Skip to main content Accessibility help
×
Home
  • Print publication year: 2018
  • Online publication date: April 2018

10 - Electron Collectors and Cooling

Related content

Powered by UNSILO
[1]Shibata, C. et al., ‘High-power (500 kW) c.w. magnetron for industrial heating’, Electrical Engineering in Japan, vol. 111, pp. 94100, 1991.
[2]Bennett, W. P., ‘Large-power-tube design, processing and testing’, in R. S. Burnap, ed., Electron Tube Design. Harrison, NJ: RCA, pp. 763–791, 1962.
[3]Gilmour, A. S., Jr., Klystrons, Traveling Wave Tubes, Magnetrons, Crossed-Field Amplifiers and Gyrotrons. Norwood, MA: Artech House, 2011.
[4]Faillon, G., ‘Technical and industrial overview of RF and microwave tubes for fusion’, Fusion Engineering and Design, vol. 46, pp. 371381, 1999.
[5]Sivan, L., Microwave Tube Transmitters. London: Chapman and Hall, 1994.
[6]Varian, Technical Manual: Installation, Operation, Maintenance, Care and Handling Instructions, General: Microwave Tubes, Magnetron Tubes, Electron Tubes, Publication no. T.0.00-25-251, 1 October 1979.
[7]Sterzer, F., ‘Improvement of traveling-wave tube efficiency through collector potential depression’, IRE Transactions on Electron Devices, vol. 5, pp. 300305, 1958.
[8]Wolkstein, H. J., ‘Effect of collector potential on the efficiency of traveling-wave tubes’, RCA Review, vol. 19, pp. 259282, 1958.
[9]Mihran, T. G. and Neugebauer, W., ‘Analytical study of a depressed collector for linear beam microwave amplifiers’, NASA Lewis Research Center, Cleveland, OH, 1970.
[10]Kosmahl, H. G., ‘How to quickly predict the overall TWT and the multistage depressed collector efficiency’, IEEE Transactions on Electron Devices, vol. 27, pp. 526529, 1980.
[11]Komm, D. S. et al., ‘Advances in space TWT efficiencies’, IEEE Transactions on Electron Devices, vol. 48, pp. 174176, 2001.
[12]Okoshi, T. et al., ‘The tilted electric field soft-landing collector and its application to a traveling-wave tube’, IEEE Transactions on Electron Devices, vol. 19, pp. 104110, 1972.
[13]Neugebauer, W. and Mihran, T. G., ‘A ten-stage electrostatic depressed collector for improving klystron efficiency’, IEEE Transactions on Electron Devices, vol. 19, pp. 111121, 1972.
[14]Kosmahl, H. G. and Ramins, P., ‘Small-size 81- to 83.5-percent efficient 2- and 4-stage depressed collectors for octave-bandwidth high-performance TWT’s’, IEEE Transactions on Electron Devices, vol. 24, pp. 3644, 1977.
[15]Ramins, P. and Fox, T. A., ‘90- to 93-percent efficient collector for operation of a dual-mode traveling-wave tube in the linear region’, IEEE Transactions on Electron Devices, vol. 26, pp. 16621664, 1979.
[16]Faillon, G. et al., ‘Microwave tubes’, in Eichmeier, J. A. and Thumm, M. K., eds, Vacuum Electronics: Components and Devices. Berlin: Springer-Verlag, pp. 1–84, 2008.
[17]Kosmahl, H. G., ‘Modern multistage depressed collectors – a review’, Proceedings of the IEEE, vol. 70, pp. 13251334, 1982.
[18]Kosmahl, H. G., ‘A novel, axisymmetric, electrostatic collector for linear beam microwave tubes’, NASA Lewis Research Center, Cleveland, OH, 1971.
[19]Dayton, J. A., Jr. et al., ‘Experimental verification of a computational procedure for the design of TWT-refocuser-MDC systems’, IEEE Transactions on Electron Devices, vol. 28, pp. 14801489, 1981.
[20]Hechtel, J. R., ‘A novel electrostatic-focusing depressed collector for linear beam tubes’, IEEE Transactions on Electron Devices, vol. 24, pp. 4552, 1977.
[21]Kumar, L. et al., ‘3-dimensional simulation of multistage depressed collectors on microcomputers’, IEEE Transactions on Electron Devices, vol. 42, pp. 16631673, September 1995.
[22]Coco, S. et al., ‘Shape optimization of multistage depressed collectors by parallel evolutionary algorithm’, IEEE Transactions on Magnetics, vol. 48, pp. 435438, 2012.
[23]Petillo, J. et al., ‘The MICHELLE three-dimensional electron gun and collector modeling tool: theory and design’, IEEE Transactions on Plasma Science, vol. 30, pp. 12381264, 2002.
[24]Petillo, J. J. et al., ‘Recent developments to the MICHELLE 2-D/3-D electron gun and collector modeling code’, IEEE Transactions on Electron Devices, vol. 52, pp. 742748, 2005.
[25]Ghosh, T. K. and Carter, R. G., ‘Optimization of multistage depressed collectors’, IEEE Transactions on Electron Devices, vol. 54, pp. 20312039, 2007.
[26]Liang, Z. et al., ‘Numerical optimization of a multistage depressed collector with secondary electron emission for an X-band gyro-BWO’, IEEE Transactions on Plasma Science, vol. 37, pp. 23282334, 2009.
[27]Ghosh, T. K., ‘Three-dimensional modelling and optimization of multistage depressed collectors’, PhD, Engineering Department, Lancaster University, Lancaster, UK, 2002.
[28]Curren, A. N. and Fox, T. A., ‘Traveling-wave tube efficiency improvement with textured pyrolytic graphite multistage depressed collector electrodes’, IEEE Electron Device Letters, vol. 2, pp. 252254, 1981.
[29]Ramins, P. et al., ‘Verification of an improved computational design procedure for TWT-dynamic refocuser-MDC systems with secondary electron emission losses’, IEEE Transactions on Electron Devices, vol. 33, pp. 8590, 1986.
[30]Curren, A. N., ‘Carbon and carbon-coated electrodes for multistage depressed collectors for electron-beam devices: a technology review’, IEEE Transactions on Electron Devices, vol. 33, pp. 19021914, 1986.
[31]Ebihara, B. T. et al., ‘TWT efficiency improvement by a low-cost technique for deposition of carbon on MDC electrodes’, IEEE Transactions on Electron Devices, vol. 34, pp. 490493, 1987.
[32]Ramins, P. and Ebihara, B. T., ‘Isotropic graphite multistage depressed collectors – a progress report’, IEEE Transactions on Electron Devices, vol. ED-36, pp. 817824, 1989.
[33]Stankiewicz, N., ‘Analysis of spent beam refocusing to achieve optimum collector efficiency’, IEEE Transactions on Electron Devices, vol. 24, pp. 3236, 1977.
[34]Dayton, J. A., Jr. et al., ‘Analytical prediction and experimental verification of TWT and depressed collector performance using multidimensional computer programs’, IEEE Transactions on Electron Devices, vol. 26, pp. 15891598, 1979.
[35]Ramins, P. et al., ‘A reexamination of spent beam refocusing for high-efficiency helix TWTs and small MDCs’, IEEE Transactions on Electron Devices, vol. 35, pp. 539548, 1988.
[36]EIMAC, Care and Feeding of Power Grid Tubes, 5th ed. San Carlos, CA: CPI Inc. Eimac Division, 2003.
[37]Smith, M. J. and Phillips, G., Power Klystrons Today. Taunton, UK: Research Studies Press, 1995.
[38]Gerlach, P. and Kalfon, C., ‘New technologies in power-grid tubes and their impact in high-power UHF-TV operation’, Proceedings of the IEEE, vol. 70, pp. 13351345, 1982.
[39]EEV, ‘Preamble – Tetrodes’, ed. Chelmsford, UK: Teledyne e2v, 1976.