Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T11:13:41.471Z Has data issue: false hasContentIssue false

8 - Stokes Flow

Published online by Cambridge University Press:  05 June 2012

Brian J. Kirby
Affiliation:
Cornell University, New York
Get access

Summary

The Navier–Stokes equations have not been solved analytically in the general case, and the only available analytical solutions arise from simple geometries (for example, the 1D flow geometries discussed in Chapter 2). Because of this, our analytical approach for solving fluid flow problems is often to solve a simpler equation that applies in a specific limit. Some examples of these simplified equations include the Stokes equations (applicable when the Reynolds number is low, as is usually the case in microfluidic devices) and the Laplace equation (applicable when the flow has no vorticity, as is the case for purely electrokinetic flows in certain limits). These simplified equations guide engineering analysis of fluid systems.

In this chapter, we discuss Stokes flow (equivalently termed creeping flow), in which case the Reynolds number is so low that viscous forces dominate over inertial forces. The approximation that leads from the Navier–Stokes equations to the Stokes equations is shown, and analytical results are discussed. The Stokes flow equations provide useful solutions to describe the fluid forces on small particles in micro- and nanofluidic systems, because these particles are often well approximated by simple geometries (for example, spheres) for which the Stokes flow equations can be solved analytically. The Stokes flow equations also lead to simple solutions (Hele-Shaw flows) for wide, shallow microchannels of uniform depths.

Type
Chapter
Information
Micro- and Nanoscale Fluid Mechanics
Transport in Microfluidic Devices
, pp. 178 - 198
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Stokes Flow
  • Brian J. Kirby, Cornell University, New York
  • Book: Micro- and Nanoscale Fluid Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760723.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Stokes Flow
  • Brian J. Kirby, Cornell University, New York
  • Book: Micro- and Nanoscale Fluid Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760723.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Stokes Flow
  • Brian J. Kirby, Cornell University, New York
  • Book: Micro- and Nanoscale Fluid Mechanics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511760723.010
Available formats
×