Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T17:24:09.286Z Has data issue: false hasContentIssue false

4 - Spatial constancy and the brain: insights from neural networks

from Part II - The use of artificial neural networks to elucidate the nature of perceptual processes in animals

Published online by Cambridge University Press:  05 July 2011

Robert L. White III
Affiliation:
Washington University School of Medicine
Lawrence H. Snyder
Affiliation:
Washington University School of Medicine
Colin R. Tosh
Affiliation:
University of Leeds
Graeme D. Ruxton
Affiliation:
University of Glasgow
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, R. A., Bracewell, R. M., Barash, S., Gnadt, J. W. & Fogassi, L. 1990. Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque. J Neurosci 10, 1176–1196.CrossRefGoogle ScholarPubMed
Andersen, R. A., Brotchie, P. R. & Mazzoni, P. 1992. Evidence for the lateral intraparietal area as the parietal eye field. Curr Opin Neurobiol 2, 840–846.CrossRefGoogle ScholarPubMed
Andersen, R. A. & Mountcastle, V. B. 1983. The influence of the angle of gaze upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J Neurosci 3, 532–548.CrossRefGoogle ScholarPubMed
Baker, J. T., Harper, T. M. & Snyder, L. H. 2003. Spatial memory following shifts of gaze. I. Saccades to memorized world-fixed and gaze-fixed targets. J Neurophysiol 89, 2564–2576.CrossRefGoogle ScholarPubMed
Baker, J. T., White, R. L. & Snyder, L. H. 2002. Reference frames and spatial memory operations: area LIP and saccade behavior. Soc Neurosci Abstr 57.16.Google Scholar
Balan, P. F. & Ferrera, V. P. 2003. Effects of gaze shifts on maintenance of spatial memory in macaque frontal eye field. J Neurosci 23, 5446–5454.CrossRefGoogle ScholarPubMed
Bridgeman, B. 1995. A review of the role of efference copy in sensory and oculomotor control systems. Ann Biomed Eng 23, 409–422.CrossRefGoogle ScholarPubMed
Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci 12, 4745–4765.CrossRefGoogle ScholarPubMed
Cassanello, C. R. & Ferrera, V. P. 2004. Vector subtraction using gain fields in the frontal eye fields of macaque monkeys. Soc Neurosci Abstr 186.11.Google Scholar
Colby, C. L., Duhamel, J. R. & Goldberg, M. E. 1995. Oculocentric spatial representation in parietal cortex. Cereb Cortex 5, 470–481.CrossRefGoogle ScholarPubMed
Deubel, H., Bridgeman, B. & Schneider, W. X. 1998. Immediate post-saccadic information mediates space constancy. Vision Res 38, 3147–3159.CrossRefGoogle ScholarPubMed
Droulez, J. & Berthoz, A. 1991. A neural network model of sensoritopic maps with predictive short-term memory properties. Proc Natl Acad Sci USA 88, 9653–9657.CrossRefGoogle ScholarPubMed
Duhamel, J. R., Bremmer, F., BenHamed, S. & Graf, W. 1997. Spatial invariance of visual receptive fields in parietal cortex neurons. Nature 389, 845–848.CrossRefGoogle ScholarPubMed
Galletti, C., Battaglini, P. P. & Fattori, P. 1993. Parietal neurons encoding spatial locations in craniotopic coordinates. Exp Brain Res 96, 221–229.CrossRefGoogle ScholarPubMed
Gnadt, J. W. & Andersen, R. A. 1988. Memory related motor planning activity in posterior parietal cortex of macaque. Exp Brain Res 70, 216–220.Google ScholarPubMed
Guthrie, B. L., Porter, J. D. & Sparks, D. L. 1983. Corollary discharge provides accurate eye position information to the oculomotor system. Science 221, 1193–1195.CrossRefGoogle ScholarPubMed
Helmholtz, H. V. 1962. A Treatise on Physiological Optics. Dover.Google Scholar
Holst, v. E. & Mittelstaedt, H. 1950. The reafferent principle: reciprocal effects between central nervous system and periphery. Naturwissenschaften 37, 464–476.Google Scholar
Martinez-Trujillo, J. C., Medendorp, W. P., Wang, H. & Crawford, J. D. 2004. Frames of reference for eye-head gaze commands in primate supplementary eye fields. Neuron 44, 1057–1066.CrossRefGoogle ScholarPubMed
Mitchell, J. & Zipser, D. 2001. A model of visual-spatial memory across saccades. Vision Res 41, 1575–1592.
Mitchell, M. 1996. An Introduction to Genetic Algorithms (Complex Adaptive Systems). MIT Press.Google Scholar
Olson, C. R. 2003. Brain representation of object-centered space in monkeys and humans. Annu Rev Neurosci 26, 331–354.CrossRefGoogle ScholarPubMed
Opris, I., Barborica, A. & Ferrera, V. P. 2005. Effects of electrical microstimulation in monkey frontal eye field on saccades to remembered targets. Vision Res 45, 3414–3429.CrossRefGoogle ScholarPubMed
Park, J., Schlag- Rey, M. & Schlag, J. 2006. Frames of reference for saccadic command, tested by saccade collision in the supplementary eye field. J Neurophysiol 95, 159–170.CrossRefGoogle ScholarPubMed
Rumelhart, D. E., Hinton, G. E. & Williams, R. 1986. Learning internal representations by error propagation. In Parallel Distributed Processing: Explorations in the Microstructure of Cognition (ed. Rumelhart, D. E. & McClelland, J. L.), pp. 316–362. MIT Press.Google Scholar
Smith, M. A. & Crawford, J. D. 2005. Distributed population mechanism for the 3-D oculomotor reference frame transformation. J Neurophysiol 93, 1742–1761.CrossRefGoogle ScholarPubMed
Snyder, L. H., Grieve, K. L., Brotchie, P. & Andersen, R. A. 1998. Separate body- and world-referenced representations of visual space in parietal cortex. Nature 394, 887–891.CrossRefGoogle ScholarPubMed
Sommer, M. A. & Wurtz, R. H. 2002. A pathway in primate brain for internal monitoring of movements. Science 296, 1480–1482.CrossRefGoogle ScholarPubMed
Stark, L. & Bridgeman, B. 1983. Role of corollary discharge in space constancy. Percept Psychophys 34, 371–380.CrossRefGoogle ScholarPubMed
White, R. L., 3rd & Snyder, L. H. 2004. A neural network model of flexible spatial updating. J Neurophysiol 91, 1608–1619.CrossRefGoogle ScholarPubMed
White, R. L. & Snyder, L. H. 2007. Subthreshold microstimulation in frontal eye fields updates spatial memories. Exp Brain Res. 181, 477–92.CrossRefGoogle ScholarPubMed
Williams, R. J. & Zipser, D. 1995. Gradient-based learning algorithms for recurrent neural networks. In Back-Propagation: Theory, Architecture and Applications (ed. Chauvin, Y. & Rumelhart, D. E.), pp. 433–486. Lawrence Erlbaum.Google Scholar
Xing, J. & Andersen, R. A. 2000. Memory activity of LIP neurons for sequential eye movements simulated with neural networks. J Neurophysiol 84, 651–665.CrossRefGoogle ScholarPubMed
Zipser, D. & Andersen, R. A. 1988. A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons. Nature 331, 679–684.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×