domain of the b subunit from the ATP synthase. Deletions disrupt function but not enzyme assemblyJ. Biol. Chem 281 12408CrossRefGoogle Scholar
Cook, G. M.Keis, S.Morgan, H. W.von Ballmoos, C.Matthey, U.Kaim, G.Dimroth, P. 2003 Purification and biochemical characterization of the F1Fo-ATP synthase from thermophilic spJ. Bacteriol 185 4442CrossRefGoogle Scholar
Cox, G. B.Fimmel, A. L.Gibson, F.Hatch, L. 1986 The mechanism of ATP synthase: a reassessment of the functions of the b and a subunitsBiochim. Biophys. Acta 849 62CrossRefGoogle Scholar
Cox, G. B.Jans, D. A.Fimmel, A. L.Gibson, F.Hatch, L. 1984 Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the β-subunitBiochim. Biophys. Acta 768 201CrossRefGoogle ScholarPubMed
Cross, R. L. 1981 The mechanism and regulation of ATP synthesis by F1-ATPasesAnnu. Rev. Biochem 50 681CrossRefGoogle ScholarPubMed
Cross, R. L.Müller, V. 2004 The evolution of A-, F-, and V-type ATP synthases and ATPases: reversals in function and changes in the H+/ATP coupling ratioFEBS Lett 576 1CrossRefGoogle Scholar
Daley, D. O.Rapp, M.Granseth, E.Melen, K.Drew, D.von Heijne, G. 2005 Global topology analysis of the inner membrane proteomeScience 308 1321CrossRefGoogle ScholarPubMed
Dallmann, H. G.Flynn, T. G.Dunn, S. D. 1992 Determination of the 1-ethyl-3-[(3-dimethylamino)propyl]-carbodiimide-induced cross-link between the β and ɛ subunits of F1-ATPaseJ. Biol. Chem 267 18953Google Scholar
Davidson, A. L.Chen, J. 2004 ATP-binding cassette transporters in bacteriaAnnu. Rev. Biochem 73 241CrossRefGoogle ScholarPubMed
Del Rizzo, P. ABi, YDunn, S. D 2006 ATP synthase b subunit dimerization domain: a right-handed coiled coil with offset helicesJ. Mol. Biol 364 735CrossRefGoogle ScholarPubMed
Del Rizzo, P. ABi, YDunn, S. DShilton, B. H 2002 The “second stalk” of ATP synthase: structure of the isolated dimerization domainBiochemistry 41 6875CrossRefGoogle ScholarPubMed
Dickson, V. K.Silvester, J. A.Fearnley, I. M.Leslie, A. G.Walker, J. E. 2006 On the structure of the stator of the mitochondrial ATP synthaseEMBO J 25 2911CrossRefGoogle ScholarPubMed
Diez, M.Zimmermann, B.Börsch, M.König, M.Schweinberger, E.Steigmiller, S.Reuter, R.Felekyan, S.Kudryavtsev, V.Seidel, C. A.Gräber, P. 2004 Proton-powered subunit rotation in single membrane-bound FoF1-ATP synthaseNat. Struct. Mol. Biol 11 135CrossRefGoogle Scholar
Dimroth, P. 1997 Primary sodium ion translocating enzymesBiochim. Biophys. Acta131811Google ScholarPubMed
Dmitriev, O.Jones, P. C.Jiang, W.Fillingame, R. H. 1999 Structure of the membrane domain of subunit b of the FoF1 ATP synthaseJ. Biol. Chem 274 15598CrossRefGoogle Scholar
Duncan, T. M.Bulygin, V. V.Zhou, Y.Hutcheon, M. L.Cross, R. L. 1995 Rotation of subunits during catalysis by F1-ATPaseProc. Natl. Acad. Sci. U.S.A 92 10964CrossRefGoogle ScholarPubMed
Dunn, S. D. 1992 The polar domain of the b subunit of F1Fo-ATPase forms an elongated dimer that interacts with the F1 sectorJ. Biol. Chem 267 7630Google Scholar
Dunn, S. D.Chandler, J. 1998 Characterization of a b2δ complex from ATP synthaseJ. Biol. Chem 273 8646CrossRefGoogle ScholarPubMed
Düser, M. G.Zarrabi, N.Dunn, S. D.Börsch, M. 2008 The proton-translocating a subunit of FoF1-ATP synthase is allocated asymmetrically to the peripheral stalkJ. Biol. Chem 283 33602CrossRefGoogle Scholar
Düser, M. G.Zarrabi, N.Cipriano, D. J.Ernst, S.Glick, G. D.Dunn, S. D.Börsch, M. 2009 36 degrees step size of proton-driven c-ring rotation in FoF1-ATP synthaseEMBO J 28 2689CrossRefGoogle ScholarPubMed
Eya, S.Maeda, M.Futai, M. 1991 Role of the carboxy terminal region of H+-ATPase (FoF1) a subunit from Arch. Biochem. Biophys 284 71CrossRefGoogle Scholar
Feniouk, B. A.Kozlova, M. A.Knorre, D. A.Cherepanov, D. A.Mulkidjanian, A. Y.Junge, W. 2004 The of ATP synthase: ohmic conductance (10 fS), and absence of voltage gatingBiophys. J 86 4094CrossRefGoogle Scholar
Feniouk, B. A.Yoshida, M. 2008 Regulatory mechanisms of proton-translocating FOF1-ATP synthaseResults Probl. Cell Differ 45 279CrossRefGoogle Scholar
Ferguson, S. A.Keis, S.Cook, G. M. 2006 Biochemical and molecular characterization of a Na+-translocating F1Fo-ATPase from the thermoalkaliphilic bacteriumClostridium paradoxum. J. Bacteriol 188 5045CrossRefGoogle ScholarPubMed
Ferguson, S. J. 2000 ATP synthase: what dictates the size of a ringCurr. Biol 10 R804CrossRefGoogle ScholarPubMed
Ferguson, S. J. 2010 ATP synthase: From sequence to ring size to the P/O ratioProc. Natl. Acad. Sci. U.S.A 107 16755CrossRefGoogle ScholarPubMed
Fillingame, R. H. 1990 Molecular mechanism of ATP synthesis by F1Fo- Type H+-transporting ATP synthasesThe Bacteria345Google Scholar
Fillingame, R. H. 1992 H+ transport and coupling by the Fo sector of the ATP synthase: insights into the molecular mechanism of functionJ. Bioenerg. Biomembr 24 485CrossRefGoogle Scholar
Folch, J.Lees, M. 1951 Proteolipides, a new type of tissue lipoproteins; their isolation from brainJ. Biol. Chem 191 807Google ScholarPubMed
Forgac, M. 2007 Vacuolar ATPases: rotary proton pumps in physiology and pathophysiologyNat. Rev. Mol. Cell Biol 8 917CrossRefGoogle ScholarPubMed
Foster, D. L.Fillingame, R. H. 1982 Stoichiometry of subunits in the H+-ATPase complex of J. Biol. Chem 257 2009Google Scholar
Fritz, M.Klyszejko, A. L.Morgner, N.Vonck, J.Brutschy, B.Müller, D. J.Meier, T.Müller, V. 2008 An intermediate step in the evolution of ATPases: a hybrid Fo-V0 rotor in a bacterial Na+ F1Fo ATP synthaseFEBS J 275 1999CrossRefGoogle Scholar
Fromme, P.Boekema, E. J.Gräber, P. 1987 Isolation and characterization of a supramolecular complex of subunit III of the ATP-synthase from chloroplastsZ. Naturforsch 42c 1239Google Scholar
Gambale, F.Kolb, A.Cantù, A. M.Hedrich, R. 1993 The voltage-dependent H+-ATPase of the sugar beet vacuole is reversibleEur. Biophys. J 22 399Google Scholar
Gibbons, C.Montgomery, M. G.Leslie, A. G.Walker, J. E. 2000 The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolutionNat. Struct. Biol 7 1055Google ScholarPubMed
Girvin, M. E.Rastogi, V. K.Albildgaard, F.Markley, J. L.Fillingame, R. H. 1998 Solution structure of the transmembrane H+-transporting subunit c of the F1Fo ATP synthaseBiochemistry 37 8817CrossRefGoogle Scholar
Gogol, E. P. 1994 Electron microscopy of the F1Fo ATP synthase: from structure to functionMicrosc. Res. Tech 27 294CrossRefGoogle Scholar
Gogol, E. P.Johnston, E.Aggeler, R.Capaldi, R. A. 1990 Ligand-dependent structural variations in F1 ATPase revealed by cryoelectron microscopyProc. Natl. Acad. Sci. U.S.A 87 9585CrossRefGoogle ScholarPubMed
Greie, J. C.Heitkamp, T.Altendorf, K. 2004 The transmembrane domain of subunit b of the F1FO ATP synthase is sufficient for H+-translocating activity together with subunits a and cEur. J. Biochem 271 3036CrossRefGoogle Scholar
Groth, G.Tilg, Y.Schirwitz, K. 1998 Molecular architecture of the c-subunit oligomer in the membrane domain of F-ATPases probed by tryptophan substitution mutagenesisJ. Mol. Biol 281 49CrossRefGoogle ScholarPubMed
Groth, G.Walker, J. E. 1997 Model of the c-subunit oligomer in the membrane domain of F-ATPasesFEBS Lett 410 117CrossRefGoogle ScholarPubMed
Hara, K. Y.Kato-Yamada, Y.Kikuchi, Y.Hisabori, T.Yoshida, M. 2001 The role of the βDELSEED motif of F1-ATPase: propagation of the inhibitory effect of the ɛ-subunitJ. Biol. Chem 276 23969CrossRefGoogle Scholar
Hartzog, P. E.Cain, B. D. 1994 Second-site supressor mutations at Glycine 218 and Histidine 245 in the a subunit of F1Fo ATP synthase in J. Biol. Chem 269 32313Google Scholar
Hasler, K.Engelbrecht, S.Junge, W. 1998 Three-stepped rotation of subunits γ and ɛ in single molecules of F-ATPase as revealed by polarized, confocal fluorometryFEBS Lett 426 301CrossRefGoogle Scholar
Hayashi, S.Ueno, H.Iino, R.Noji, H. 2010 Fluctuation theorem applied to F1-ATPasePhys. Rev. Lett 104 1CrossRefGoogle ScholarPubMed
Heise, R.Reidlinger, J.Müller, V.Gottschalk, G. 1991 A sodium-stimulated ATP synthase in the acetogenic bacterium FEBS Lett 295 119CrossRefGoogle ScholarPubMed
Hicks, D. B.Krulwich, T. A. 1990 Purification and reconstitution of the F1Fo-ATP synthase from alkaliphilic OF4. Evidence that the enzyme translocates H+ but not Na+J. Biol. Chem 265 20547Google Scholar
Hicks, D. B.Liu, J.Fujisawa, M.Krulwich, T. A. 2010 F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptationsBiochim. Biophys. Acta 1797 1362CrossRefGoogle Scholar
Hoffmann, A.Dimroth, P. 1990 The ATPase of . Purification and properties of the enzymeEur. J. Biochem 194 423CrossRefGoogle ScholarPubMed
Hoppe, J.Sebald, W. 1986 Topological studies suggest that the pathway of the protons through Fo is provided by amino acid residues accessible from the lipid phaseBiochimie 68 427CrossRefGoogle Scholar
Hornung, T.Ishmukhametov, R.Spetzler, D.Martin, J.Frasch, W. D. 2008 Determination of torque generation from the power stroke of F1-ATPaseBiochim. Biophys. Acta 1777 579CrossRefGoogle ScholarPubMed
Howitt, S. M.Lightowlers, R. N.Gibson, F.Cox, G. B. 1990 Mutational analysis of the function of the a-subunit of the FoF1-ATPase of Biochim. Biophys. Acta1015264Google Scholar
Iino, R.Rondelez, Y.Yoshida, M.Noji, H. 2005 Chemomechanical coupling in single-molecule F-type ATP synthaseJ. Bioenerg. Biomembr 37 451CrossRefGoogle ScholarPubMed
Ishmukhametov, R.Hornung, T.Spetzler, D.Frasch, W. D. 2010 o1EMBO J 29 3911CrossRef
Itoh, H.Takahashi, A.Adachi, K.Noji, H.Yasuda, R.Yoshida, M.Kinosita, K. 2004 Mechanically driven ATP synthesis by F1-ATPaseNature 427 465CrossRefGoogle ScholarPubMed
Jäger, H.Birkenhäger, R.Stalz, W. D.Altendorf, K.Deckers-Hebestreit, G. 1998 Topology of subunit a of the ATP synthaseEur. J. Biochem 251 122CrossRefGoogle ScholarPubMed
Jiang, W.Fillingame, R. H. 1998 Interacting helical faces of subunits a and c in the F1Fo ATP synthase of defined by disulfide cross-linkingProc. Natl. Acad. Sci. U.S.A 95 6607CrossRefGoogle Scholar
Jiang, W.Hermolin, J.Fillingame, R. H. 2001 The preferred stoichiometry of c subunits in the rotary sector of ATP synthase is 10Proc. Natl. Acad. Sci. U.S.A 98 4966CrossRefGoogle ScholarPubMed
Johnson, K. M.Swenson, L.Opipari, A. W.Reuter, R.Zarrabi, N.Fierke, C. A.Börsch, M.Glick, G. D. 2009 Mechanistic basis for differential inhibition of the F1Fo-ATPase by aurovertinBiopolymers 91 830CrossRefGoogle ScholarPubMed
Jones, P. C.Fillingame, R. H. 1998 Genetic fusions of subunit c in the Fo sector of the H+-transporting ATP synthase. Functional dimers and trimers and determination of stoichiometry by crosslinking analysisJ. Biol. Chem 273 29701CrossRefGoogle Scholar
Jones, P. C.Hermolin, J.Jiang, W.Fillingame, R. H. 2000 Insights into the rotary catalytic mechanism of FoF1 ATP synthase from the cross-linking of subunits b and c in the enzymeJ. Biol. Chem 275 31340CrossRefGoogle Scholar
Jones, P. C.Jiang, W.Fillingame, R. H. 1998 Arrangement of the multicopy H+-translocating subunit c in the membrane sector of the F1Fo ATP synthaseJ. Biol. Chem 273 17178CrossRefGoogle Scholar
Junge, W.Lill, H.Engelbrecht, S. 1997 ATP synthase: An electrochemical transducer with rotatory mechanicsTrends Biochem. Sci 22 420CrossRefGoogle ScholarPubMed
Junge, W.Pänke, O.Cherepanov, D. A.Gumbiowski, K.Müller, M.Engelbrecht, S. 2001 Inter-subunit rotation and elastic power transmission in FoF1-ATPaseFEBS Lett 504 152CrossRefGoogle Scholar
Junge, W.Sielaff, H.Engelbrecht, S. 2009 Torque generation and elastic power transmission in the rotary FoF1-ATPaseNature 459 364CrossRefGoogle Scholar
Kagawa, Y.Racker, E. 1966 Partial resolution of the enzymes catalyzing oxidative phosphorylation. VIII. Properties of a factor conferring oligomycin sensitivity on mitochondrial adenosine triphosphataseJ. Biol. Chem 241 2461Google Scholar
Kagawa, Y.Racker, E. 1966 Partial resolution of the enzymes catalyzing oxidative phosphorylation. X. Correlation of morphology and function in submitochondrial particlesJ. Biol. Chem 241 2475Google Scholar
Kaim, G.Dimroth, P. 1999 ATP synthesis by F-type ATP synthase is obligatorily dependent on the transmembrane voltageEMBO J 18 4118CrossRefGoogle ScholarPubMed
Kaim, G.Prummer, M.Sick, B.Zumofen, G.Renn, A.Wild, U. P.Dimroth, P. 2002 Coupled rotation within single FoF1 enzyme complexes during ATP synthesis or hydrolysisFEBS Lett 525 156CrossRefGoogle ScholarPubMed
Kanazawa, H.Mabuchi, K.Kayano, T.Noumi, T.Sekiya, T.Futai, M. 1981 Nucleotide sequence of the genes for Fo components of the proton-translocating ATPase from : prediction of the primary structure of Fo subunitsBiochem. Biophys. Res. Commun 103 613CrossRefGoogle Scholar
Kato-Yamada, Y.Noji, H.Yasuda, R.Kinosita, K.Yoshida, M. 1998 Direct observation of the rotation of the ɛ subunit in F1-ATPaseJ. Biol. Chem 273 19375CrossRefGoogle Scholar
Kettner, C.Bertl, A.Obermeyer, G.Slayman, C.Bihler, H. 2003 Electrophysiological analysis of the yeast V-type proton pump: variable coupling ratio and proton shuntBiophys. J 85 3730CrossRefGoogle ScholarPubMed
Kinosita, K.Yasuda, R.Noji, H.Ishiwata, S.Yoshida, M. 1998 F1-ATPase: a rotary motor made of a single moleculeCell 93 21CrossRefGoogle ScholarPubMed
Kluge, C.Dimroth, P. 1994 Modification of isolated subunit c of the F1Fo-ATPase from by dicyclohexylcarbodiimideFEBS Lett 340 245CrossRefGoogle ScholarPubMed
Krah, A.Pogoryelov, D.Langer, J. D.Bond, P. J.Meier, T.Faraldo-Gómez, J. D. 2010 Structural and energetic basis for H+ versus Na+ binding selectivity in ATP synthase Fo rotorsBiochim. Biophys. Acta 1797 763CrossRefGoogle ScholarPubMed
Kramer, D. M.Cruz, J. A.Kanazawa, A. 2003 Balancing the central roles of the thylakoid proton gradientTrends Plant Sci 8 27CrossRefGoogle ScholarPubMed
Krebstakies, T.Aldag, I.Altendorf, K.Greie, J. C.Deckers-Hebestreit, G. 2008 The stoichiometry of subunit c of ATP synthase is independent of its rate of synthesisBiochemistry 47 6907CrossRefGoogle ScholarPubMed
Krebstakies, T.Zimmermann, B.Gräber, P.Altendorf, K.Börsch, M.Greie, J. C. 2005 Both rotor and stator subunits are necessary for efficient binding of F1 to Fo in functionally assembled ATP synthaseJ. Biol. Chem 280 33338CrossRefGoogle Scholar
Langemeyer, L.Engelbrecht, S. 2007 Essential arginine in subunit a and aspartate in subunit c of FoF1 ATP synthase: effect of repositioning within helix 4 of subunit a and helix 2 of subunit cBiochim. Biophys. Acta 1767 998CrossRefGoogle ScholarPubMed
Langen, P.Hucho, F. 2008 Karl Lohmann and the discovery of ATPAngew. Chem. Int. Ed. Engl 47 1824CrossRefGoogle ScholarPubMed
Lau, W. C.Rubinstein, J. L. 2010 Structure of intact V-ATPase by cryo-EM reveals organization of the membrane-bound VO motorProc. Natl. Acad. Sci. U.S.A 107 1367CrossRefGoogle Scholar
Laubinger, W.Dimroth, P. 1987 Characterization of the Na+-stimulated ATPase of as an enzyme of the F1Fo typeEur. J. Biochem 168 475CrossRefGoogle Scholar
Lee, L. K.Stewart, A. G.Donohoe, M.Bernal, R. A.Stock, D. 2010 The structure of the peripheral stalk of H+-ATPase/synthaseNat. Struct. Mol. Biol 17 373CrossRefGoogle ScholarPubMed
Lightowlers, R. N.Howitt, S. M.Hatch, L.Gibson, F.Cox, G. 1988 The proton pore in the FoF1-ATPase: Substitution of glutamate by glutamine at position 219 of the a-subunit prevents Fo-mediated proton permeabilityBiochim. Biophys. Acta 933 241CrossRefGoogle Scholar
Lightowlers, R. N.Howitt, S. M.Hatch, L.Gibson, F.Cox, G. B. 1987 The proton pore in FoF1- ATPase: A requirement of arginine at position 210 of the a-subunitBiochim. Biophys. Acta 894 399CrossRefGoogle Scholar
Lipmann, F. 1941 Metabolic generation and utilization of phosphate bond energyAdv. Enzymol 1 99Google Scholar
Lötscher, H. R.Dejong, C.Capaldi, R. A. 1984 Inhibition of the adenosinetriphosphatase activity of F1 by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide is due to modification of several carboxyls in the β subunitBiochemistry 23 4134CrossRefGoogle ScholarPubMed
Lutter, R.Abrahams, J. P.Van Raaij, M. J.Todd, R. J.Lundqvist, T.Buchanan, S. K.Leslie, A. G.Walker, J. E. 1993 Crystallization of F1-ATPase from bovine heart mitochondriaJ. Mol. Biol 229 787CrossRefGoogle ScholarPubMed
Masaike, T.Koyama-Horibe, F.Oiwa, K.Yoshida, M.Nishizaka, T. 2008 Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80 degrees and 40 degrees substep rotationsNat. Struct. Mol. Biol 15 1326CrossRefGoogle ScholarPubMed
Matthey, U.Kaim, G.Braun, D.Wüthrich, K.Dimroth, P. 1999 NMR studies of subunit c of the ATP synthase from in dodecylsulfate micellesEur. J. Biochem 261 459CrossRefGoogle Scholar
Matthies, D.Preiss, L.Klyszejko, A. L.Müller, D. J.Cook, G. M.Vonck, J.Meier, T. 2009 The c13 ring from a thermoalkaliphilic ATP synthase reveals an extended diameter due to a special structural regionJ. Mol. Biol 388 611CrossRefGoogle ScholarPubMed
Mckinney, S. A.Joo, C.Ha, T 2006 Analysis of single-molecule FRET trajectories using hidden Markov modelingBiophys. J 91 1941CrossRefGoogle ScholarPubMed
Mclachlin, D. T.Bestard, J. A.Dunn, S. D. 1998 The b and δ subunits of the ATP synthase interact via residues in their C-terminal regionsJ. Biol. Chem 273 15162CrossRefGoogle Scholar
Mclachlin, D. T.Dunn, S. D. 1997 Dimerization interactions of the b-subunit of the F1Fo-ATPaseJ. Biol. Chem 272 21233CrossRefGoogle Scholar
Meier, T.Dimroth, P. 2002 Intersubunit bridging by Na+ ions as a rationale for the unusual stability of the c-rings of Na+-translocating F1Fo ATP synthasesEMBO Rep 3 1094CrossRefGoogle Scholar
Meier, T.Ferguson, S. A.Cook, G. M.Dimroth, P.Vonck, J. 2006 Structural investigations of the membrane-embedded rotor ring of the F-ATPase from J. Bacteriol 188 7759CrossRefGoogle Scholar
Meier, T.Krah, A.Bond, P. J.Pogoryelov, D.Diederichs, K.Faraldo-Gómez, J. D. 2009 Complete ion-coordination structure in the rotor ring of Na+-dependent F-ATP synthasesJ. Mol. Biol 391 498CrossRefGoogle ScholarPubMed
Meier, T.Matthey, U.Henzen, F.Dimroth, P.Müller, D. J. 2001 The central plug in the reconstituted undecameric c cylinder of a bacterial ATP synthase consists of phospholipidsFEBS Lett 505 353CrossRefGoogle ScholarPubMed
Meier, T.Matthey, U.von Ballmoos, C.Vonck, J.Krug von Nidda, T.Kühlbrandt, W.Dimroth, P. 2003 Evidence for structural integrity in the undecameric c-rings isolated from sodium ATP synthasesJ. Mol. Biol 325 389CrossRefGoogle ScholarPubMed
Meier, T.Morgner, N.Matthies, D.Pogoryelov, D.Keis, S.Cook, G. M.Dimroth, P.Brutschy, B. 2007 A tridecameric c ring of the adenosine triphosphate (ATP) synthase from the thermoalkaliphilic sp. strain TA2.A1 facilitates ATP synthesis at low electrochemical proton potentialMol. Microbiol 65 1181CrossRefGoogle ScholarPubMed
Meier, T.Polzer, P.Diederichs, K.Welte, W.Dimroth, P. 2005 Structure of the rotor ring of F-type Na+-ATPase from Science 308 659CrossRefGoogle Scholar
Meier, T.Yu, JRaschle, T.Henzen, F.Dimroth, P.Müller, D. J. 2005 Structural evidence for a constant c11 ring stoichiometry in the sodium F-ATP synthaseFEBS J 272 5474CrossRefGoogle ScholarPubMed
Mitchell, P. 1961 Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanismNature 191 144CrossRefGoogle Scholar
Mitchell, P.Moyle, J. 1967 Chemiosmotic hypothesis of oxidative phosphorylationNature 213 137CrossRefGoogle ScholarPubMed
Mitome, N.Ono, S.Sato, H.Suzuki, T.Sone, N.Yoshida, M. 2010 Essential arginine residue of the Fo-a subunit in FoF1-ATP synthase has a role to prevent the proton shortcut without c-ring rotation in the Fo proton channelBiochem. J 430 171CrossRefGoogle Scholar
Mitome, N.Suzuki, T.Hayashi, S.Yoshida, M. 2004 Thermophilic ATP synthase has a decamer c-ring: indication of noninteger 10:3 H+/ATP ratio and permissive elastic couplingProc. Natl. Acad. Sci. U.S.A 101 12159CrossRefGoogle Scholar
Moore, K. J.Angevine, C. M.Vincent, O. D.Schwem, B. E.Fillingame, R. H. 2008 The cytoplasmic loops of subunit a of ATP synthase may participate in the proton translocating mechanismJ. Biol. Chem 283 13044CrossRefGoogle ScholarPubMed
Muench, S. P.Huss, M.Song, C. F.Phillips, C.Wieczorek, H.Trinick, J.Harrison, M. A. 2009 Cryo-electron microscopy of the vacuolar ATPase motor reveals its mechanical and regulatory complexityJ. Mol. Biol 386 989CrossRefGoogle ScholarPubMed
Mulkidjanian, A. Y.Makarova, K. S.Galperin, M. Y.Koonin, E. V. 2007 Inventing the dynamo machine: the evolution of the F-type and V-type ATPasesNat. Rev. Microbiol 5 892CrossRefGoogle ScholarPubMed
Müller, D. J.Dencher, N. A.Meier, T.Dimroth, P.Suda, K.Stahlberg, H.Engel, A.Seelert, H.Matthey, U. 2001 ATP synthase: constrained stoichiometry of the transmembrane rotorFEBS Lett 504 219CrossRefGoogle ScholarPubMed
Murata, T.Arechaga, I.Fearnley, I. M.Kakinuma, Y.Yamato, I.Walker, J. E. 2003 The membrane domain of the Na+-motive V-ATPase from contains a heptameric rotorJ. Biol. Chem 278 21162CrossRefGoogle ScholarPubMed
Murata, T.Yamato, I.Kakinuma, Y.Leslie, A. G.Walker, J. E. 2005 Structure of the rotor of the V-Type Na+-ATPase from Science 308 654CrossRefGoogle Scholar
Nakamoto, R. K.Scanlon, J. A.Al-Shawi, M. K. 2008 The rotary mechanism of the ATP synthaseArch. Biochem. Biophys 476 43CrossRefGoogle ScholarPubMed
Nakanishi-Matsui, M.Futai, M. 2006 Stochastic proton pumping ATPases: from single molecules to diverse physiological rolesIUBMB Life 58 318CrossRefGoogle ScholarPubMed
Nakanishi-Matsui, M.Kashiwagi, S.Hosokawa, H.Cipriano, D. J.Dunn, S. D.Wada, Y.Futai, M. 2006 Stochastic high-speed rotation of ATP synthase F1 sector: the ɛ subunit-sensitive rotationJ. Biol. Chem 281 4126CrossRefGoogle Scholar
Neumann, S.Matthey, U.Kaim, G.Dimroth, P. 1998 Purification and properties of the F1Fo ATPase of , a sodium ion pumpJ. Bacteriol 180 3312Google Scholar
Noji, H.Yasuda, R.Yoshida, M.Kinosita, K. 1997 Direct observation of the rotation of F1-ATPaseNature 386 299CrossRefGoogle ScholarPubMed
Noskov, S. Y.Roux, B. 2008 Control of ion selectivity in LeuT: two Na+ binding sites with two different mechanismsJ. Mol. Biol 377 804CrossRefGoogle ScholarPubMed
Oberfeld, B.Brunner, J.Dimroth, P. 2006 Phospholipids occupy the internal lumen of the c ring of the ATP synthase of Biochemistry 45 1841CrossRefGoogle Scholar
Pänke, O.Cherepanov, D. A.Gumbiowski, K.Engelbrecht, S.Junge, W. 2001 Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzymeBiophys. J 81 1220CrossRefGoogle ScholarPubMed
Pänke, O.Gumbiowski, K.Junge, W.Engelbrecht, S. 2000 F-ATPase: specific observation of the rotating c subunit oligomer of EFoEF1FEBS Lett 472 34CrossRefGoogle Scholar
Parsons, D. F. 1963 Mitochondrial structure: two types of subunits on negatively stained mitochondrial membranesScience 140 985CrossRefGoogle ScholarPubMed
Penefsky, H. S.Pullman, M. E.Datta, A.Racker, E. 1960 Partial resolution of the enzymes catalyzing oxidative phosphorylation. II. Participation of a soluble adenosine tolphosphatase in oxidative phosphorylationJ. Biol. Chem 235 3330Google Scholar
Pogoryelov, D.Krah, A.Langer, J. D.Yildiz, ÖFaraldo-Gomez, J. D.Meier, T. 2010 Microscopic rotary mechanism of ion translocation in the Fo complex of ATP synthasesNat. Chem. Biol 6 891CrossRefGoogle Scholar
Pogoryelov, D.Nikolaev, Y.Schlattner, U.Pervushin, K.Dimroth, P.Meier, T. 2008 Probing the rotor subunit interface of the ATP synthase from FEBS J 275 4850CrossRefGoogle Scholar
Pogoryelov, D.Reichen, C.Klyszejko, A. L.Brunisholz, R.Müller, D. J.Dimroth, P.Meier, T. 2007 The oligomeric state of c rings from cyanobacterial F-ATP synthases varies from 13 to 15J. Bacteriol 189 5895CrossRefGoogle ScholarPubMed
Pogoryelov, D.Faraldo-Gómez, J. D.Meier, T. 2009 High-resolution structure of the rotor ring of a proton-dependent ATP synthaseNat. Struct. Mol. Biol 16 1068CrossRefGoogle ScholarPubMed
Pogoryelov, D.Meier, T.Vonck, J.Dimroth, P.Müller, D. J. 2005 The c15 ring of the F-ATP synthase: F1/Fo symmetry mismatch is not obligatoryEMBO Rep 6 1040CrossRefGoogle Scholar
Preiss, L.Hicks, D. B.Krulwich, T. A.Meier, T. 2010 A new type of proton coordination in an F1Fo-ATP synthase rotor ringPLoS Biology 8CrossRefGoogle Scholar
Pullman, M. E.Penefsky, H. S.Datta, A.Racker, E. 1960 Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphataseJ. Biol. Chem 235 3322Google Scholar
Rastogi, V. K.Girvin, M. E. 1999 Structural changes linked to proton translocation by subunit c of the ATP synthaseNature 402 263Google ScholarPubMed
Rees, D. M.Leslie, A. G.Walker, J. E. 2009 The structure of the membrane extrinsic region of bovine ATP synthaseProc. Natl. Acad. Sci. U.S.A 106 21597CrossRefGoogle ScholarPubMed
Rivera-Torres, I. O.Krueger-Koplin, R. D.Hicks, D. B.Cahill, S. M.Krulwich, T. A.Girvin, M. E. 2004 pa of the essential Glu54 and backbone conformation for subunit c from the H+-coupled F1Fo ATP synthase from an alkaliphilicBacillus. FEBS Lett 575 131CrossRefGoogle Scholar
Rodgers, A. J.Capaldi, R. A. 1998 The second stalk composed of the b- and δ-subunits connects Fo to F1 via an a-subunit in the ATP synthaseJ. Biol. Chem 273 29406CrossRefGoogle Scholar
Rodgers, A. J.Wilkens, S.Aggeler, R.Morris, M. B.Howitt, S. M.Capaldi, R. A. 1997 The subunit δ-subunit b domain of the F1Fo ATPase. The b subunits interact with F1 as a dimer and through the δ subunitJ. Biol. Chem 272 31058CrossRefGoogle Scholar
Rondelez, Y.Tresset, G.Nakashima, T.Kato-Yamada, Y.Fujita, H.Takeuchi, S.Noji, H. 2005 Highly coupled ATP synthesis by F1-ATPase single moleculesNature 433 773CrossRefGoogle ScholarPubMed
Sabbert, D.Engelbrecht, S.Junge, W. 1996 Intersubunit rotation in active F-ATPaseNature 381 623CrossRefGoogle ScholarPubMed
Saita, E.Iino, R.Suzuki, T.Feniouk, B. A.Kinosita, K.Yoshida, M. 2010 Activation and stiffness of the inhibited states of F1-ATPase probed by single-molecule manipulationJ. Biol. Chem 285 11411CrossRefGoogle ScholarPubMed
Sambongi, Y.Iko, Y.Tanabe, M.Omote, H.Iwamoto-Kihara, A.Ueda, I.Yanagida, T.Wada, Y.Futai, M. 1999 Mechanical rotation of the c subunit oligomer in ATP synthase (FoF1): direct observationScience 286 1722CrossRefGoogle Scholar
Sawada, K.Kuroda, N.Watanabe, H.Moritani-Otsuka, C.Kanazawa, H. 1997 Interaction of the δ and b subunits contributes to F1 and Fo interaction in F1Fo-ATPaseJ. Biol. Chem 272 30047CrossRefGoogle Scholar
Schemidt, R. A.Hsu, D. K.Deckers-Hebestreit, G.Altendorf, K.Brusilow, W. S. 1995 The effects of an ribosome-binding site mutation on the stoichiometry of the c subunit in the F1Fo ATPase of Arch. Biochem. Biophys 323 423CrossRefGoogle Scholar
Schemidt, R. A.Williams, J. R.Brusilow, W. S. 1998 Effects of carbon source on expression of Fo genes and on the stoichiometry of the c subunit in the F1Fo ATPase of J. Bacteriol 180 3205Google Scholar
Schneider, E.Altendorf, K. 1984 Subunit b of the membrane moiety (Fo) of ATP synthase (F1Fo) from is indispensable for H+ translocation and binding of the water-soluble F1 moietyProc. Natl. Acad. Sci. U.S.A 81 7279CrossRefGoogle Scholar
Schneider, E.Altendorf, K. 1985 All three subunits are required for the reconstitution of an active proton channel (Fo) of ATP synthase (F1Fo)EMBO J 4 515Google Scholar
Schneider, E.Altendorf, K. 1987 Bacterial adenosine 5ʹ-triphosphate synthase (F1Fo): Purification and reconstitution of Fo complexes and biochemical and functional characterization of their subunitsMicrobiol. Rev 51 477Google Scholar
Schnick, C.Forrest, L. R.Sansom, M. S.Groth, G. 2000 Molecular contacts in the transmembrane c-subunit oligomer of F-ATPases identified by tryptophan substitution mutagenesisBiochim. Biophys. Acta145949Google ScholarPubMed
Seelert, H.Poetsch, A.Dencher, N. A.Engel, A.Stahlberg, H.Müller, D. J. 2000 Proton-powered turbine of a plant motorNature 405 418CrossRefGoogle ScholarPubMed
Senior, A. E. 2007 ATP synthase: motoring to the finish lineCell 130 220CrossRefGoogle ScholarPubMed
Shimabukuro, K.Yasuda, R.Muneyuki, E.Hara, K. Y.Kinosita, K.Yoshida, M. 2003 Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40 degree substep rotationProc. Natl. Acad. Sci. U.S.A 100 14731CrossRefGoogle ScholarPubMed
Singh, S.Turina, P.Bustamante, C. J.Keller, D. J.Capaldi, R. A. 1996 Topographical structure of membrane-bound F1Fo ATP synthase in aqueous bufferFEBS Lett 397 30CrossRefGoogle Scholar
Soper, J. W.Decker, G. L.Pedersen, , P. L. 1979 Mitochondrial ATPase complex. A dispersed, cytochrome-deficient, oligomycin-sensitive preparation from rat liver containing molecules with a tripartite structural arrangementJ. Biol. Chem 254 11170Google ScholarPubMed
Spetzler, D.Ishmukhametov, R.Hornung, T.Day, L. J.Martin, J.Frasch, W. D. 2009 Single molecule measurements of F1-ATPase reveal an interdependence between the power stroke and the dwell durationBiochemistry 48 7979CrossRefGoogle ScholarPubMed
Spetzler, D.York, J.Daniel, D.Fromme, R.Lowry, D.Frasch, W. 2006 Microsecond time scale rotation measurements of single F1-ATPase moleculesBiochemistry 45 3117CrossRefGoogle ScholarPubMed
Stahlberg, H.Müller, D. J.Suda, K.Fotiadis, D.Engel, A.Meier, T.Matthey, U.Dimroth, P. 2001 Bacterial Na+-ATP synthase has an undecameric rotorEMBO Rep 2 229CrossRefGoogle ScholarPubMed
Steed, P. R.Fillingame, R. H. 2008 Subunit a facilitates aqueous access to a membrane-embedded region of subunit c in F1Fo ATP synthaseJ. Biol. Chem 283 12365CrossRefGoogle Scholar
Steed, P. R.Fillingame, R. H. 2009 Aqueous accessibility to the transmembrane regions of subunit c of the F1Fo ATP synthaseJ. Biol. Chem 284 23243CrossRefGoogle Scholar
Steigmiller, S.Turina, P.Gräber, P. 2008 The thermodynamic H+/ATP ratios of the H+-ATPsynthases from chloroplasts and Proc. Natl. Acad. Sci. U.S.A 105 3745CrossRefGoogle Scholar
Stock, D.Gibbons, C.Arechaga, I.Leslie, A. G.Walker, J. E. 2000 The rotary mechanism of ATP synthaseCurr. Opin. Struct. Biol 10 672CrossRefGoogle ScholarPubMed
Stock, D.Leslie, A. G. W.Walker, J. E. 1999 Molecular architecture of the rotary motor in ATP synthaseScience 286 1700CrossRefGoogle ScholarPubMed
Takeyasu, K.Omote, H.Nettikadan, S.Tokumasu, F.Iwamotu-Kihara, A.Futai, M. 1996 Molecular imaging of F1Fo-ATPase in reconstituted membranes using atomic force microscopyFEBS Lett 392 110CrossRefGoogle Scholar
Tanabe, M.Nishio, K.Iko, Y.Sambongi, Y.Iwamoto-Kihara, A.Wada, Y.Futai, M. 2001 Rotation of a complex of the γ subunit and c ring of ATP synthase. The rotor and stator are interchangeableJ. Biol. Chem 276 15269CrossRefGoogle Scholar
Tisler, J.Balasubramanian, G.Naydenov, B.Kolesov, R.Grotz, B.Reuter, R.Boudou, J. P.Curmi, P. A.Sennour, M.Thorel, A.Börsch, M.Aulenbacher, K.Erdmann, R.Hemmer, P. R.Jelezko, F.Wrachtrup, J. 2009 Fluorescence and spin properties of defects in single digit nanodiamondsACS Nano 3 1959CrossRefGoogle ScholarPubMed
Toei, M.Gerle, C.Nakano, M.Tani, K.Gyobu, N.Tamakoshi, M.Sone, N.Yoshida, M.Fujiyoshi, Y.Mitsuoka, K.Yokoyama, K. 2007 Dodecamer rotor ring defines H+/ATP ratio for ATP synthesis of prokaryotic V-ATPase fromThermus thermophilus. Proc. Natl. Acad. Sci. U.S.A 104 20256CrossRefGoogle Scholar
Tsunoda, S. P.Aggeler, R.Yoshida, M.Capaldi, R. 2001 Rotation of the c subunit oligomer in fully functional F1Fo ATP synthaseProc. Natl. Acad. Sci. U.S.A 98 898CrossRefGoogle Scholar
Tsunoda, S. P.Rodgers, A. J.Aggeler, R.Wilce, M. C.Yoshida, M.Capaldi, R. A. 2001 Large conformational changes of the ɛ-subunit in the bacterial F1Fo ATP synthase provide a ratchet action to regulate this rotary motor enzymeProc. Natl. Acad. Sci. USA 98 6560CrossRefGoogle Scholar
Tsuprun, V. L.Orlova, E. V.Mesyanzhinova, I. V. 1989 Structure of the ATP-synthase studied by electron microscopy and image processingFEBS Lett 244 279CrossRefGoogle ScholarPubMed
Turina, P.Samoray, D.Gräber, P. 2003 H+/ATP ratio of proton transport-coupled ATP synthesis and hydrolysis catalysed by CFoF1-liposomesEMBO J 22 418CrossRefGoogle Scholar
Ueno, H.Suzuki, T.Kinosita, K.Yoshida, M. 2005 ATP-driven stepwise rotation of FoF1-ATP synthaseProc. Natl. Acad. Sci. U.S.A 102 1333CrossRefGoogle ScholarPubMed
Valiyaveetil, F. I.Fillingame, R. H. 1998 Transmembrane topography of subunit a in the F1Fo ATP synthaseJ. Biol. Chem 273 16241CrossRefGoogle Scholar
Vik, S. B.Antonio, B. J. 1994 A mechanism of proton translocation by F1Fo ATP synthases by double mutants of the a subunitJ. Biol. Chem 269 30364Google Scholar
Vollmar, M.Schlieper, D.Winn, M.Buchner, C.Groth, G. 2009 Structure of the c14 rotor ring of the proton translocating chloroplast ATP synthaseJ. Biol. Chem 284 18228CrossRefGoogle ScholarPubMed
Ballmoos, C 2008 Unique rotary ATP synthase and its biological diversityAnnu. Rev. Biophys 37 43CrossRefGoogle Scholar
Ballmoos, C 2009 Essentials for ATP synthesis by F1Fo ATP synthasesAnnu. Rev. Biochem 78 649CrossRefGoogle Scholar
Vonck, J.Pisa, K. Y.Morgner, N.Brutschy, B.Müller, V. 2009 Three-dimensional structure of A1Ao ATP synthase from the hyperthermophilic archaeon by electron microscopyJ. Biol. Chem 284 10110CrossRefGoogle Scholar
Vonck, J.Krug von Nidda, T. K.Meier, T.Matthey, U.Mills, D. J.Kühlbrandt, W.Dimroth, P. 2002 Molecular architecture of the undecameric rotor of a bacterial Na+-ATP synthaseJ. Mol. Biol 321 307CrossRefGoogle ScholarPubMed
Vorburger, T.Ebneter, J. Z.Wiedenmann, A.Morger, D.Weber, G.Diederichs, K.Dimroth, P.von Ballmoos, C. 2008 Arginine-induced conformational change in the c-ring/a-subunit interface of ATP synthaseFEBS J 275 2137CrossRefGoogle ScholarPubMed
Wächter, A.Dunn, S. D.Cain, B. D.Sielaff, H.Wintermann, F.Engelbrecht, S.Junge, W. 2011 Two rotary motors in F-ATP synthase are elastically coupled by a flexible rotor and a stiff stator stalkProc. Natl. Acad. Sci. U.S.A 108 3924CrossRefGoogle Scholar
Wada, W.Long, J. C.Zhang, D.Vik, S. B. 1999 A novel labeling approach supports the five-transmembrane model of subunit a of the ATP synthaseJ. Biol. Chem 274 17353CrossRefGoogle ScholarPubMed
Walker, J. E. 1997 ATP synthesis by rotary catalysisNobel Lecture, December 8, 1997Google Scholar
Walker, J. E.Saraste, M.Gay, N. J. 1982 F1-ATPase interacts with a membrane protein component of a proton channelNature 298 867CrossRefGoogle ScholarPubMed
Walker, J. E.Saraste, M.Gay, N. J. 1984 The operon. Nucleotide sequence, regulation and structure of ATP-synthaseBiochim. Biophys. Acta 768 164CrossRefGoogle ScholarPubMed
Walker, J. E.Saraste, M.Runswick, M. J.Gay, N. J. 1982 Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding foldEMBO J 1 945Google Scholar
Watt, I. N.Montgomery, M. G.Runswick, M. J.Leslie, A. G.Walker, J. E. 2010 Bioenergetic cost of making an adenosine triphosphate molecule in animal mitochondriaProc. Natl. Acad. Sci. U.S.A 107 16823CrossRefGoogle ScholarPubMed
Watts, S. D.Tang, C.Capaldi, R. A. 1996 The stalk region of the ATP synthase. Tyrosine 205 of the γ subunit is in the interface between the F1 and Fo parts and can interact with both the ɛ and c oligomerJ. Biol. Chem 271 28341CrossRefGoogle Scholar
Weber, J.Muharemagic, A.Wilke-Mounts, S.Senior, A. E. 2003 F1Fo-ATP synthase. Binding of d subunit to a 22-residue peptide mimicking the N-terminal region of a subunitJ. Biol. Chem 278 13623CrossRefGoogle Scholar
Weber, J.Wilke-Mounts, S.Senior, A. E. 1994 Cooperativity and stoichiometry of substrate binding to the catalytic sites of F1-ATPase. Effects of magnesium, inhibitors, and mutationJ. Biol. Chem 269 20462Google ScholarPubMed
Wehrle, F.Appoldt, Y.Kaim, G.Dimroth, P. 2002 Reconstitution of Fo of the sodium ion translocating ATP synthase of from its heterologously expressed and purified subunitsEur. J. Biochem 269 2567CrossRefGoogle Scholar
Wehrle, F.Kaim, G.Dimroth, P. 2002 Molecular mechanism of the ATP synthase's Fo motor probed by mutational analyses of subunit aJ. Mol. Biol 322 369CrossRefGoogle Scholar
Westheimer, F. H. 1987 Why nature chose phosphatesScience 235 1173CrossRefGoogle ScholarPubMed
Wilkens, S.Borchardt, D.Weber, J.Senior, A. E. 2005 Structural characterization of the interaction of the δ and a subunits of the F1Fo-ATP synthase by NMR spectroscopyBiochemistry 44 11786CrossRefGoogle Scholar
Wilkens, S.Capaldi, R. A. 1998 ATP synthase's second stalk comes into focusNature 393 29CrossRefGoogle ScholarPubMed
Wilkens, S.Dunn, S. D.Chandler, J.Dahlquist, F. W.Capaldi, R. A. 1997 Solution structure of the N-terminal domain of the δ subunit of the ATP synthaseNat. Struct. Biol 4 198CrossRefGoogle Scholar
Yasuda, R.Noji, H.Kinosita, K.Yoshida, M. 1998 F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree stepsCell 93 1117CrossRefGoogle ScholarPubMed
Yasuda, R.Noji, H.Yoshida, M.Kinosita, K.Itoh, H. 2001 Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPaseNature 410 898CrossRefGoogle ScholarPubMed
Zhang, D.Vik, S. B. 2003 Helix packing in subunit a of the ATP synthase as determined by chemical labeling and proteolysis of the cysteine-substituted proteinBiochemistry 42 331CrossRefGoogle ScholarPubMed
Zhang, Y.Fillingame, R. H. 1995 Subunits coupling H+ transport and ATP synthesis in the ATP synthase. Cys-Cys cross-linking of F1 subunit ɛ to the polar loop of Fo subunit cJ. Biol. Chem 270 24609CrossRefGoogle Scholar
Zhou, Y.Duncan, T. M.Cross, R. L. 1997 Subunit rotation in FoF1-ATP synthase during oxidative phosphorylationProc. Natl. Acad. Sci. U.S.A 94 10583CrossRefGoogle ScholarPubMed
Zimmermann, B.Diez, M.Börsch, M.Gräber, P. 2006 Subunit movements in membrane-integrated EFoF1 during ATP synthesis detected by single-molecule spectroscopyBiochim. Biophys. Acta 1757 311CrossRefGoogle Scholar
Zimmermann, B.Diez, M.Zarrabi, N.Gräber, P.Börsch, M. 2005 Movements of the ɛ-subunit during catalysis and activation in single membrane-bound H+-ATP synthaseEMBO J 24 2053CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×