Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T10:02:58.967Z Has data issue: false hasContentIssue false

3 - Production of Proteins in Bacteria and Yeast

Published online by Cambridge University Press:  05 June 2012

Alexander N. Glazer
Affiliation:
University of California, Berkeley
Hiroshi Nikaido
Affiliation:
University of California, Berkeley
Get access

Summary

The human body functions properly only when thousands of bioactive peptides and proteins – hormones, lymphokines, interferons, various enzymes – are produced in precisely regulated amounts, and serious diseases result whenever any of these macromolecules are in short supply. Until 1982, however, the only available pharmaceutical preparations of these peptides and proteins for the treatment of such diseases were obtained from animal sources, and they were sometimes prohibitively expensive. Bioactive proteins and peptides typically occur at low concentrations in animal tissues, so it was difficult to purify significant amounts for medical use. Some important proteins, such as pituitary growth hormone, differ in animals and humans to the extent that a preparation of animal origin is useless for treating humans. Finally, it was extremely difficult to isolate labile macromolecules from human and animal tissues without running some risk that the products might be contaminated by viral particles and viral nucleic acids.

The introduction of recombinant DNA techniques brought about a revolution in the production of these compounds (Chapter 2). It is now possible to clone a DNA segment coding for a protein and introduce the cloned fragment into a suitable microorganism, such as Escherichia coli or the yeast Saccharomyces cerevisiae. The “engineered” microorganism then works as a living factory, producing very large amounts of rare peptides and proteins from the inexpensive ingredients of the culture medium. And with such products obtained in this way from pure cultures of microorganisms, there is no chance of contamination by viruses harmful to humans.

Type
Chapter
Information
Microbial Biotechnology
Fundamentals of Applied Microbiology
, pp. 90 - 146
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×