Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: January 2013

5 - Mass Spectrometry–Based Methodologies for Single-Cell Metabolite Detection and Identification

from Section 2 - Metabolomic Mass Spectrometry: Experimental Techniques and Bioinformatics

Related content

Powered by UNSILO


Altschuler, S. J. and Wu, L. F. (2010). Cellular heterogeneity: do differences make a difference?Cell 141:559–563.
Amantonico, A., Oh, J. Y., Sobek, J., Heinemann, M. and Zenobi, R. (2008). Mass spectrometric method for analyzing metabolites in yeast with single cell sensitivity. Angew. Chem.-Int. Edit. 47:5382–5385.
Amantonico, A., Urban, P. L., Fagerer, S. R., Balabin, R. M. and Zenobi, R. (2010a). Single-cell MALDI-MS as an analytical tool for studying intrapopulation metabolic heterogeneity of unicellular organisms. Anal. Chem. 82:7394–7400.
Amantonico, A., Urban, P. L. and Zenobi, R. (2010b). Analytical techniques for single-cell metabolomics: state of the art and trends. Anal. Bioanal. Chem. 398:2493–2504.
Amatore, C., Arbault, S., Guille, M. and Lemaitre, F. (2008). Electrochemical monitoring of single cell secretion: vesicular exocytosis and oxidative stress. Chem. Rev. 108:2585–2621.
Bathen, T. F., Sitter, B., Sjøbakk, T. E., Tessem, M.-B. and Gribbestad, I. S. (2010). Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. Cancer Res. 70:6692–6696.
Borland, L. M., Kottegoda, S., Phillips, K. S. and Allbritton, N. L. (2008). Chemical analysis of single cells. Annu. Rev. Anal. Chem. 1:191–227.
Chan-Palay, V., Nilaver, G., Palay, S. L., Beinfeld, M. C., Zimmerman, E. A., Wu, J. Y. and Odonohue, T. L. (1981). Chemical heterogeneity in cerebellar Purkinje cells: existence and coexistence of glutamic acid decarboxylase-like and motilin-like immunoreactivities. Proc. Natl. Acad. Sci. U. S. A. 78:7787–7791.
Chandra, S. (2004). Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells. Appl. Surf. Sci. 231:462–466.
Cohen, D., Dickerson, J. A., Whitmore, C. D., Turner, E. H., Palcic, M. M., Hindsgaul, O. and Dovichi, N. J. (2008). Chemical cytometry: fluorescence-based single-cell analysis. Annu. Rev. Anal. Chem. 1:165–190.
Edwards, J. L. and Kennedy, R. T. (2005). Metabolomic analysis of eukaryotic tissue and prokaryotes using negative mode MALDI time-of-flight mass spectrometry. Anal. Chem. 77:2201–2209.
Garden, R. W., Moroz, L. L., Moroz, T. P., Shippy, S. A. and Sweedler, J. V. (1996). Excess salt removal with matrix rinsing: direct peptide profiling of neurons from marine invertebrates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J. Mass Spectrom. 31:1126–1130.
Ge, S. C., Koseoglu, S. and Haynes, C. L. (2010). Bioanalytical tools for single-cell study of exocytosis. Anal. Bioanal. Chem. 397:3281–3304.
Heinemann, M. and Zenobi, R. (2011). Single cell metabolomics. Curr. Opin. Biotechnol. 22:26–31.
Holscher, D., Shroff, R., Knop, K., Gottschaldt, M., Crecelius, A., Schneider, B., Heckel, D. G., Schubert, U. S. and Svatos, A. (2009). Matrix-free UV-laser desorption/ionization (LDI) mass spectrometric imaging at the single-cell level: distribution of secondary metabolites of Arabidopsis thaliana and Hypericum species. Plant J. 60:907–918.
Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K. and Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. J. Mass Spectrom. 45:703–714.
Huang, W.-H., Ai, F., Wang, Z.-L. and Cheng, J.-K. (2008). Recent advances in single-cell analysis using capillary electrophoresis and microfluidic devices. J. Chromatogr. B 866:104–122.
Iliffe, T. M., McAdoo, D. J., Beyer, C. B. and Haber, B. (1977). Amino acid concentrations in the Aplysia nervous system: neurons with high glycine concentrations. J. Neurochem. 28:1037–1042.
Jimenez, C. R., Vanveelen, P. A., Li, K. W., Wildering, W. C., Geraerts, W. P. M., Tjaden, U. R. and Vandergreef, J. (1994). Neuropeptide expression and processing as revealed by direct matrix-assisted laser desorption ionization mass spectrometry of single neurons. J. Neurochem. 62:404–407.
Kamme, F., Salunga, R., Yu, J. X., Tran, D. T., Zhu, J., Luo, L., Bittner, A., Guo, H. Q., Miller, N., Wan, J. and Erlander, M. (2003). Single-cell microarray analysis in hippocampus CA1: demonstration and validation of cellular heterogeneity. J. Neurosci. 23:3607–3615.
Kennedy, R. T., Oates, M. D., Cooper, B. R., Nickerson, B. and Jorgenson, J. W. (1989). Microcolumn separations and the analysis of single cells. Science 246:57–63.
Knolhoff, A. M., Rubakhin, S. S. and Sweedler, J. V. (2010). Single-cell mass spectrometry. In: Lu, C. (Ed.). Chemical cytometry – ultrasensitive analysis of single cells (pp. 197–218). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Koek, M. M., Bakels, F., Engel, W., van den Maagdenberg, A., Ferrari, M. D., Coulier, L. and Hankemeier, T. (2009). Metabolic profiling of ultrasmall sample volumes with GC/MS: from microliter to nanoliter samples. Anal. Chem. 82:156–162.
Lapainis, T., Rubakhin, S. S. and Sweedler, J. V. (2009). Capillary electrophoresis with electrospray ionization mass spectrometric detection for single-cell metabolomics. Anal. Chem. 81:5858–5864.
Lapainis, T. and Sweedler, J. V. (2008). Contributions of capillary electrophoresis to neuroscience. J. Chromatogr. 1184:144–158.
Leszczyszyn, D. J., Jankowski, J. A., Viveros, O. H., Diliberto, E. J., Near, J. A. and Wightman, R. M. (1991). Secretion of catecholamines from individual adrenal medullary chromaffin cells. J. Neurochem. 56:1855–1863.
Lidstrom, M. E. and Konopka, M. C. (2010). The role of physiological heterogeneity in microbial population behavior. Nat. Chem. Biol. 6:705–712.
Madsen, R., Lundstedt, T. and Trygg, J. (2010). Chemometrics in metabolomics – a review in human disease diagnosis. Anal. Chim. Acta 659:23–33.
Martin, K. C., Zhao, Y. and Wang, D. O. (2009). Preparation of Aplysia sensory-motor neuronal cell cultures. J. Vis. Exp. 28:1355.
Miao, H., Rubakhin, S. S. and Sweedler, J. V. (2005). Subcellular analysis of D-aspartate. Anal. Chem. 77:7190–7194.
Mizuno, H., Tsuyama, N., Harada, T. and Masujima, T. (2008). Live single-cell video-mass spectrometry for cellular and subcellular molecular detection and cell classification. J. Mass Spectrom. 43:1692–1700.
Monroe, E. B., Jurchen, J. C., Koszczuk, B. A., Losh, J. L., Rubakhin, S. S. and Sweedler, J. V. (2006). Massively parallel sample preparation for the MALDI MS analyses of tissues. Anal. Chem. 78:6826–6832.
Nemes, P., Knolhoff, A. M., Rubakhin, S. S. and Sweedler, J. V. (2011). Metabolic differentiation of neuronal phenotypes by single-cell capillary electrophoresis – electrospray ionization-mass spectrometry. Anal. Chem. 83:6810–6817.
Nemes, P., Marginean, I. and Vertes, A. (2007). Spraying mode effect on droplet formation and ion chemistry in electrosprays. Anal. Chem. 79:3105–3116.
Nemes, P. and Vertes, A. (2007). Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry. Anal. Chem. 79:8098–8106.
Northen, T. R., Yanes, O., Northen, M. T., Marrinucci, D., Uritboonthai, W., Apon, J., Golledge, S. L., Nordstrom, A. and Siuzdak, G. (2007). Clathrate nanostructures for mass spectrometry. Nature 449:1033–1036.
Olefirowicz, T. M. and Ewing, A. G. (1990). Capillary electrophoresis in 2 and 5 μm diameter capillaries: application to cytoplasmic analysis. Anal. Chem. 62:1872–1876.
Paszek, P., Ryan, S., Ashall, L., Sillitoe, K., Harper, C. V., Spiller, D. G., Rand, D. A. and White, M. R. H. (2010). Population robustness arising from cellular heterogeneity. Proc. Natl. Acad. Sci. U. S. A. 107:11644–11649.
Pihel, K., Schroeder, T. J. and Wightman, R. M. (1994). Rapid and selective cyclic voltammetric measurements of epinephrine and norepinephrine as a method to measure secretion from single bovine adrenal medullary cells. Anal. Chem. 66:4532–4537.
Raj, A. and van Oudenaarden, A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–226.
Romanova, E. V., Rubakhin, S. S., Monroe, E. B. and Sweedler, J. V. (2009). Single cell mass spectrometry. In: Anselmetti, D. (Ed.). Single cell analysis: technologies and applications (pp. 109–133). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.
Rubakhin, S. S., Churchill, J. D., Greenough, W. T. and Sweedler, J. V. (2006). Profiling signaling peptides in single mammalian cells using mass spectrometry. Anal. Chem. 78:7267–7272.
Rubakhin, S. S., Romanova, E. V., Nemes, P. and Sweedler, J. V. (2011). Profiling metabolites and peptides in single cells. Nat. Methods. 8: S20–S29.
Rubakhin, S. S. and Sweedler, J. V. (2007). Characterizing peptides in individual mammalian cells using mass spectrometry. Nat. Protoc. 2:1987–1997.
Schmid, A., Kortmann, H., Dittrich, P. S. and Blank, L. M. (2010). Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 21:12–20.
Schulte, A. and Schuhmann, W. (2007). Single-cell microelectrochemistry. Angew. Chem.-Int. Edit. 46:8760–8777.
Shrestha, B. and Vertes, A. (2009). In situ metabolic profiling of single cells by laser ablation electrospray ionization mass spectrometry. Anal. Chem. 81:8265–8271.
Signor, L., Varesio, E., Staack, R. F., Starke, V., Richter, W. F. and Hopfgartner, G. (2007). Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J. Mass Spectrom. 42:900–909.
Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R. and Siuzdak, G. (2005). METLIN: a metabolite mass spectral database. Ther. Drug Monit. 27:747–751.
Spiller, D. G., Wood, C. D., Rand, D. A. and White, M. R. H. (2010). Measurement of single-cell dynamics. Nature 465:736–745.
Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexander, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C. and Chinnaiyan, A. M. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457:910–914.
Suckau, D., Resemann, A., Schuerenberg, M., Hufnagel, P., Franzen, J. and Holle, A. (2003). A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 376:952–965.
Vaidyanathan, S. and Goodacre, R. (2007). Quantitative detection of metabolites using matrix-assisted laser desorption/ionization mass spectrometry with 9-aminoacridine as the matrix. Rapid Commun. Mass Spectrom. 21:2072–2078.
Wang, D. J. and Bodovitz, S. (2010). Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol. 28:281–290.
Zhang, Y. and Barres, B. A. (2010). Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20:588–594.