Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: May 2018


[1] M., Abramowitz and I. E., Stegun. Handbook of Mathematical Functions. Washington, D.C.: National Bureau of Standards, 1964.
[2] B. J., Alder, D. A., Young, and M. A., Mark. Studies in molecular dynamics. 10. Corrections to augmented van der Waals theory for square-well fluid. J. Chem. Phys., 56:3013–3029, 1972.
[3] T., Allen. Particle Size Measurement. London: Chapman and Hall, 5th edn., 1997.
[4] S., Anand, J. P., Grolier, O., Kiyohara, C. J., Halpin, and G. C., Benson. Thermodynamic properties of some cycloalkane-cycloalkanol systems at 298.15 K. III. J. Chem. Eng. Data, 20:184–189, 1975.
[5] A., Anderko. Cubic and generalized van der Waals equations, in Equations of State for Fluids and Fluid Mixtures, pages 75–126. Amsterdam: Elsevier, 2000.
[6] A. J., Appleby and F. R., Foulkes. Fuel Cell Handbook. Morgantown, VA: U.S. Department of Energy, 5th edn., 2000. Available online at
[7] K. A., Arora, A. J., Lesser, and T. J., McCarthy. Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules, 31:4614–4620, 1998.
[8] R. D., Astumian and P., Hänggi. Brownian motors. Phys. Today, 55(11):33–39, 2002.
[9] W., Barthlott and C., Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces. PLANTA, 202:1–8, 1997.
[10] M., Benedict, G. B., Webb, and L. C., Rubin. An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures. Constants for twelve hydrocarbons. Chem. Eng. Progress, 47:419–422, 1951.
[11] A. N., Beris and B. J., Edwards. Thermodynamics of Flowing Systems with Internal Microstructure. New York: Oxford University Press, 1994.
[12] R. B., Bird. The basic concepts in transport phenomena. Chem. Eng. Educ., Spring:102–109, 1993.
[13] R. B., Bird, O., Hassager, R. C., Armstrong, and C. F., Curtiss. Dynamics of Polymeric Liquids Vol. I: Rheology. New York: Addison-Wesley, 2nd edn., 1987.
[14] R. B., Bird, W. E., Stewart, and E. N., Lightfoot. Transport Phenomena. New York: John Wiley and Sons, 1960.
[15] I., Brown and F., Smith. Liquid-vapor equilibria. The system carbon tetrachloride + acetonitrile at 45 °C. Australian J. Chem., 7:269–272, 1954.
[16] S., Brunauer, P. H., Emmett, and E., Teller. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc., 60:309–319, 1938.
[17] H. A., Bumstead. Josiah Willard Gibbs. The Collected Works. New York: Longmans, Green, 1928.
[18] C., Bustamante, J. F., Marko, E. D., Siggia, and S., Smith. Entropic elasticity of λ-phage DNA. Science, 265:1599–1600, 1994.
[19] H. J., Butt, K., Graf, and M., Kappl. Physics and Chemistry of Interfaces. Weinheim: Wiley-VCH, 2003.
[20] D., Buttin, M., DuPont, M., Straumann et al. Development and operation of a 150 W air-feed direct methanol fuel cell stack. J. Appl. Electrochem., 31:275–279, 2001.
[21] H. B., Callen. Thermodynamics and an Introduction to Thermostatistics. New York: Wiley, 2nd edn., 1985.
[22] N. F., Carnahan and K. E., Starling. Intermolecular repulsions and equation of state for fluids. AICh E J., 18:1184–1189, 1972.
[23] A. B. D., Cassie and S., Baxter. Wettability of porous surfaces. Trans. Faraday Soc., 40:546–551, 1944.
[24] D., Chandler. Introduction to Modern Statistical Mechanics. New York: Oxford University Press, 1987.
[25] M. W., Chase Jr., C. A., Davies, J. R., Downey Jr., et al. JANAF thermochemical tables, 3rd edn. J. Phys. Chem. Ref. Data, 14, Supplement No. 1, 1985.
[26] S. Jer, Chen, I. G., Economou, and M., Radosz. Density-tuned polyolefin phase equilibria. 2. Multi-component solutions of alternating poly(ethylene-propylene) in subcritical and supercritical olefins. Experiment and SAFT model. Macromolecules, 25(19):4987–4995, 1992.
[27] N., Choudhury and B. M., Pettitt. On the mechanism of hydrophobic association of nanoscopic solutes. J. Am. Chem. Soc., 127:3556–3567, 2005.
[28] R., Clausius. Über den zweiten Hauptsatz der mechanischen Wärmetheorie. Braunschweig: Friedrich Vieweg und Sohn, 1867.
[29] K. K., Crain. An investigation of the Benedict-Webb-Rubin equation. Masters of Engineering, University of Louisville, 1972.
[30] C., Danilowicz, Y., Kafri, R. S., Conroy et al. Measurement of the phase diagram of DNA unzipping in the temperature-force plane. Phys. Rev. Lett., 93(7):078101, 2004.
[31] J. R., Dann. Forces involved in the adhesive process. I. Critical surface tensions of polymeric solids as determined with polar liquids. J. Colloid Interface Sci., 32:302–320, 1970.
[32] M., Daune. Molecular Biophysics: Structures in Motion. Oxford: Oxford University Press, 2003.
[33] S. R., De Groot and P., Mazur. Non-Equilibrium Thermodynamics. New York: Dover Publications, 1984.
[34] J. A., Dean, editor. Lange's Handbook of Chemistry. New York: McGraw-Hill, 12th edn., 1978.
[35] J. H., Dymond and E. B., Smith. The Virial Coefficients of Pure Gases and Mixtures. Oxford: Clarendon Press, 1980.
[36] C., Eckert. The thermodynamics of irreversible processes. Phys. Rev., 58:267–269, 1940.
[37] L., Eötvös. Über den Zusammenhang der Oberflächenspannung der Flüssigkeiten mit ihrem Molekular¬volumen. Ann. Phys. Chem., 27:448–459, 1886.
[38] R. M., Felder and R. W., Rousseau. Elementary Principles of Chemical Processes. New York: John Wiley & Sons, 2nd edn., 1986.
[39] J. D., Ferry. Viscoelastic Properties of Polymers. New York: John Wiley & Sons, 3rd edn., 1980.
[40] R. P., Feynman, R. B., Leighton, and M., Sands. The Feynman Lectures on Physics: Volume I. Mainly Mechanics, Radiation and Heat. Reading, MA: Addison-Wesley, 1963.
[41] P. J., Flory. Principles of Polymer Chemistry. Ithaca, NY: Cornell University Press, 1953.
[42] P. J., Flory. Statistical Mechanics of Chain Molecules. Munich: Hanser, 1988.
[43] H. S., Fogler. Elements of Chemical Reaction Engineering. Upper Saddle River, NJ: Prentice-Hall, 3rd edn., 1998.
[44] R. H., Fowler and E. A., Guggenheim. Statistical Thermodynamics. Cambridge: Cambridge University Press, 1939.
[45] R., Fürstner, W., Barthlott, C., Neinhuis, and P., Walzel. Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir, 21:956–961, 2005.
[46] A. G., Gaonkar and R. D., Neuman. The uncertainties in absolute value of surface tension of water. Colloids Surfaces, 27:1–14, 1987.
[47] A., Garg, E., Gulari, and C. W., Manke. Thermodynamics of polymer melts swollen with supercritical gases. Macromolecules, 27:5643–5653, 1994.
[48] J. G., Gay and B. J., Berne. Modification of the overlap potential to mimic a linear site-site potential. J. Chem. Phys., 74:3316–3319, 1981.
[49] K., Graf and H., Riegler. Molecular adhesion interactions between Langmuir monolayers and solid substrates. Colloids Surfaces A: Physicochem. Eng. Aspects, 131:215–224, 1998.
[50] J., Gross, O., Spuhl, F., Tumakaka, and G., Sadowski. Modeling copolymer systems using the perturbed-chain SAFT equation of state. Indust. Eng. Chem. Res., 42(6):1266–1274, 2003.
[51] E. A., Guggenheim. Thermodynamics. Amsterdam: North Holland Publishing Company, 4th edn., 1959.
[52] A. F., Gutsol. The Ranque effect. Phys. – Uspekhi, 40(6):639–658, 1997.
[53] S. T., Hadden. Hydrocarbon Processing Petrol. Refiner, 45:161, 1966.
[54] D. L., Hammick and L. W., Andrew. The determination of the parachors of substances in solution. J. Chem. Soc., 754–759, 1929.
[55] E. J., Henly and E. M., Rosen. Material and Energy Balance Computations. New York: Wiley, 1969.
[56] C. J., Henty, W. J., McManamey, and R. G. H, Prince. The quaternary liquid system benzene-furfural-iso-octane-cyclohexane. J.Appl. Chem., 14:148–155, 1964.
[57] T., Heyduk and J. C., Lee. Application of fluorescence energy transfer and polarization to monitor Escherichia coli cAMP receptor protein and LAC promotor interaction. Proc. Nat. Acad. Sci., 87:1744–1748, 1990.
[58] P. C., Hiemenz and R., Rajagopalan. Principles of Colloid and Surface Chemistry. New York: Marcel Dekker, 1997.
[59] T. L., Hill. An Introduction to Statistical Thermodynamics. New York: Dover, 1986.
[60] T. L., Hill. Thermodynamics of Small Systems, volumes I and II. New York: Dover, 1963 and 1964.
[61] T. L., Hill. Statistical Mechanics. Principles and Selected Applications. New York: Dover, 1987.
[62] R., Hilsch. The use of the expansion of gases in a centrifugal field as a cooling process. Rev. Sci. Instrum., 18(2):108–113, 1947.
[63] D. M., Himmelblau. Basic Principles and Calculations in Chemical Engineering. Upper Saddle River, NJ: Prentice-Hall, 6th edn., 1996.
[64] J. O., Hirschfelder, C. F., Curtiss, and R. B., Bird. Molecular Theory of Gases and Liquids, second corrected printing. New York: John Wiley and Sons, 1954.
[65] J., Honerkamp. Stochastische dynamische Systeme. Berlin: VCH, 1983.
[66] X. H., Huang, R. H., Zhou, and B. J., Berne. Drying and hydrophobic collapse of paraffin plates. J. Phys. Chem. B, 109:3546–3552, 2005.
[67] R. J., Hunter. Foundations of Colloid Science. New York: Oxford University Press, 2nd edn., 2001.
[68] J., Israelachvili. Intermolecular and Surface Forces. London: Academic Press, 2nd edn., 1991.
[69] J. K., Johnson, J. A., Zollweg, and K. E., Gubbins. The Lennard-Jones equation of state revisited. Mol. Phys., 78:591–618, 1993.
[70] S., Kapsabelis and C. A., Prestidge. Adsorption of ethyl(hydroxylethyl) cellulose onto silica particles: the role of surface chemistry and temperature. J. Colloid Interface Sci., 228:297–305, 2000.
[71] A. I., Khinchin. Mathematical Foundations of Information Theory. New York: Dover, 1957.
[72] A. Ya., Kipnis, B. E., Yavelov, and J. S., Rowlinson. Van der Waals and Molecular Science. Oxford: Clarendon Press, 1996.
[73] D., Kondepudi and I., Prigogine. Modern Thermodynamics: From Heat Engines to Dissipative Structures. Chichester: Wiley, 1998.
[74] G., Korösi and E. sz., Kováts. Density and surface tension of 83 organic liquids. J. Chem. Eng. Data, 26:323–332, 1981.
[75] D. E., Koshland, G., Nmethy, and D., Filmer. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry, 5(1):365–385, 1966.
[76] H., Kreuzer. Nonequilibrium Thermodynamics and Its Statistical Foundations. Oxford: Clarendon Press, 1981.
[77] S. M., Lambert, Y., Song, and J. M., Prausnitz. Equations of state for polymer systems, in Equations of State for Fluids and Fluid Mixtures. pages 523–588. Amsterdam: Elsevier, 2000.
[78] L. D., Landau and E. M., Lifshitz. Statistical Physics, volume 1. New York: Pergamon Press, 3rd edn., 1980.
[79] G. N., Lewis and M., Randall. Thermodynamics and the Free Energies of Substances. New York: McGraw Hill, 1923.
[80] G. C., Maitland, M., Rigby, E. B., Smith, and W. A., Wakeham. Intermolecular Forces. Oxford: Oxford Clarendon Press, 1981.
[81] J. F., Marko and E. D., Siggia. Stretching DNA. Macromolecules, 28:8759–8770, 1995.
[82] M. L., McGlashan and D.J.B., Potter. An apparatus for the measurement of the second virial coefficients of vapours; the second virial coefficients of some n-alkanes and of some mixtures of n-alkanes. Proc. Roy. Soc. London A, 267:478–500, 1962.
[83] M. L., McGlashan and C. J., Wormald. Second virial coefficients of some alk-1-enes and of a mixture of propene and hept-1-ene. Trans. Faraday Soc., 60:646–652, 1964.
[84] F. C., Meinzer, M. J., Clearwater, and G., Goldstein. Water transport in trees: current perspectives, new insights, and some controversies. Environ. Exp. Bot., 45:239–262, 2001.
[85] K. H., Meyer and C., Ferri. Sur l'élasticité du caoutchouc. Helv. Chim. Acta, 18:570–589, 1935.
[86] R., Micheletto, H., Fukuda, and M., Ohtsu. A simple method for production of a two-dimensional, ordered array of small latex particles. Langmuir, 11:3333–3336, 1995.
[87] M., Modell and R. C., Reid. Thermodynamics and Its Applications. Englewood Cliffs, NJ: Prentice-Hall, 2nd edn., 1983.
[88] M., Mohsen-Nia, H., Modarress, and G. A., Mansoori. A cubic hard-core equation of state. Fluid Phase Equilibria, 206(1-2):27–39, 2003.
[89] P. S., Murti and M., Van Winkle. Vapor-liquid equilibria for binary systems of methanol, ethyl alcohol, 1-propanol, and 2-propanol with ethyl acetate and 1-propanol-water. Chem. Eng. Data Ser., 3:72–81, 1958.
[90] H., Naghibi, A., Tamura, and J. M., Sturtevant. Significant discrepancies between van't Hoff and calorimetric enthalpies. Proc. Nat. Acad. Sci., 92:5597–5599, 1995.
[91] S., Nath, F. A., Escobedo, and J. J., De Pablo. On the simulation of vapor-liquid equilibria for alkanes. J. Chem. Phys., 108:9905–9911, 1998.
[92] W., Nernst. The New Heat Theorem. New York: Dutton, 1926.
[93] S. L., Oswal, P., Oswal, and J. P., Dave. V(E) of mixtures containing alkyl acetate, or ethyl alkanoate, or ethyl bromoalkanoate with n-hexane. Fluid Phase Equilibria, 98:225–234, 1994.
[94] H. C., Öttinger. Beyond Equilibrium Thermodynamics. Hoboken, NJ: Wiley-Interscience, 2005.
[95] A. Z., Panagiotopoulos, N., Quirke, M., Stapleton, and D. J., Tildesley. Phase equilibria by simulation in the Gibbs ensemble: alternative derivation, generalization and application to mixture and membrane equilibria. Mol. Phys., 63:527–545, 1988.
[96] C., Panayiotou and I., Sanchez. Statistical thermodynamics of associated polymer solutions. Macromolecules, 24:6231–6237, 1991.
[97] W. M., Pardridge. CNS drug design based on principles of blood-brain barrier transport. J. Neurochem., 70(5):1781–1792, 1998.
[98] W. M., Pardridge. Brain Drug Targeting. Cambridge: Cambridge University Press, 2001.
[99] V. A., Parsegian. Van der Waals Forces. Cambridge: Cambridge University Press, 2006.
[100] K. S., Pitzer and R. F., Curl. The volumetric and thermodynamic properties of fluids. III. Empirical equation for the second virial coefficient. J. Am. Chem. Soc., 79:2369–2370, 1957.
[101] K. S., Pitzer. Thermodynamics. New York: McGraw-Hill, 3rd edn., 1995.
[102] B. E., Poling, J. M., Prausnitz, and J. P., O'Connell. The Properties of Gases and Liquids. New York: McGraw-Hill, 5th edn., 2001.
[103] W. H., Press, S. A., Teukolsky, W. T., Vetterling, and B. P., Flannery. Numerical Recipes in FORTRAN: The Art of Scientific Computing. Cambridge: Cambridge University Press, 2nd edn., 1992.
[104] C., Qian, S. J., Mumby, and B. E., Eichinger. Phase diagrams of binary polymer solutions and blends. Macromolecules, 24(7):1655–1661, 1991.
[105] D., Quéré. Non-sticking drops. Rep. Prog. Phys., 68:2495–2532, 2005.
[106] G., Ranque. Expériences sur la détente giratoire avec productions simultanées d'un échappement d'air froid. J. Phys. Radium, 4:1125–1155, 1933.
[107] J. B., Rawlings and J. G., Ekerdt. Chemical Reactor Analysis and Design Fundamentals. Madison, WI: Nob Hill Publishing, 2002.
[108] O., Redlich and J. N. S, Kwong. On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions. Chem. Rev., 44:233–244, 1949.
[109] R. A., Robinson and D. A., Sinclair. The activity coefficients of the alkali chlorides and of lithium iodide in aqueous solution from vapor pressure measurements. J. Am. Chem. Soc., 56:1830–1835, 1934.
[110] P. A., Rodgers. Pressure-volume-temperature relationships for polymeric liquids: a review of equations of state and their characteristic parameters for 56 polymers. J. Appl. Polym. Sci., 48:1061–1080, 1993.
[111] M., Rubinstein and R., Colby. Polymer Physics. Oxford: Oxford University Press, 2003.
[112] D. M., Ruthven, S., Farooq, and K. S., Knaebel. Pressure Swing Adsorption. New York: VCH Publishers, 1994.
[113] I. C., Sanchez and R. H., Lacombe. Statistical thermodynamics of polymer solutions. Macromolecules, 11:1145–1156, 1978.
[114] S. R. S., Sastri and K. K., Rao. A simple method to predict surface tension of organic liquids. Chem. Eng. J., 59:181–186, 1995.
[115] Y., Sato, K., Fujiwara, T., Takikawa et al. Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilibria, 162:261–276, 1999.
[116] Y., Sato, M., Yurugi, K., Fujiwara, S., Takishima, and H., Masuoka. Solubilities of CO2 and N2 in polystyrene under high temperature and pressure. Fluid Phase Equilibria, 125:129–138, 1996.
[117] G., Schmidt and H., Wenzel. A modified van der Waals type equation of state. Chem. Eng. Sci., 35:1503–1512, 1980.
[118] M., Schulz, A., Kandpur, and F., Bates. Phase behavior of polystyrene-poly(2-vinylpyridene) diblock copolymers. Macromolecules, 29(8):2857–2867, 1996.
[119] B., Schwager, L., Chudinovskikh, A., Gavriliuk, and R., Boehler. Melting curve of H2O to 90 GPa measured in a laser-heated diamond cell. J. Phys.: Condens. Matter, 16:S1177–S1179, 2004.
[120] J. V., Sengers, R. F., Kayser, C. J., Peters, and H. J., White. Equations of State for Fluids and Fluid Mixtures. Amsterdam: Elsevier, 2000.
[121] J. Levelt, Sengers. How Fluids Unmix: Discoveries by the School of Van der Waals and Kamerlingh Onnes, Amsterdam: Royal Netherlands Academy of Arts and Sciences, 2002.
[122] J., Levelt Sengers and A. H. M, Levelt. Diederek Korteweg, pioneer of criticality. Phys. Today, 55(12):47–53, 2002.
[123] A. N., Shaw. The derivation of thermodynamical relations for a simple system. Phil. Trans. Royal Soc. London A, 234:299–328, 1935.
[124] P. J., Sides. Scaling of differential equations: analysis of the fourth kind. Chem. Eng. Educ., 36(3):232–235, 2002.
[125] D. A., Sinclair. A simple method for accurate determinations of vapor pressures of solutions. J. Phys. Chem., 37:495–504, 1933.
[126] S. B., Smith, Y., Cui, and C., Bustamante. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science, 271:795–799, 1996.
[127] G., Soave. Rigorous and simplified procedures for determining the pure-component parameters in the Redlich-Kwong equation of state. Chem. Eng. Sci., 35:1725–1729, 1980.
[128] C. L., Stong. The amateur scientist: some delightful engines driven by the heating of rubber bands. Scient. Am., 224(4):119–122, 1971.
[129] G. J., Su and D. S., Viswanath. Generalized thermodynamic properties of real gases. I – Generalized PVT behavior of real gases (generalized compressibility values at reduced temperature and pressure ranges of real gases compared to existing charts). AIChE J., 11:202–204, 1965.
[130] K., Tajima, M., Muramatsu, and T., Sasaki. Radiotracer studies on adsorption of surface active substance at aqueous surfaces. I. Accurate measurement of adsorption of tritiated sodium dodecylsulfate. Bull. Chem. Soc. Japan, 43:1991–1998, 1970.
[131] M., Tambasco and J. E. G, Lipson. Analyzing and predicting polymer fluid and blend properties using minimal pure component data. Macromolecules, 38(7):2990–2998, 2005.
[132] A. S., Teja, S. I., Sandler, and N. C., Patel. A generalization of the corresponding state principle using two nonspherical reference fluids. Chem. Eng. J., 21:21–28, 1981.
[133] J. W., Tester and M., Modell. Thermodynamics and Its Applications. Upper Saddle River, NJ: Prentice-Hall, 3rd edn., 1996.
[134] L. R. G, Treloar. The Physics of Rubber Elasticity. Oxford: Clarendon Press, 2nd edn., 1958.
[135] J. P. M, Trusler. The virial equation of state, in Equations of State for Fluids and Fluid Mixtures, pages 35–74. Amsterdam: Elsevier, 2000.
[136] Y. V., Tsekhanskaya, M. B., Iontem, and E. V., Mushkina. Solubility of naphthalene in ethylene and carbon dioxide under pressure. Russ. J. Phys. Chem. USSR, 38:1173–1176, 1964.
[137] C., Tsonopoulos. An Empirical Correlation of Second Viral Coefficients. AIChE J., 20:263–272, 1974.
[138] C., Tsonopoulos and J. H., Dymond. Second virial coefficients of normal alkanes, linear 1-alkanols (and water), alkyl ethers, and their mixtures. Fluid Phase Equilibria, 133:11–34, 1997.
[139] C., Tsonopoulos, J. H., Dymond, and A. M., Szafranski. Second virial coefficients of normal alkanes, linear 1-alkanols and their binaries. PureAppl. Chem., 61:1387–1394, 1989.
[140] Udovenko, V. V. and Frid, Ts. B. Heats of vaporization of binary mixtures. II. Zh.Fiz.Khim., 22:1135–1145, 1948.
[141] P. T., Underhill and P. S., Doyle. Development of bead-spring polymer models using the constant extension ensemble. J. Rheol., 49(5):963–987, 2005.
[142] J. D. van der, Waals. On the Continuity of the Gaseous and Liquid States. Translated by J. Shipley, Rowlinson. Amsterdam: North-Holland, 1988.
[143] N. G. van, Kampen. Stochastic Processes in Physics and Chemistry. Amsterdam: North-Holland, 1992.
[144] B., Widom. Statistical Mechanics. New York: Cambridge University Press, 2002.
[145] C., Xiao, H., Bianchi, and P. R., Tremaine. Excess molar volumes and densities of (methanol+water) at temperatures between 323 K and 573 K and pressures of 7.0 MPa and 13.5 MPa. J. Chem. Thermodynamics, 29(3):261–286, 1997.
[146] K., Yoshimoto, M. P., Stoykovich, H. B., Cao et al. A two-dimensional model of the deformation of photoresist structures using elastoplastic polymer properties. J. Appl. Phys., 96:1857–1865, 2004.
[147] B. H., Zimm and J. K., Bragg. Theory of the one-dimensional phase transition in polypeptide chains. J. Chem. Phys., 28:1246–1247, 1958.
[148] B. H., Zimm and J. K., Bragg. Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys., 31:526–531, 1959.
[149] U., Zimmermann, H., Schneider, L. H., Wegner et al. What are the driving forces for water lifting in the xylem conduit? Physiologia Plantarum, 114:327–335, 2002.
[150] Y. X., Zuo and E. H., Stenby. Corresponding-states and parachor models for the calculation of interfacial tensions. Can. J. Chem. Eng., 75:1130–1137, 1997.
[151] J. H., Gibbs and E. A., Dimarzio. Statistical mechanics of helix-coil transitions in biological macro-molecules. J. Chem. Phys., 30: 271–282, 1959.
[152] W. G., Chapman, K. E., Gubbins, G., Jackson, and M., Radosz. SAFT: equation of state model for associating fluids. Fluid Phase Equilibria, 52: 31–38, 1989.
[153] A. N., Semenov. Contribution to the theory of microphase layering in block copolymer melts. Sov. Phys. JETP, 61: 733–742, 1985.
[154] A. N., Semenov. Phase equilibria in block copolymer-homopolymer mixtures. Macromolecules, 26: 2273–2281, 1993.
[155] F. S., Bates and G. H., Fredrickson. Block copolymers – designer soft materials. Phys. Today, 52: 32–38, 1999.
[156] In and out of cells in Chemistry for Biologists. Royal Society of Chemistry (2004) Cambridge, UK.
[157] C. G., Hill and T. W., Root. Introduction to Chemical Engineering Kinematics and Reactor Design. New York: John Wiley & Sons, 2014.
[158] Landolt-Börstein. Zahlenwerte und Funktionen. Vol. 1, Part 3. Berlin: Springer-Verlag, 6th ed., 1951.
[159] W. A., Duncan, J. P., Sheridan and F. L., Swinton. Thermodynamic properties of binary systems containing hexafluorobenzene, Part 2 - Excess volumes of mixing and dipole movement. Trans. Faraday Soc., 62: 1090–1096, 1966.
[160] J. M., Prausnitz, R. N., Lichtenthalen and E. Gomes de, Azevedo. Molecular Thermodynamics of Fluid- Phase Equilibria. New Jersey: Prentice-Hall, 3rd ed., 1998.
[161] T. N., Olney, N. M., Cann, G., Cooper and C. E., Brison. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum rules. Chem. Phys., 223:59, 1997.
[162] S. A., Clough, Y., Beers, G. P., Klein and L. S., Rothman. Dipole moment of water from Stak measurements of H2O, HDO and D2O. J. Chem. Phys., 59:2254, 1973.
[163] S. I., Sandler. Chemical, biochemical and engineering thermodynamics. New Jersey: John Wiley & Sons, 4th ed., 2006.