Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: April 2018

15 - Magnetrons

[1]Okress, E., Ed., Crossed-Field Microwave Devices. New York: Academic Press, 1961.
[2]Gilmour, A. S., Jr., Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons. Norwood, MA: Artech House, 2011.
[3]Sivan, L., Microwave Tube Transmitters. Kluwer Academic Publishers, 1994.
[4]Brown, W. C., ‘The microwave magnetron and its derivatives’, IEEE Transactions on Electron Devices, vol. 31, pp. 15951605, 1984.
[5]Faillon, G. et al., ‘Microwave tubes’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer-Verlag, pp. 184, 2008.
[6]Gold, S. H. and Nusinovich, G. S., ‘Review of high-power microwave source research’, Review of Scientific Instruments, vol. 68, p. 39453974, 1997.
[7]Benford, J. et al., High Power Microwaves. CRC Press, 2015.
[8]Hull, J. F., ‘Inverted Magnetron’, Proceedings of the IRE, vol. 40, pp. 10381041, 1952.
[9]Slater, J. C., Microwave Electronics. New York: D. van Nostrand, 1950.
[10]Skowron, J. F., ‘The continuous-cathode (emitting-sole) crossed-field amplifier’, Proceedings of the IEEE, vol. 61, pp. 330356, 1973.
[11]Smith, W. A., ‘A wave treatment of the continuous cathode crossed-field amplifier’, IRE Transactions on Electron Devices, vol. 9, pp. 379387, 1962.
[12]Hutter, R. G. E., Beam and Wave Electronics in Microwave Tubes. Princeton, NJ: D. van Nostrand, 1960.
[13]Vaughan, J. R. M., ‘A model for calculation of magnetron performance’, IEEE Transactions on Electron Devices, vol. 20, pp. 818826, 1973.
[14]Collins, G. B., Microwave Magnetrons. New York: McGraw-Hill, 1948.
[15]Kroll, N., ‘The unstrapped resonant system’, in Collins, G. B., ed., Microwave Magnetrons. New York: McGraw-Hill, pp. 4982, 1948.
[16]Millman, S. and Smith, W. V., ‘The resonant system’, in Collins, G. B., ed., Microwave Magnetrons. New York: McGraw-Hill, pp. 460502, 1948.
[17]Carter, R. G., Electromagnetism for Electronic Engineers. Fredriksberg, Denmark: Ventus Publishing, 2010.
[18]Gilgenbach, R. M. et al., ‘Cathode priming of magnetrons for rapid startup and mode-locking’, in The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, vol. 2, pp. 535536, 2005.
[19]Neculaes, V. B. et al., ‘Magnetic perturbation effects on noise and startup in DC-operating oven magnetrons’, IEEE Transactions on Electron Devices, vol. 52, pp. 864871, 2005.
[20]Neculaes, V. B. et al., ‘Magnetic priming effects on noise, startup, and mode competition in magnetrons’, IEEE Transactions on Plasma Science, vol. 33, pp. 94102, 2005.
[21]Kim, J. I. et al., ‘Reduction of noise in strapped magnetron by electric priming using anode shape modification’, Applied Physics Letters, vol. 88, p. 221501, 2006.
[22]Smith, W. V., ‘Mechanical tuning’, in G. B. Collins, ed., Microwave Magnetrons. New York: McGraw-Hill, pp. 561591, 1948.
[23]Bernstein, M. J. and Kroll, N. M., ‘Mechanically tuned rising-sun magnetrons’, in E. Okress, ed., Crossed-Field Microwave Devices, vol. 2. New York: Academic Press, pp. 149153, 1961.
[24]Nelson, R. B., ‘Methods of tuning multiple-cavity magnetrons’, Proceedings of the IRE, vol. 36, pp. 5356, 1948.
[25]Pickering, A. et al., ‘Electronically tuned pulse magnetron’, in IEEE International Electron Devices Meeting, pp. 145148, 1975.
[26]Yu, S. P. and Hess, P. N., ‘Slow-wave structures for M-type devices’, IRE Transactions on Electron Devices, vol. 9, pp. 5157, 1962.
[27]Hull, J. F., ‘Crossed field electron interaction in space charge limited beams’, Doctor of Electrical Engineering, Polytechnic Institute of Brooklyn, New York, 1958.
[28]Feinstein, J. and Collier, R. J., ‘The circular electric mode magnetron’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 2. New York: Academic Press, pp. 123134, 1961.
[29]Bamford, A. J. et al., ‘A 1-MW L-band coaxial magnetron with separate cavity’, IEEE Transactions on Electron Devices, vol. 14, pp. 844851, 1967.
[30]Ruden, T. E., ‘Design and performance of a one megawatt, 3.1–3.5 GHz coaxial magnetron’, in 9th European Microwave Conference, pp. 731735, 1979.
[31]Pickering, A. H., ‘Further developments of long anode magnetrons’, in Okress, E., ed., Crossed Field Microwave Devices, vol. 2. New York: Academic Press, pp. 275290, 1961.
[32]Boot, H. A. H., ‘Long anode magnetrons’, in Okress, E., ed., Crossed Field Microwave Devices, vol. 2. New York: Academic Press, pp. 261274, 1961.
[33]Boot, H. A. H. et al., ‘A new design of high-power S-band magnetron’, Proceedings of the IEE – Part B: Radio and Electronic Engineering, vol. 105, pp. 419425, 1958.
[34]Feng, J.-J. et al., ‘Simulation of a long anode magnetron resonant system using MAFIA’, in International Conference on Microwave and Millimeter Wave Technology, pp. 748751, 1998.
[35]Smith, A. G., ‘Typical magnetrons’, in Collins, G. B., ed., Microwave Magnetrons. New York: McGraw-Hill, pp. 739–796, 1948.
[36]Schumacher, C. R., ‘Frequency pushing’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 2. New York: Academic Press, pp. 401–422, 1961.
[37]Welch, H. W., ‘Prediction of traveling wave magnetron frequency characteristics: frequency pushing and voltage tuning’, Proceedings of the IRE, vol. 41, pp. 16311653, 1953.
[38]Pritchard, W. L., ‘Long-line effect and pulsed magnetrons’, IRE Transactions on Microwave Theory and Techniques, vol. 4, pp. 97110, 1956.
[39]Yokoyama, R. and Yamada, A., ‘Development status of magnetrons for microwave ovens’, in Microwave Power Symposium, pp. 132135, 1996.
[40]Osepchuk, J. M., ‘The cooker magnetron as a standard in crossed-field device research’, in 1st Int. Workshop on Crossed-Field Devices, University of Michigan, USA, pp. 159–177, 1995.
[41]Schumacher, C. R., ‘Spectrum shape’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 2. New York: Academic Press, pp. 457471, 1961.
[42]Carter, R. G. et al., ‘Magnetron frequency twinning’, IEEE Transactions on Plasma Science, vol. 28, pp. 905909, June 2000.
[43]‘Preamble: Magnetrons’, Chelmsford, UK: EEV Ltd., 1974.
[44]Varian, ‘Technical Manual: Installation, Operation, Maintenance, Care and Handling Instructions, General: Microwave Tubes, Magnetron Tubes, Electron Tubes’, 1 October 1979.
[45]Adler, R., ‘A study of locking phenomena in oscillators’, Proceedings of the IRE, vol. 34, pp. 351357, 1946.
[46]Thal, H. L. and Lock, R. G., ‘Locking of magnetrons by an injected RF signal’, IEEE Transactions on Microwave Theory and Techniques, vol. 13, pp. 836846, 1965.
[47]Tahir, I. et al., ‘Noise performance of frequency- and phase-locked CW magnetrons operated as current-controlled oscillators’, IEEE Transactions on Electron Devices, vol. 52, pp. 20962103, September 2005.
[48]Tahir, I. et al., ‘Frequency and phase modulation performance of an injection-locked CW magnetron’, IEEE Transactions on Electron Devices, vol. 53, pp. 17211729, July 2006.
[49]Brown, W. C., ‘The sophisticated properties of the microwave oven magnetron’, in IEEE MTT- S International Microwave Symposium Digest, vol. 3, pp. 871874, 1989.
[50]David, E. E., Jr., ‘Phasing by RF signals’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 2. New York: Academic Press, pp. 375399, 1961.
[51]Kim, H. and Choi, J., ‘Characterization of a 16-vane strapped magnetron oscillator by three-dimensional particle-in-cell code simulations’, Current Applied Physics, vol. 6, pp. 6670, 2006.
[52]Andreev, A. D. and Hendricks, K. J., ‘ICEPIC simulation of a strapped nonrelativistic high-power CW UHF magnetron with a solid cathode operating in the space-charge limited regime’, IEEE Transactions on Plasma Science, vol. 40, pp. 15511562, 2012.
[53]Alfadhl, Y. et al., ‘Advanced computer modelling of magnetrons’, in 2010 International Conference on the Origins and Evolution of the Cavity Magnetron (CAVMAG), pp. 6770, 2010.
[54]Dombrowski, G. E., ‘Simulation of magnetrons and crossed-field amplifiers’, IEEE Transactions on Electron Devices, vol. 35, pp. 20602067, 1988.
[55]Dombrowski, G. E., ‘Computer simulation study of primary and secondary anode loading in magnetrons’, IEEE Transactions on Electron Devices, vol. 38, pp. 22342238, 1991.
[56]McDowell, H. L., ‘Magnetron simulations using a moving wavelength computer code’, IEEE Transactions on Plasma Science, vol. 26, pp. 733754, 1998.
[57]McDowell, H. L., ‘Magnetron simulations using a multiple wavelength computer code’, IEEE Transactions on Plasma Science, vol. 32, pp. 11601170, 2004.
[58]Welch, H. W. and Dow, W. G., ‘Analysis of synchronous conditions in the cylindrical magnetron space charge’, Journal of Applied Physics, vol. 22, pp. 433438, 1951.
[59]Hull, J. F., ‘Crossed-field electron interaction of the distributed-emission space-charge-limited type’, IRE Transactions on Electron Devices, vol. 8, pp. 309323, 1961.
[60]Riyopoulos, S., ‘Magnetron theory’, Physics of Plasmas, vol. 3, pp. 11371161, 1996.
[61]Riyopoulos, S., ‘New improved formulas for magnetron characteristic curves’, IEEE Transactions on Plasma Science, vol. 26, pp. 755766, 1998.
[62]Zhang, E.-Q., ‘On the magnetron cathode’, IEEE Transactions on Electron Devices, vol. 33, pp. 13831384, 1986.
[63]Feinstein, J., ‘Planar magnetron theory and applications’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 1. New York: Academic Press, 1961.
[64]Clogston, A. M., ‘Principles of design’, in Collins, G. B., ed., Microwave Magnetrons. New York: McGraw-Hill, pp. 401459, 1948.
[65]Twisleton, J. R. G., ‘Twenty-kilowatt 890 Mc/s continuous-wave magnetron’, Proceedings of the Institution of Electrical Engineers, vol. 111, pp. 5156, 1964.
[66]Shibata, C. et al., ‘High-power (500 kW) c.w. magnetron for industrial heating’, Electrical Engineering in Japan, vol. 111, pp. 94100, 1991.
[67]Cripps, A. M. and Jerram, P. A., ‘X-band linear accelerator magnetrons’, in 19th European Microwave Conference, pp. 10861090, 1989.
[68]Feaster, G. R., ‘The cathode’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 1. New York: Academic Press, pp. 113140, 1961.
[69]Osepchuk, J. M., ‘Private communication’, 2016.