Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-16T21:38:21.823Z Has data issue: false hasContentIssue false

3 - Statistical inference

Published online by Cambridge University Press:  05 November 2012

Eric D. Feigelson
Affiliation:
Pennsylvania State University
G. Jogesh Babu
Affiliation:
Pennsylvania State University
Get access

Summary

The astronomical context

Statistical inference helps the scientist to reach conclusions that extend beyond the obvious and immediate characterization of individual datasets. In some cases, the astronomer measures the properties of a limited sample of objects (often chosen to be brighter or closer than others) in order to learn about the properties of the vast underlying population of similar objects in the Universe. Inference is often based on a statistic, a function of random variables. At the early stages of an investigation, the astronomermight seek simple statistics of the data such as the average value or the slope of a heuristic linear relation. At later stages, the astronomer might measure in great detail the properties of one or a few objects to test the applicability, or to estimate the parameters, of an astrophysical theory thought to underly the observed phenomenon.

Statistical inference is so pervasive throughout these astronomical and astrophysical investigations that we are hardly aware of its ubiquitous role. It arises when the astronomer:

– smooths over discrete observations to understand the underlying continuous phenomenon

– seeks to quantify relationships between observed properties

– tests whether an observation agrees with an assumed astrophysical theory

– divides a sample into subsamples with distinct properties

– tries to compensate for flux limits and nondetections

– investigates the temporal behavior of variable sources

– infers the evolution of cosmic bodies from studies of objects at different stages

– characterizes and models patterns in wavelength, images or space

and many other situations.

Type
Chapter
Information
Modern Statistical Methods for Astronomy
With R Applications
, pp. 35 - 75
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Statistical inference
  • Eric D. Feigelson, Pennsylvania State University, G. Jogesh Babu, Pennsylvania State University
  • Book: Modern Statistical Methods for Astronomy
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015653.004
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Statistical inference
  • Eric D. Feigelson, Pennsylvania State University, G. Jogesh Babu, Pennsylvania State University
  • Book: Modern Statistical Methods for Astronomy
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015653.004
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Statistical inference
  • Eric D. Feigelson, Pennsylvania State University, G. Jogesh Babu, Pennsylvania State University
  • Book: Modern Statistical Methods for Astronomy
  • Online publication: 05 November 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139015653.004
Available formats
×