Skip to main content Accessibility help
  • Print publication year: 2017
  • Online publication date: May 2017

10 - Atmospheric Observations and Model Evaluation

Related content

Powered by UNSILO
Baron, P. A. and Willeke, K. (2005) Aerosol Measurement: Principles, Techniques, and Applications, 2nd edition, Wiley, Chichester.
Brunner, D., Staehelin, J., Rogers, H. L., et al. (2003) An evaluation of the performance of chemistry transport models by comparison with research aircraft observations: Part 1. Concepts and overall model performance, Atmos. Chem. Phys., 3, 16091631.
Burrows, J. P., Platt, U., and Borrell, P. (eds.) (2011) The Remote Sensing of Tropospheric Composition from Space, Springer, New York.
Chai, T. and Draxler, R. R. (2014) Root mean square error (RMSE) or mean absolute error (MAE)? Arguments against avoiding RMSE in the literature, Geosci. Mod. Dev., 7, 12471250. doi:10.5194/gmd-7-1247-2014.
D’Andrea, S. D., Häkkinen, S. A. K., Westervelt, D. M. et al. (2013) Understanding global secondary organic aerosol amount and size-resolved condensational behaviour, Atmos. Chem. Phys., 13, 1151911534.
Douglass, A. R., Prather, M. J., Hall, T. M., et al. (1999) Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft, J. Geophys. Res., 104, 2754527564.
Ehhalt, D. H., Rohrer, F., Wahner, A., Prather, M. J., and Blake, D. R. (1998) On the use of hydrocarbons for the determination of tropospheric OH concentrations, J. Geophys. Res., 103, 1898118997.
Eskes, H., Huijnen, V., Arola, A., et al. (2015) Validation of reactive gases and aerosols in the MACC global analysis and forecast system, Geosci. Mod. Dev. Discuss., 8, 11171169, doi:10.5194/gmdd-8-1117-2015.
Farmer, D. K. and Jimenez, J. L. (2010) Real-time atmospheric chemistry field instrumentation. Anal.Chem., 82, 78797884, doi:10.1021/ac1010603.
Finlayson-Pitts, B. and Pitts, J. N. Jr. (2000) Chemistry of the Upper and Lower Atmosphere, Academic Press, New York.
González Abad, G., Liu, X., Chance, K., et al. (2015) Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval, Atmos. Meas. Tech., 8, 1932.
Götz, F. W. P., Meetham, A. R., and Dobson, G. M. B. (1934) The vertical distribution of ozone in the atmosphere, Proc. Roy. Soc. A, 145, 416.
Holmes, C. D., Jacob, D. J., Mason, R. P., and Jaffe, D. A. (2009) Sources and deposition of reactive gaseous mercury in the marine atmosphere, Atmos. Environ., 43, 22782285.
Hönninger, G., von Friedeburg, C., and Platt, U. (2004) Atmospheric Chemistry and Physics Multi axis differential optical absorption spectroscopy (MAX-DOAS), Atmos. Chem. Phys., 4, 231254.
Hughes, I. G. and Hase, T. P. A. (2010) Measurements and their Uncertainties: A Practical Guide to Modern Error Analysis, Oxford University Press, Oxford.
Jolliff, J. K., Kindle, J. C., Shulman, I., et al. (2009) Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment, J. Marine Syst., 74, 6482, doi:10.1016/j.jmarsys.2008.05.014
Kim, P. S., Jacob, D. J., Fisher, J. A., et al., (2015) Sources, seasonality, and trends of Southeast US aerosol: An integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem model, Atmos. Chem. Phys., 15, 1041110433.
Komhyr, W. and Evans, R. (2008) Operations Handbook: Ozone Observations with a Dobson Spectrophotometer, World Meteorological Organization, Geneva.
Kunzi, K., Bauer, P., Eresmaa, R., et al. (2011) Microwave absorption, emission and scattering: Trace gas and meteorological parameters. In The Remote Sensing of Tropospheric Composition from Space (Burrows, J. P., Platt, U., and Borrell, P., eds.), Springer-Verlag, Berlin.
Lagzi, I., Meszaros, R., Gelybo, G., and Leelossy, A. (2013) Atmospheric Chemistry, Eötvös Loránd University.
Legates, D. R. and McCabe, G. J. Jr. (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation, Water Resources Res., 35, 233241.
Logan, J. A. (1999) An analysis of ozonesonde data for the troposphere: Recommendations for testing 3-D models, and development of a gridded climatology for tropospheric ozone, J. Geophys. Res., 104, 1611516149.
Logan, J. A., Megretskaia, A. J., Miller, G. C., et al. (1999) Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, J. Geophys. Res., 104, 2637326399.
Mankin, W., Atlas, E., Cantrell, C., Eisele, E., and Fried, A. (1999) Observational methods: Instruments and platforms. In Atmospheric Chemistry and Global Change (Brasseur, G. P., Orlando, J. J., and Tyndall, G. S., eds.), Oxford University Press, Oxford.
McKeen, S. A., Liu, S., Hsie, X., et al. (1996) Hydrocarbon ratios during PEM WEST A: A model perspective, J. Geophys. Res., 101, 20872109.
Mielke, P. W. Jr. and Berry, K. J. (2001) Permutation Methods: A Distance Function Approach, Springer, New York.
Nash, J. E. and Sutcliffe, J. V. (1970) River flow forecasting throughout conceptual models: Part I. A discussion of principles, J. Hydro., 10, 282290.
Palmer, P. I., Jacob, D. J., Chance, K., et al. (2001) Air mass factor formulation for spectroscopic measurements from satellites: Application to formaldehyde retrievals from GOME, J. Geophys. Res., 106 (14), 1453914550.
Rodgers, C. D. (2000) Inverse Methods for Atmospheric Sounding, World Sci., Tokyo.
Schmidt, H., Brasseur, G. P., Charron, M., et al. (2006) The HAMMONIA chemistry climate model: Sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling, J. Climate, 19, 39033931.
Taylor, K. E. (2001) Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 71837192.
Taylor, J. R. (1996) An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, University Science Books, Sausalito, CA.
Thompson, A. M., Witte, J. C., McPeters, R. D., et al. (2003) Southern hemisphere additional ozonesondes (SHADOZ) 1998–2000 tropical ozone climatology 1: Comparison with Total Ozone Mapping Spectrometer (TOMS) and ground-based measurements, J. Geophys. Res., 108, 8238, doi:10.1029/2001JD000967.
Thunis, P., Georgieva, E., and Pederzoli, A. (2012) A tool for evaluating air quality model performances in regulatory applications. Env. Mod. Soft., 38, 220230.
Watterson, I. G. (1996) Non-dimensional measures of climate model performance, Int. J. Climatol., 16, 379391.
Waugh, D. W. and Eyring, V. (2008) Quantitative performance metrics for stratospheric-resolving climate-chemistry models, Atmos. Chem. Phys., 8, 56995713.
Wild, O. (2007) Modelling the global tropospheric ozone budget: Exploring the variability in current models, Atmos. Chem. Phys., 7, 26432660.
Wild, O. and Prather, M. J. (2006) Global tropospheric ozone modeling: Quantifying errors due to grid resolution, J. Geophys. Res., 111, D11305.
Willmott, C. J. (1981) On the validation of models, Phys. Geogr., 2, 184194.
Willmott, C. J., Ackelson, S. G., Davis, R. E., et al. (1985) Statistics for the evaluation of model performance, J. Geophys. Res., 90, 89959005.
Willmott, C. J., Robeson, S. M., and Matsuura, K. (2012) A refined index of model performance, Int. J. Climatol., 32, 20882094.
Xiao, Y. P., Jacob, D. J., and Turquety, S. (2007) Atmospheric acetylene and its relationship with CO as an indicator of air mass age, J. Geophys. Res., 112, D12305.
Yu, K., Jacob, D., Fisher, J., et al. (2016) Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions, Atmos. Chem. Phys., 16, 43694378.
Zhang, L., Jacob, D. J., Liu, X., et al. (2010) Intercomparison methods for satellite measurements of atmospheric composition: Application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 47254739.