Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: April 2018

9 - Electron Guns

[1]Pierce, J. R., Theory and Design of Electron Beams. New York: D. van Nostrand, 1949.
[2]Müller, M. B., ‘New points of view in the design of electron guns for cylindrical beams of high space charge’, Journal of the British Institution of Radio Engineers, vol. 16, pp. 8394, 1956.
[3]Tiwary, U. and Basu, B. N., ‘Noniterative method for the synthesis of convergent Pierce electron guns’, IEEE Transactions on Electron Devices, vol. 34, pp. 12181222, 1987.
[4]Basu, B. N., Electromagnetic Theory and Applications in Beam-Wave Electronics. Singapore: World Scientific, 1996.
[5]Vaughan, J. R. M., ‘Synthesis of the Pierce gun’, IEEE Transactions on Electron Devices, vol. 28, pp. 3741, 1981.
[6]Gilmour, A. S., Jr., Principles of Traveling Wave Tubes. Norwood, MA: Artech House, 1994.
[7]Beck, A. H. W., Thermionic Valves: Their Theory and Design. Cambridge: Cambridge University Press, 1953.
[8]Gittins, J. F., Power Travelling-Wave Tubes. London: English Universities Press, 1965.
[9]Sar-El, H. Z., ‘Revised theory of Pierce-type electron guns’, Nuclear Instruments and Methods, vol. 203, pp. 2133, 1982.
[10]Brewer, G. R., ‘Formation of high-density electron beams’, Journal of Applied Physics, vol. 28, pp. 715, 1957.
[11]Frost, R. D. et al., ‘Electron guns for forming solid beams of high perveance and high convergence’, Proceedings of the IRE, vol. 50, pp. 18001807, 1962.
[12]Danielson, W. E. et al., ‘A detailed analysis of beam formation with electron guns of the Pierce type’, Bell System Technical Journal, vol. 35, pp. 375420, 1956.
[13]Yang, C. et al., ‘Improved noniterative method for the synthesis of convergent Pierce electron guns’, IEEE Transactions on Electron Devices, vol. 53, pp. 28492852, 2006.
[14]Birdsall, C. K., ‘Aperture lens formula corrected for space charge in the electron stream’, IRE Transactions on Electron Devices, vol. 4, pp. 132134, 1957.
[15]Amboss, K., ‘The effect of the anode aperture in conical flow Pierce guns’, Journal of Electronics and Control, vol. 13, pp. 545572, 1962.
[16]Liu, W. and Liu, S., ‘PIC simulation study of electron gun with rotational surface cathode’, Frontiers of Electrical and Electronic Engineering in China, vol. 6, pp. 556562, 2011.
[17]True, R., ‘Gridded Pierce gun design and the PPM focussing of beams from gridded electron guns’, in International Electron Devices Meeting, pp. 32–35, 1982.
[18]Cutler, C. C. and Hines, M. E., ‘Thermal velocity effects in electron guns’, Proceedings of the IRE, vol. 43, pp. 307315, 1955.
[19]True, R., ‘Calculation and design of grids in Pierce guns’, in 1989 International Electron Devices Meeting, IEDM ‘89, pp. 215–218, 1989.
[20]Herrmannsfeldt, W. B., ‘Numerical design of electron guns and space charge limited transport systems’, Nuclear Instruments and Methods in Physics Research, vol. 187, pp. 245253, 1981.
[21]Petillo, J. et al., ‘The MICHELLE three-dimensional electron gun and collector modeling tool: theory and design’, IEEE Transactions on Plasma Science, vol. 30, pp. 12381264, 2002.
[22]Kumar, L. and Kasper, E., ‘On the numerical design of electron guns’, Optik, vol. 72, pp. 2330, 1985.
[23]Boers, J. E., ‘Digital computer analysis of axially symmetric electron guns’, IEEE Transactions on Electron Devices, vol. 12, pp. 425435, 1965.
[24]Hamza, V., ‘Convergence and accuracy criteria of iteration methods for the analysis of axially symmetric and sheet beam electrode shapes with an emitting surface’, IEEE Transactions on Electron Devices, vol. 13, pp. 485493, 1966.
[25]Lewis, B. M. et al., ‘Design of an electron gun using computer optimization’, IEEE Transactions on Plasma Science, vol. 32, pp. 12421250, 2004.
[26]True, R., ‘The deformable relaxation mesh technique for solution of electron optics problems’, in International Electron Devices Meeting, pp. 257–260, 1975.
[27]Faillon, G., ‘Technical and industrial overview of RF and microwave tubes for fusion’, Fusion Engineering and Design, vol. 46, pp. 371381, 1999.
[28]Lee, T. et al., ‘A fifty megawatt klystron for the Stanford Linear Collider’, in International Electron Devices Meeting, pp. 144–147, 1983.
[29]Pinto, M. N. et al., ‘An electron gun design for a C-band TWT’, in SBMO/IEEE MTT-S International Microwave & Optoelectronics Conference, pp. 937–940, 2011.
[30]Smythe, W. R., Static and Dynamic Electricity, 2nd ed. New York: McGraw-Hill, 1950.
[31]Nelson, R. B., ‘Shaping the magnetic field for convergent confined-flow electron guns’, in 6th International Conference on Microwave and Optical Generation and Amplification, Cambridge, England, pp. 60–64, 1966.
[32]Smith, M. J. and Phillips, G., Power Klystrons Today. Taunton, UK: Research Studies Press, 1995.
[33]Legarra, J. R. et al., ‘A convergent confined-flow focusing system for millimeter wave tubes’, in 1983 International Electron Devices Meeting, pp. 137–140, 1983.
[34]Amboss, K., ‘Studies of a magnetically compressed electron beam’, IEEE Transactions on Electron Devices, vol. 16, pp. 897904, 1969.
[35]Seeger, J. A., ‘Magnetic compression of axially symmetric Brillouin-focused electron beams’, IEEE Transactions on Electron Devices, vol. 16, pp. 15, 1969.
[36]Ash, E. A., ‘Compression and reflection of Brillouin beams’, Journal of Electronics and Control, vol. 15, pp. 402417, 1963.
[37]Müller, M., ‘Magnetische Elektronenoptik in Langstrahl-Verstärker Rohren’, Telefunken Zeiting, vol. 26, pp. 95101, 1953.
[38]Bevc, V. et al., ‘On the design of the transition region of axisymmetric, magnetically focused beam valves’, Journal of the British Institution of Radio Engineers, vol. 18, pp. 696705, 1958.
[39]Rawls, J. L., ‘An analogue study of periodic permanent magnet focusing’, International Journal of Electronics, vol. 25, pp. 165175, 1968.
[40]Igritsky, A. L., ‘Focusing a beam of electrons in the region of entry into the magnetic field of a traveling-wave tube’, Radio Engineering and Electron Physics, vol. 8, pp. 117123, 1963.
[41]Rawls, J. L. et al., ‘PPM focusing of convergent beams emerging from partially shielded cathodes’, IEEE Transactions on Electron Devices, vol. 14, pp. 301305, 1967.
[42]Kramer, N. B. and Todd, E. G., ‘Design of hollow and strip beam guns’, IEEE Transactions on Electron Devices, vol. 10, pp. 394404, 1963.
[43]Wong, S. K. et al., ‘The design of sheet-beam electron-gun for high-power microwave sources’, in Particle Accelerator Conference, pp. 1043–1045, 1999.
[44]Nguyen, K. T. et al., ‘High-perveance W-band sheet-beam electron gun design’, in ICOPS 2008: IEEE 35th International Conference on Plasma Science, pp. 179–180, 2008.
[45]Pasour, J. et al., ‘Demonstration of a 100-kW solenoidally focused sheet electron beam for millimeter-wave amplifiers’, IEEE Transactions on Electron Devices, vol. 58, pp. 17921797, 2011.
[46]Vaughan, J. R. M., ‘Synthesis of a hollow-beam gun based on the Pierce design’, in International Electron Devices Meeting, pp. 496–499, 1981.
[47]Vaughan, J. R. M., ‘Synthesis of a hollow-beam Pierce gun’, IEEE Transactions on Electron Devices, vol. 34, pp. 468472, 1987.
[48]Vaughan, J. R. M., ‘Corrections to “Synthesis of a hollow-beam Pierce gun”’, IEEE Transactions on Electron Devices, vol. 34, p. 1885, 1987.
[49]Harris, L. A., ‘Toroidal electron guns for hollow beams’, Journal of Applied Physics, vol. 30, pp. 826836, 1959.
[50]Hartnagel, H. L., ‘Electrostatically focused electron gun for hollow beams’, Proceedings of the Institution of Electrical Engineers, vol. 111, pp. 5766, 1964.
[51]Hartnagel, H., ‘Toroidal hollow-beam gun’, Proceedings of the Institution of Electrical Engineers, vol. 111, pp. 18211829, 1964.
[52]Staprans, A. et al., ‘High-power linear-beam tubes’, Proceedings of the IEEE, vol. 61, pp. 299330, 1973.
[53]Sivan, L., Microwave Tube Transmitters. London: Chapman and Hall, 1994.
[54]Gallagher, H. E., ‘Gridded electron guns for high average power’, IRE Transactions on Electron Devices, vol. 9, pp. 234241, 1962.
[55]Miram, G. et al., ‘Gridded gun design considerations for pulse and cw operation’, in Vakuumelektronik und Displays, Garmisch Partenkirchen, Germany, pp. 225–233, 1989.
[56]True, R., ‘A theory for coupling gridded gun design with PPM focusing’, IEEE Transactions on Electron Devices, vol. 31, pp. 353362, 1984.
[57]True, R., ‘An ultra-laminar tetrode gun for high duty cycle applications’, in International Electron Devices Meeting, pp. 286–289, 1979.
[58]Doehler, O., ‘Static characteristics of injection crossed-field tubes’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 1. New York: Academic Press, pp. 151163, 1961.
[59]Kino, G. S., ‘A design method for crossed-field electron guns’, IRE Transactions on Electron Devices, vol. 7, pp. 179185, 1960.
[60]Midford, T. A. and Kino, G. S., ‘Some experiments with a new type of crossed-field gun’, IRE Transactions on Electron Devices, vol. 8, pp. 324330, 1961.
[61]Vaughan, J. R. M., ‘Generalization and synthesis of the Kino gun’, IEEE Transactions on Electron Devices, vol. ED-28, pp. 4148, 1981.
[62]Midford, T. A. and Kino, G. S., ‘Experiments with a new type adiabatic crossed-field gun’, IRE Transactions on Electron Devices, vol. 9, pp. 431439, 1962.
[63]van Duzer, T. and Whinnery, J. R., ‘Noise in crossed-field electron beams’, in Okress, E., ed., Crossed-Field Microwave Devices, vol. 1. New York: Academic Press, pp. 327–357, 1961.
[64]Gilgenbach, R. M. et al., ‘Crossed-field devices’, in Barker, R. J. et al., eds, Modern Microwave and Millimetre-Wave Power Electronics. Piscataway, NJ: IEEE Press, pp. 289–342, 2005.
[65]Sisodia, M. L. and Wadhwa, R. P., ‘Noise reduction in crossed-field guns by cathode tilt’, Proceedings of the IEEE, vol. 56, pp. 9495, 1968.
[66]Espinosa, R. J. and Moats, R. R., ‘Broad-band injected-beam crossed-field amplifiers’, IEEE Transactions on Electron Devices, vol. 24, pp. 1321, 1977.
[67]Edgcombe, C. J., ‘Synthesis of electrodes for axisymmetric systems’, IEE Proceedings – A, vol. 135, pp. 125134, 1988.
[68]Okoshi, T., ‘An improved design theory of a magnetron injection gun’, IEEE Transactions on Electron Devices, vol. ED-11, pp. 349356, 1964.
[69]Waters, W. E., ‘A theory of magnetron injection guns’, IEEE Transactions on Electron Devices, vol. 10, pp. 226234, 1963.
[70]Kino, G. S. and Taylor, N. J., ‘The design and performance of a magnetron-injection gun’, IRE Transactions on Electron Devices, vol. 9, pp. 111, 1962.
[71]Singh, U. et al., ‘Numerical simulation of magnetron injection gun for 1 MW 120 GHz gyrotron’, Progress in Electromagnetics Research Letters, vol. 16, pp. 2134, 2010.
[72]Baird, J. M. and Lawson, W. E. S., ‘Magnetron injection gun (MIG) design for gyrotron applications’, International Journal of Electronics, vol. 61, pp. 953967, 1986.