Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T13:21:27.514Z Has data issue: false hasContentIssue false

9 - Surface Fluxes

Published online by Cambridge University Press:  15 May 2017

Guy P. Brasseur
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Daniel J. Jacob
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., et al. (2011) Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 40394072.CrossRefGoogle Scholar
Bloom, A. A., Palmer, P. I., Fraser, A., Reay, D. S., and Frankenberg, C. (2010) Large-scale controls of methanogenesis inferred from methane and gravity spaceborne data, Science, 327, 322325.Google Scholar
Bloom, A., Palmer, P., Fraser, A., and Reay, D. (2012) Seasonal variability of tropical wetland CH4 emissions: The role of the methanogen-available carbon pool, Biogeosciences, 9, 28212830.CrossRefGoogle Scholar
Darmenova, K., Sokolik, I. N., Shao, Y., Marticorena, B., and Bergametti, G. (2009) Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia, J. Geophys. Res., 114, D14201, doi:10.1029/2008JD011236.CrossRefGoogle Scholar
Duce, R.A., Liss, P. S., Merrill, J. T., et al. (1991) The atmospheric input of trace species to the world ocean, Global Biogeochem. Cycles, 5, 193259.CrossRefGoogle Scholar
Finkelstein, P.L., Ellestad, T. G., Clarke, J. F., et al. (2000) Ozone and sulfur dioxide dry deposition to forests: Observations and model evaluation, J. Geophys. Res., 105, 1536515377.CrossRefGoogle Scholar
Fischer, E. V., Jacob, D. J., Millet, D. B., Yantosca, R. M., and Mao, J. (2012) The role of the ocean in the global atmospheric budget of acetone, Geophys. Res. Lett., 39, L01807.CrossRefGoogle ScholarPubMed
Freitas, S. R., Longo, K. M., Chatfield, R., et al. (2007) Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7, 33853398.CrossRefGoogle Scholar
Gillette, D. A. (1979) Environmental factors affecting dust emission by wind erosion. In Sahara Dust (Morales, C., ed.), Wiley, Chichester.Google Scholar
Ginoux, P., Chin, M., Tegen, I., et al. (2001) Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106(D17), 2025520273.Google Scholar
Ginoux, P., Clarisse, L., Clerbaux, C., et al. (2012) Mixing of dust and NH3 observed globally over anthropogenic dust sources, Atmos. Chem. Phys., 12, 73517363, doi: 10.5194/acp-12-7351-2012.Google Scholar
Gong, S. L. (2003) A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochem. Cycles, 17, 1097.CrossRefGoogle Scholar
Granier, C., Bessagnet, B., Bond, T., et al. (2011) Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period, Climatic Change, doi 10.1007/s10584-011-0154-1.Google Scholar
Guenther, A., Karl, T., Harley, P., et al. (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 31813210.CrossRefGoogle Scholar
Guenther, A. B., Jiang, X., Heald, C. L., et al. (2012) The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN 2.1): An extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 14711492.CrossRefGoogle Scholar
Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker, R. P. Jr., and Matt, D. R. (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities, Water, Air and Soil Pollution, 36, 311330.Google Scholar
Hobbs, P. V. (2000) Introduction to Atmospheric Chemistry, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Hudman, R. C., Moore, N. E., Mebust, A. K., et al. (2012) Steps towards a mechanistic model of global soil nitric oxide emissions: Implementation and space-based constraints, Atmos. Chem. Phys., 12, 77797795.CrossRefGoogle Scholar
Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T. (2011) Global distribution of sea salt aerosols: New constraints from in situ and remote sensing observations, Atmos. Chem. Phys., 11, 31373157.CrossRefGoogle Scholar
Johnson, M. T. (2010) A numerical scheme to calculate temperature and salinity dependent air–water transfer velocities for any gas, Ocean Sci., 6, 913932.CrossRefGoogle Scholar
Kaplan, J. O. (2002) Wetlands at the Last Glacial Maximum: Distribution and methane emissions, Geophys. Res. Lett., 29(6), 1079.CrossRefGoogle Scholar
Lamarque, J.-F., Bond, T. C., Eyring, V., et al. (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application, Atmos. Chem. Phys., 10, 70177039, doi: 10.5194/acp-10-7017-2010.CrossRefGoogle Scholar
Liss, P. (1973) Processes of gas exchange across an air–water interface, Deep Sea Res., 20, 221238.Google Scholar
Monahan, E. C., Spiel, D. E., and Davidson, K. L. (1986) A model of marine aerosol generation via whitecaps and wave disruption. In Oceanic Whitecaps (Monahan, E. and Niocaill, G. M.), D. Reidel, Norwell, MA.CrossRefGoogle Scholar
Nightingale, P. D., Malin, G., Law, C. S., et al. (2000) In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers, Global. Biogeochem. Cycles, 14, 373387.CrossRefGoogle Scholar
Riley, W. G., Subin, Z. M., Lawrence, D. M., et al. (2011) Barriers to predicting change in global terrestrial methane fluxes: Analyses using CLM4Me, a methane biogeochemistry model integrated in CESM, Biogeosciences, 8, 19251953.CrossRefGoogle Scholar
Schnetzler, C. C., Bluth, G. J. S., Krueger, A. J., and Walter, L. S. (2007) A proposed volcanic sulfur dioxide index (VSI), J. Geophys. Res., 102, 2008720091.CrossRefGoogle Scholar
Seinfeld, J. H. and Pandis, S. N. (2006) Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd edition, Wiley, New York.Google Scholar
Shao, Yaping (2004) Simplification of a dust emission scheme and comparison with data, J. Geophys. Res., D10202, doi:10.1029/2003JD004372.CrossRefGoogle Scholar
Slinn, W. G. N. (1982) Predictions for particle deposition to vegetative canopies, Atmos. Env., 16, 17851794, doi:10.1016/0004-6981(82)90271-2.Google Scholar
Val Martin, M., Kahn, R. A., Logan, J. A., et al. (2012) Space-based observational constraints for 1-D fire smoke plume-rise models, J. Geophys. Res., 117, D22204.Google Scholar
Vignati, E., de Leeuw, G., and Berkowicz, R. (2001) Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer, J. Geophys. Res., 106, 2022520238.CrossRefGoogle Scholar
Wang, J., Park, S., Zeng, J., et al. (2013) Modeling of 2008 Kasatochi volcanic sulfate direct radiative forcing: Assimilation of OMI SO2 plume height data and comparison with MODIS and CALIOP observations, Atmos. Chem. Phys., 13, 18951912.Google Scholar
Wesely, M. L. and Hicks, B. B. (2000) A review of the current status of knowledge on dry-deposition, Atmos. Environ., 34, 22612282.CrossRefGoogle Scholar
Xi, X. and Sokolik, I. N. (2015) Seasonal dynamics of threshold friction velocity and dust emission in Central Asia, J. Geophys. Res., 120, 15361564, doi:10.1002/2014JD022471.CrossRefGoogle ScholarPubMed
Zender, C. S., Bian, H., and Newman, D. (2003) Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology, J. Geophys. Res., 108(D14), 4416, doi: 10.1029/2002JD002775.Google Scholar
Zhang, L., Gong, S., Padro, J., and Barrie, L. (2001) A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549560.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Surface Fluxes
  • Guy P. Brasseur, Max-Planck-Institut für Meteorologie, Hamburg, Daniel J. Jacob, Harvard University, Massachusetts
  • Book: Modeling of Atmospheric Chemistry
  • Online publication: 15 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781316544754.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Surface Fluxes
  • Guy P. Brasseur, Max-Planck-Institut für Meteorologie, Hamburg, Daniel J. Jacob, Harvard University, Massachusetts
  • Book: Modeling of Atmospheric Chemistry
  • Online publication: 15 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781316544754.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Surface Fluxes
  • Guy P. Brasseur, Max-Planck-Institut für Meteorologie, Hamburg, Daniel J. Jacob, Harvard University, Massachusetts
  • Book: Modeling of Atmospheric Chemistry
  • Online publication: 15 May 2017
  • Chapter DOI: https://doi.org/10.1017/9781316544754.010
Available formats
×