Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T21:35:37.182Z Has data issue: false hasContentIssue false

Introduction: Molecular biophysics at the beginning of the twenty-first century: from ensemble measurements to single-molecule detection

Published online by Cambridge University Press:  05 November 2012

Igor N. Serdyuk
Affiliation:
Institute of Protein Research, Moscow
Nathan R. Zaccai
Affiliation:
University of Bristol
Joseph Zaccai
Affiliation:
Institut de Biologie Structurale, Grenoble
Get access

Summary

The ideal biophysical method would be capable of measuring atomic positions in molecules in vivo. It would also permit visualisation of the structures that form throughout the course of conformational changes or chemical reactions, regardless of the time scale involved. At present there is no single experimental technique that can yield this information.

A brief history and perspectives

Molecular biology was born with the double-helix model for DNA, which provided a superbly elegant explanation for the storage and transmission mechanisms of genetic information (Fig. 1). The model by J. D. Watson and F. H. C. Crick and supporting fibre diffraction studies by M. H. F Wilkins, A. R. Stokes, and H. R Wilson, and R. Franklin and R. G. Gosling, published in a series of papers in the 25 April, 1953 issue of Nature, marked a major triumph of the physical approach to biology.

The Watson and Crick model was based only in part on data from X-ray fibre diffraction diagrams. The patterns, which demonstrated the presence of a helical structure of constant pitch and diameter, could not provide unequivocal proof for a more precise structural model. One of the ‘genius’ aspects of the discovery was the realisation that A–T and G–C base pairs have identical dimensions; as the rungs of the double-helix ladder, they give rise to a constant diameter and pitch.

Type
Chapter
Information
Methods in Molecular Biophysics
Structure, Dynamics, Function
, pp. 1 - 18
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×