Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T19:45:10.370Z Has data issue: false hasContentIssue false

10 - Atmospheric Observations and Model Evaluation

Published online by Cambridge University Press:  15 May 2017

Guy P. Brasseur
Affiliation:
Max-Planck-Institut für Meteorologie, Hamburg
Daniel J. Jacob
Affiliation:
Harvard University, Massachusetts
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baron, P. A. and Willeke, K. (2005) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edition, Wiley, Chichester.Google Scholar
Brunner, D., Staehelin, J., Rogers, H. L., et al. (2003) An evaluation of the performance of chemistry transport models by comparison with research aircraft observations: Part 1. Concepts and overall model performance, Atmos. Chem. Phys., 3, 16091631.CrossRefGoogle Scholar
Burrows, J. P., Platt, U., and Borrell, P. (eds.) (2011) The Remote Sensing of Tropospheric Composition from Space, Springer, New York.CrossRefGoogle Scholar
Chai, T. and Draxler, R. R. (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature, Geosci. Mod. Dev., 7, 12471250. doi:10.5194/gmd-7-1247-2014.CrossRefGoogle Scholar
D’Andrea, S. D., Häkkinen, S. A. K., Westervelt, D. M. et al. (2013) Understanding global secondary organic aerosol amount and size-resolved condensational behaviour, Atmos. Chem. Phys., 13, 1151911534.Google Scholar
Douglass, A. R., Prather, M. J., Hall, T. M., et al. (1999) Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft, J. Geophys. Res., 104, 2754527564.Google Scholar
Ehhalt, D. H., Rohrer, F., Wahner, A., Prather, M. J., and Blake, D. R. (1998) On the use of hydrocarbons for the determination of tropospheric OH concentrations, J. Geophys. Res., 103, 1898118997.Google Scholar
Eskes, H., Huijnen, V., Arola, A., et al. (2015) Validation of reactive gases and aerosols in the MACC global analysis and forecast system, Geosci. Mod. Dev. Discuss., 8, 11171169, doi:10.5194/gmdd-8-1117-2015.Google Scholar
Farmer, D. K. and Jimenez, J. L. (2010) Real-time atmospheric chemistry field instrumentation. Anal.Chem., 82, 78797884, doi:10.1021/ac1010603.CrossRefGoogle ScholarPubMed
Finlayson-Pitts, B. and Pitts, J. N. Jr. (2000) Chemistry of the Upper and Lower Atmosphere, Academic Press, New York.Google Scholar
González Abad, G., Liu, X., Chance, K., et al. (2015) Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval, Atmos. Meas. Tech., 8, 1932.Google Scholar
Götz, F. W. P., Meetham, A. R., and Dobson, G. M. B. (1934) The vertical distribution of ozone in the atmosphere, Proc. Roy. Soc. A, 145, 416.Google Scholar
Holmes, C. D., Jacob, D. J., Mason, R. P., and Jaffe, D. A. (2009) Sources and deposition of reactive gaseous mercury in the marine atmosphere, Atmos. Environ., 43, 22782285.CrossRefGoogle Scholar
Hönninger, G., von Friedeburg, C., and Platt, U. (2004) Atmospheric Chemistry and Physics Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231254.CrossRefGoogle Scholar
Hughes, I. G. and Hase, T. P. A. (2010) Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis, Oxford University Press, Oxford.Google Scholar
Jolliff, J. K., Kindle, J. C., Shulman, I., et al. (2009) Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 74, 6482, doi:10.1016/j.jmarsys.2008.05.014CrossRefGoogle Scholar
Kim, P. S., Jacob, D. J., Fisher, J. A., et al., (2015) Sources, seasonality, and trends of Southeast US aerosol: An integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem model, Atmos. Chem. Phys., 15, 1041110433.CrossRefGoogle Scholar
Komhyr, W. and Evans, R. (2008) Operations Handbook: Ozone Observations with a Dobson Spectrophotometer, World Meteorological Organization, Geneva.Google Scholar
Kunzi, K., Bauer, P., Eresmaa, R., et al. (2011) Microwave absorption, emission and scattering: Trace gas and meteorological parameters. In The Remote Sensing of Tropospheric Composition from Space (Burrows, J. P., Platt, U., and Borrell, P., eds.), Springer-Verlag, Berlin.Google Scholar
Lagzi, I., Meszaros, R., Gelybo, G., and Leelossy, A. (2013) Atmospheric Chemistry, Eötvös Loránd University.Google Scholar
Legates, D. R. and McCabe, G. J. Jr. (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resources Res., 35, 233241.CrossRefGoogle Scholar
Logan, J. A. (1999) An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models, and development of a gridded climatology for tropospheric ozone, J. Geophys. Res., 104, 1611516149.Google Scholar
Logan, J. A., Megretskaia, A. J., Miller, G. C., et al. (1999) Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, J. Geophys. Res., 104, 2637326399.Google Scholar
Mankin, W., Atlas, E., Cantrell, C., Eisele, E., and Fried, A. (1999) Observational methods: Instruments and platforms. In Atmospheric Chemistry and Global Change (Brasseur, G. P., Orlando, J. J., and Tyndall, G. S., eds.), Oxford University Press, Oxford.Google Scholar
McKeen, S. A., Liu, S., Hsie, X., et al. (1996) Hydrocarbon ratios during PEM WEST A: A model perspective, J. Geophys. Res., 101, 20872109.CrossRefGoogle Scholar
Mielke, P. W. Jr. and Berry, K. J. (2001) Permutation Methods: A Distance Function Approach, Springer, New York.CrossRefGoogle Scholar
Nash, J. E. and Sutcliffe, J. V. (1970) River flow forecasting throughout conceptual models: Part I. A discussion of principles, J. Hydro., 10, 282290.Google Scholar
Palmer, P. I., Jacob, D. J., Chance, K., et al. (2001) Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from GOME, J. Geophys. Res., 106 (14), 1453914550.CrossRefGoogle Scholar
Rodgers, C. D. (2000) Inverse Methods for Atmospheric Sounding, World Sci., Tokyo.Google Scholar
Schmidt, H., Brasseur, G. P., Charron, M., et al. (2006) The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Climate, 19, 39033931.CrossRefGoogle Scholar
Taylor, K. E. (2001) Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 71837192.Google Scholar
Taylor, J. R. (1996) An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, Sausalito, CA.Google Scholar
Thompson, A. M., Witte, J. C., McPeters, R. D., et al. (2003) Southern hemisphere additional ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1: Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements, J. Geophys. Res., 108, 8238, doi:10.1029/2001JD000967.Google Scholar
Thunis, P., Georgieva, E., and Pederzoli, A. (2012) A tool for evaluating air quality model performances in regulatory applications. Env. Mod. Soft., 38, 220230.Google Scholar
Watterson, I. G. (1996) Non-dimensional measures of climate model performance, Int. J. Climatol., 16, 379391.3.0.CO;2-U>CrossRefGoogle Scholar
Waugh, D. W. and Eyring, V. (2008) Quantitative performance metrics for stratospheric-resolving climate-chemistry models, Atmos. Chem. Phys., 8, 56995713.CrossRefGoogle Scholar
Wild, O. (2007) Modelling the global tropospheric ozone budget: Exploring the variability in current models, Atmos. Chem. Phys., 7, 26432660.Google Scholar
Wild, O. and Prather, M. J. (2006) Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res., 111, D11305.Google Scholar
Willmott, C. J. (1981) On the validation of models, Phys. Geogr., 2, 184194.CrossRefGoogle Scholar
Willmott, C. J., Ackelson, S. G., Davis, R. E., et al. (1985) Statistics for the evaluation of model performance, J. Geophys. Res., 90, 89959005.Google Scholar
Willmott, C. J., Robeson, S. M., and Matsuura, K. (2012) A refined index of model performance, Int. J. Climatol., 32, 20882094.Google Scholar
Xiao, Y. P., Jacob, D. J., and Turquety, S. (2007) Atmospheric acetylene and its relationship with CO as an indicator of air mass age, J. Geophys. Res., 112, D12305.Google Scholar
Yu, K., Jacob, D., Fisher, J., et al. (2016) Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions, Atmos. Chem. Phys., 16, 43694378.CrossRefGoogle Scholar
Zhang, L., Jacob, D. J., Liu, X., et al. (2010) Intercomparison methods for satellite measurements of atmospheric composition: Application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 47254739.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×