Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: April 2018

14 - Travelling-Wave Tubes

Related content

Powered by UNSILO
[1]Wallander, S. O., ‘Reflexions and gain ripple in TWT’s’, IEEE Transactions on Electron Devices, vol. 19, pp. 655660, 1972.
[2]Mendel, J. T., ‘Helix and coupled-cavity traveling-wave tubes’, Proceedings of the IEEE, vol. 61, pp. 280298, 1973.
[3]Sivan, L., Microwave Tube Transmitters. London: Chapman and Hall, 1994.
[4]Booske, J. H. et al., ‘Traveling-wave tubes’, in Barker, R. J. et al., eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway, NJ: IEEE, pp. 171245, 2005.
[5]Faillon, G. et al., ‘Microwave Tubes’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer-Verlag, pp. 184, 2008.
[6]Abe, D. K. and Calame, J. P., ‘Advanced materials technologies’, in Barker, R. J. et al., eds, Modern Microwave and Millimeter-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 649689, 2005.
[7]Maloney, E. D., ‘Developments in earth-station and satellite tubes reflect information demand’, Microwave Systems News, pp. 48, 50, 52–55, March 1984.
[8]Gilmour, A. S., Jr., Principles of Traveling Wave Tubes. Norwood, MA: Artech House, 1994.
[9]Abe, D. K. and Calame, J. P., ‘Advanced material technologies’, in Barker, R. J. et al., eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 649689, 2005.
[10]Potter, B. R. et al., ‘High-power printed circuit traveling wave tubes’, in International Electron Devices Meeting, pp. 521524, 1973.
[11]Goebel, D. M. et al., ‘Gain stability of traveling wave tubes’, IEEE Transactions on Electron Devices, vol. 46, pp. 22352244, 1999.
[12]Goebel, D. M., ‘Theory of long term gain growth in traveling wave tubes’, IEEE Transactions on Electron Devices, vol. 47, pp. 12861292, 2000.
[13]Chernin, D. et al., ‘“Power holes” and nonlinear forward and backward wave gain competition in helix traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 50, pp. 25402547, 2003.
[14]Gittins, J. F., Power Travelling-Wave Tubes. London: English Universities Press, 1965.
[15]Slater, J. C., Microwave Electronics. New York: D. van Nostrand, 1950.
[16]Pond, N. H. and Twiggs, R. J., ‘Improvement of traveling-wave tube efficiency through period tapering’, IEEE Transactions on Electron Devices, vol. 13, pp. 956961, 1966.
[17]Kino, G. S. et al., ‘Small-signal and large-signal theories for the coupled-cavity TWT’, in 6th International Conference on Microwave and Optical Generation and Amplification, Cambridge, UK, pp. 49–53, 1966.
[18]Tien, P. K. et al., ‘A large signal theory of traveling-wave amplifiers’, Proceedings of the IRE, vol. 43, pp. 260277, 1955.
[19]Rowe, J. E., Nonlinear Electron-Wave Interaction Phenomena. New York: Academic Press Inc., 1965.
[20]Dionne, N. J., ‘Harmonic generation in octave bandwidth traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 17, pp. 365372, 1970.
[21]Chernin, D. et al., ‘A three-dimensional multifrequency large signal model for helix traveling wave tubes’, IEEE Transactions on Electron Devices, vol. 48, pp. 311, 2001.
[22]Srivastava, V. and Joshi, S. N., ‘Improved nonlinear model for multisignal analysis of helix TWTs’, IEE Proceedings H, Microwaves, Antennas and Propagation, vol. 139, pp. 129134, 1992.
[23]Srivastava, V. and Carter, R. G., ‘A fast large-signal model for coupled-cavity TWTs’, IEEE Transactions on Electron Devices, vol. 35, pp. 20682076, November 1988.
[24]Connolly, D. J. and O’Malley, T. A., ‘Computer program for analysis of coupled-cavity traveling-wave tubes’, NASA Lewis Research Center, Cleveland, OH, 1977.
[25]Vaughan, J. R. M., ‘Calculation of coupled-cavity TWT performance’, IEEE Transactions on Electron Devices, vol. 22, pp. 880890, 1975.
[26]Datta, S. K. et al., ‘Nonlinear Eulerian hydrodynamical analysis of helix traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 45, pp. 20552062, 1998.
[27]Wöhlbier, J. G. et al., ‘The multifrequency spectral Eulerian (MUSE) model of a traveling wave tube’, IEEE Transactions on Plasma Science, vol. 30, pp. 10631075, 2002.
[28]Brealey, N., ‘Computer simulation of helix travelling wave tubes’, in High Power Microwave Generation and Applications, SIF, Bologna, Italy, pp. 549556, 1992.
[29]Kory, C. L. et al., ‘Traveling-wave tube amplifier model to predict high-order modulation intersymbol interference’, in Third IEEE International Vacuum Electronics Conference, Monterey, CA, pp. 308309, 2002.
[30]Zhu, Z. et al., ‘Particle-in-cell simulation of helix traveling-wave tube’, in IEEE International Vacuum Electronics Conference, Rome, Italy, pp. 131132, 2009.
[31]Srivastava, V. and Joshi, S. N., ‘One-dimensional nonlinear model for helix TWTs’, IETE Technical Review, vol. 6, pp. 500507, 1989.
[32]Dimonte, G. and Malmberg, J., ‘Destruction of trapping oscillations’, Physics of Fluids, vol. 21, pp. 11881206, 1978.
[33]Buckingham, E., ‘On physically similar systems; illustrations of the use of dimensional equations’, Physical Review, vol. 4, pp. 345376, 1914.
[34]Schindler, M. J., ‘Can traveling-wave tubes be scaled? ’, Microwave Journal, vol. 9, pp. 4347, 1966.
[35]Cutler, C. C. and Brangaccio, D. J., ‘Factors affecting traveling wave tube power capacity’, Transactions of the IRE Professional Group on Electron Devices, vol. PGED-3, pp. 924, 1953.
[36]Danielson, W. E. et al., ‘Design of a 100 mW helix travelling-wave amplifier at 50 Gc/s’, Proceedings of the IEE – Part B: Radio and Electronic Engineering, vol. 105, pp. 405408, 1958.
[37]Kosmahl, H. G., ‘How to quickly predict the overall TWT and the multistage depressed collector efficiency’, IEEE Transactions on Electron Devices, vol. 27, pp. 526529, 1980.
[38]Cutler, C. C., ‘The nature of power saturation in traveling wave tubes’, Bell System Technical Journal, vol. 35, pp. 841876, 1956.
[39]Bliss, E. E., ‘Traveling-wave tube design’, in R. S. Burnap, ed., Electron Tube Design. Harrison, NJ: Radio Corporation of America, pp. 898928, 1962.
[40]Beck, A. H. W., Space-Charge Waves and Slow Electromagnetic Waves. London: Pergamon Press, 1958.
[41]Caldwell, J. J., Jr. and Hoch, O. L., ‘Large signal behavior of high power traveling-wave amplifiers’, IRE Transactions on Electron Devices, vol. 3, pp. 617, 1956.
[42]Sauseng, O., ‘Efficiency enhancement of travelling wave tubes by velocity resynchronisation’, in 7th International Conference on Microwave and Optical Generation and Amplification, Hamburg, Germany, pp. 1629, 1968.
[43]Winslow, L., ‘Phase velocity dispersion shaping as a design parameter in traveling wave tubes’, in International Electron Devices Meeting, pp. 350A–350C, 1977.
[44]Srivastava, V. and Carter, R. G., ‘Design of phase velocity tapers in coupled-cavity TWTs’, IEE Proceedings H Microwaves, Antennas and Propagation, vol. 138, pp. 469474, 1991.
[45]Gerchberg, R. W. and Niclas, K. B., ‘The positively tapered traveling-wave tube’, IEEE Transactions on Electron Devices, vol. 16, pp. 827828, 1969.
[46]Denisov, A. I., ‘Effect of sectionalisation on the saturation power of a traveling wave tube’, Radio Engineering and Electron Physics, vol. 6, pp. 1416–1417, 1961.
[47]Denisov, A. I., ‘The effects of sectionalization on saturation power of TWT for large values of the space charge parameter’, Radio Engineering and Electron Physics, vol. 11, pp. 617–625, 1966.
[48]Scott, A. W., ‘Why a circuit sever affects traveling-wave tube efficiency’, IRE Transactions on Electron Devices, vol. 9, pp. 3540, 1962.
[49]Srivastava, V. and Carter, R. G., ‘Determination of sever positions in a coupled-cavity TWTs’, IEE Proceedings H Microwaves, Antennas and Propagation, vol. 138, pp. 5560, 1991.
[50]Sangster, A., ‘Traveling-wave interaction in structures with non-zero impedance at harmonics of the drive frequency’, in Proc. 6th Int. Conf. Microwave and Optical Generation and Amplfication, pp. 125130, 1966.
[51]Sauseng, O. et al., ‘Reduction of intermodulation distortion with harmonic injection for wideband traveling-wave tubes’, in International Electron Devices Meeting, pp. 411–414, 1975.
[52]Ezura, E. and Kano, T., ‘Measured and theoretical nonlinear phase distortion in traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 22, pp. 890897, 1975.
[53]Wöhlbier, J. G. and Booske, J. H., ‘Mechanisms for phase distortion in a traveling wave tube’, Physical Review E, vol. 69, p. 066502, 2004.
[54]Bates, D. J. and Scott, A. W., ‘The effect of circuit tapering on the efficiency bandwidth characteristics of dispersive traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 10, pp. 8994, 1963.
[55]Jung, S.-S. et al., ‘Positive phase-velocity tapering of broadband helix traveling-wave tubes for efficiency enhancement’, Applied Physics Letters, vol. 80, pp. 30003002, 2002.
[56]Srivastava, V. et al., ‘Design of helix slow-wave structures for high efficiency TWTs’, IEEE Transactions on Electron Devices, vol. 47, pp. 24382443, December 2000.
[57]Connolly, D. J., ‘Efficiency enhancement of coupled-cavity TWT’s through cavity resonance tapering’, IEEE Transactions on Electron Devices, vol. 26, pp. 15761580, 1979.
[58]Winslow, L., ‘RF loss as a design parameter in traveling wave tubes’, in International Electron Devices Meeting, pp. 374376, 1974.
[59]Hirata, H., ‘Analysis of phase and intermodulation distortion of a travelling-wave tube’, International Journal of Electronics, vol. 83, pp. 249270, 1997.
[60]Kosmahl, H. G. and Peterson, J. C., ‘A TWT amplifier with a linear power transfer characteristic and improved efficiency’, NASA Lewis Research Center, 1984.
[61]Epsztein, B. and Kantorowicz, G., ‘Suppression of backward-wave oscillations in multikilowatt helix TWT’s’, in 3rd European Microwave Conference, p. C.11.3, 1973.
[62]Hagström, C. and Nilsson, O., ‘Start oscillation current in tapered BWO’S’, in 3rd European Microwave Conference, p. C.11.5, 1973.
[63]Zhang, J. L. et al., ‘Backward-wave suppression for broadband helix traveling-wave tubes using the phase velocity variation of output circuit’, IEEE Transactions on Electron Devices, vol. 59, pp. 22632267, 2012.
[64]Hobrecht, C. E., ‘Resonant loss for helix traveling wave tubes’, in International Electron Devices Meeting, pp. 348350, 1977.
[65]Sangster, A. J. et al., ‘Backward-wave suppression in a very wide-band helix travelling-wave tube using a slow waveguide filter’, IEE Proceedings H, Microwaves, Antennas and Propagation, vol. 138, pp. 7985, 1991.
[66]Hobrecht, C. E. and Putz, J. L., ‘Traveling wave tube oscillation suppression’, Varian Associates Inc., Palo Alto, CA, 1978.
[67]Ruetz, J. A., ‘Resonant circuit oscillations in travelling-wave tubes’, in 4th International Congress on Microwave Tubes, Eindhoven, Netherlands, pp. 9498, 1962.
[68]Bahr, A. J., ‘A coupled-monotron analysis of band-edge oscillations in high-power traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 12, pp. 547556, 1965.
[69]Glass, E., ‘Suppression of spurious modes in high-power traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 30, pp. 17981806, 1983.
[70]Lo, C. C., Studies of the Effect of Circuit Tapering on TWT Performance. Stanford, CA: Stanford University Microwave Lab, 1964.
[71]Frey, J. R. and Tammaru, I., ‘A coupled-cavity TWT operating in the inverted slot mode’, in International Electron Devices Meeting, pp. 504506, 1981.
[72]Karp, A. and Hunter, G. T., ‘Higher order modes and instabilities in coupled-cavity TWT’s’, IEEE Transactions on Electron Devices, vol. 33, pp. 18901895, 1986.
[73]Dayton, J. A., Jr. et al., ‘Analytical prediction and experimental verification of TWT and depressed collector performance using multidimensional computer programs’, IEEE Transactions on Electron Devices, vol. 26, pp. 15891598, 1979.
[74]Schram, A. C., ‘TWT efficiency improvement using multi-stage collectors’, Microwave Journal, vol. 18, pp. 3133, 81, 1975.
[75]Kosmahl, H. G. and Ramins, P., ‘Small-size 81- to 83.5-percent efficient 2- and 4-stage depressed collectors for octave-bandwidth high-performance TWT’s’, IEEE Transactions on Electron Devices, vol. 24, pp. 3644, 1977.
[76]Kosmahl, H. G., ‘Modern multistage depressed collectors – a review’, Proceedings of the IEEE, vol. 70, pp. 13251334, 1982.
[77]Ramins, P. and Fox, T. A., ‘90- to 93-percent efficient collector for operation of a dual-mode traveling-wave tube in the linear region’, IEEE Transactions on Electron Devices, vol. 26, pp. 16621664, 1979.
[78]McDowell, H. L. et al., ‘A half-watt CW traveling-wave amplifier for the 5–6 millimeter band’, Proceedings of the IRE, vol. 48, pp. 321328, 1960.
[79]Ohtomo, R. H. et al., ‘Recent advances in an EHF helix TWT’, in 1984 International Electron Devices Meeting, pp. 502505, 1984.
[80]Sloley, H. et al., ‘High power, high frequency helix TWT’s’, in Military Microwaves’ 86, pp. 360365, 1986.
[81]Herrmann, G., ‘Optical theory of thermal velocity effects in cylindrical electron beams’, Journal of Applied Physics, vol. 29, pp. 127136, 1958.
[82]Gerum, W. et al., ‘94-GHz TWT for military radar applications’, IEEE Transactions on Electron Devices, vol. 48, pp. 7273, 2001.
[83]Booske, J. H. et al., ‘Vacuum electronic high power terahertz sources’, IEEE Transactions on Terahertz Science and Technology, vol. 1, pp. 5475, 2011.
[84]Komm, D. S. et al., ‘Advances in space TWT efficiencies’, IEEE Transactions on Electron Devices, vol. 48, pp. 174176, 2001.
[85]Kornfeld, G. and Bosch, E., ‘From history to future of satellite TWT amplifiers’, Frequenz, vol. 55, pp. 258262, 2001.
[86]Wilson, J. D. et al., ‘Advances in space traveling-wave tubes for NASA missions’, Proceedings of the IEEE, vol. 95, pp. 19581967, 2007.
[87]Strauss, R. et al., ‘Traveling wave tubes for communication satellites’, Proceedings of the IEEE, vol. 65, pp. 387400, 1977.
[88]Bodmer, M. et al., ‘The satellite traveling-wave tube’, Bell System Technical Journal, vol. 42, pp. 17031748, 1963.
[89]Heney, J. and Tamashiro, R., ‘A 20 GHz, 75 watt, helix TWT for space communications’, in Proceedings of the Sixteenth Annual Electronics and Aerospace Conference and Exposition, pp. 6974, 1983.
[90]Hashimoto, H. et al., ‘A 30 GHz 40 watt helix traveling-wave tube’, in International Electron Devices Meeting, pp. 133136, 1983.
[91]Takahashi, M. et al., ‘Non-brazed helix TWT attained 3kW output at C-band and 600W at Ku-band’, in International Electron Devices Meeting, pp. 167–170, 1986.
[92]Tamashiro, R. and Aldana, S., ‘60 percent efficient K-band TWT using a new diamond rod technology’, in International Electron Devices Meeting, pp. 187–190, 1989.
[93]Safa, H. and Pelletier, A., ‘Efficiency improvements in a 12 GHz-50 W space TWT’, in International Electron Devices Meeting, pp. 191–194, 1989.
[94]Kornfeld, G. K. et al., ‘60-GHz space TWT to address future market’, IEEE Transactions on Electron Devices, vol. 48, pp. 6871, 2001.
[95]Menninger, W. L. et al., ‘70% efficient Ku-band and C-band TWTs for satellite downlinks’, IEEE Transactions on Electron Devices, vol. 52, pp. 673678, 2005.
[96]Thouvenin, P. et al., ‘New helix tapers boost space TWT efficiency to 55%, broadband’, in International Electron Devices Meeting, pp. 477480, 1987.
[97]Alaria, M. K. et al., ‘Design and development of helix slow-wave structure for Ku-band TWT’, IEEE Transactions on Plasma Science, vol. 39, pp. 550554, 2011.
[98]Rymer, J. P. and Cascone, M. J., ‘Three octaves with one TWT’, in 1982 International Electron Devices Meeting, pp. 3031, 1982.
[99]Walchli, P. L., ‘Multiple octave traveling wave tubes’, in 1981 International Electron Devices Meeting, pp. 707707, 1981.
[100]Datta, S. K. et al., ‘Analytical exploration of ultrawideband helix slow-wave structures using multidispersion phase velocity taper’, IEEE Transactions on Plasma Science, vol. 37, pp. 311316, 2009.
[101]Kim, H. J. et al., ‘Experimental investigation of broadband vaned helix traveling-wave tube’, Japanese Journal of Applied Physics, vol. 45, pp. 292299, 2006.
[102]Jung, S.-S. et al., ‘Wide-band semivane and heavily dielectric loaded helix traveling-wave tubes’, IEEE Transactions on Plasma Science, vol. 30, pp. 10091016, 2002.
[103]Ghosh, T. K. et al., ‘Design of helix pitch profile for broadband traveling-wave tubes’, IEEE Transactions on Electron Devices, vol. 56, pp. 11351140, 2009.
[104]Danilov, A. B. et al., ‘A method for reducing the second harmonic level in wideband traveling wave tubes’, Journal of Communications Technology and Electronics, vol. 58, pp. 353356, 2013.
[105]Staprans, A. et al., ‘High-power linear-beam tubes’, Proceedings of the IEEE, vol. 61, pp. 299330, 1973.
[106]Chodorow, M. et al., ‘The design and characteristics of a megawatt space-harmonic traveling-wave tube’, IRE Transactions on Electron Devices, vol. 6, pp. 4853, 1959.
[107]Ruetz, J. A. and Yocom, W. H., ‘High-power traveling-wave tubes for radar systems’, IRE Transactions on Military Electronics, vol. MIL-5, pp. 3945, 1961.
[108]Roumbanis, T. et al., ‘A megawatt X-band TWT amplifier with 18% bandwidth’, in High Power Microwave Tubes Symposium, Fort Monmouth, NJ, pp. 114129, 1962.
[109]Kosmahl, H. G. et al., ‘High-efficiency, 200-watt, 12-gigahertz traveling wave tube’, NASA Lewis Research Center, Cleveland, OH, 1974.
[110]Desmur, H. et al., ‘160-kW pulsed S-band TWT’, Microwave Journal, vol. 17, pp. 5356, 1974.
[111]James, B. G., ‘Coupled-cavity TWT designed for future mm-wave systems’, Microwave Systems News, vol. 16, September 1986.
[112]Wilson, J. D. et al., ‘A high-efficiency ferruleless coupled-cavity traveling-wave tube with phase-adjusted taper’, IEEE Transactions on Electron Devices, vol. 37, pp. 26382643, 1990.
[113]Legarra, J. R. et al., ‘A 500-W coupled-cavity TWT for Ka-band communication’, IEEE Transactions on Electron Devices, vol. 52, pp. 665668, 2005.
[114]Theiss, A. J. et al., ‘High-average-power W-band TWT development’, IEEE Transactions on Plasma Science, vol. 38, pp. 12391243, 2010.
[115]Gong, H. et al., ‘Experimental investigation of a high-power Ka-band folded waveguide traveling-wave tube’, IEEE Transactions on Electron Devices, vol. 58, pp. 21592163, 2011.
[116]Rowe, J. E. and Meeker, J. G., ‘Interaction of premodulated electron streams with propagating circuits’, International Journal of Electronics, vol. 9, pp. 439466, 1960.
[117]Lichtenberg, A. J., ‘Prebunched beam traveling-wave tube studies’, IRE Transactions on Electron Devices, vol. 9, pp. 345351, 1962.
[118]Jin, J.-G. et al., ‘Propagation characteristics of a premodulated electron beam’, IEEE Transactions on Plasma Science, vol. 26, pp. 794798, 1998.
[119]LaRue, A., ‘Development of a broadband S-band amplifier’, Varian Associates Inc., Palo Alto, CA, 1972.
[120]Matthews, P. S. et al., ‘Comparison of the performance of a travelling-wave tube and a hybrid tube designed for 12% bandwidth, multi-megawatts output at L-band’, in IEEE International Electron Devices Meeting, pp. 134137, 1975.
[121]Matthews, P. S. et al., ‘The centipede structure in practical megawatt tubes’, in 8th European Microwave Conference, Paris, France, pp. 753760, 1978.
[122]Whaley, D. R. et al., ‘Application of field emitter arrays to microwave power amplifiers’, in 27th IEEE International Conference on Plasma Science, p. 122, 2000.
[123]Whaley, D. R. et al., ‘Experimental demonstration of an emission-gated traveling-wave tube amplifier’, IEEE Transactions on Plasma Science, vol. 30, pp. 9981008, 2002.
[124]Whaley, D. R. et al., ‘Operation of a low-voltage high-transconductance field emitter array TWT’, in IEEE International Vacuum Electronics Conference, Monterey, CA, pp. 7879, 2008.