Skip to main content Accessibility help
  • Print publication year: 2013
  • Online publication date: January 2013

7 - Bioinformatic Approaches to Processing and Annotation of High-Resolution Mass Spectrometry Data

from Section 2 - Metabolomic Mass Spectrometry: Experimental Techniques and Bioinformatics


[1] K. Aliferis and M. Chrysayi-Tokousbalides. Metabolomics in pesticide research and development: review and future perspectives. Metabolomics, 7(1):35–53, 2011.
[2] M. Altaf-Ul-Amin, H. Asahi, K. Kurokawa, M. Arita, K. Saito, D. Ohta, D. Shibata, S. Kanaya, Y. Shinbo, and Y. Nakamura. Knapsack: a comprehensive species-metabolite relationship database. Biotechnol Agr Forest, 57:166–181, 2006.
[3] R. Breitling, A.R. Pitt, and M.P. Barrett. Precision mapping of the metabolome. Trends Biotechnol, 24(12):543–548, 2006.
[4] R. Breitling, S. Ritchie, D. Goodenowe, M. Stewart, and M. Barrett. Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2(3):155–164, 2006.
[5] J.T. Brenna and W.R. Creasy. Experimental evaluation of apodization functions for quantitative Fourier transform mass spectrometry. International Journal of Mass Spectrometry and Ion Processes, 90(2):151–166, 1989.
[6] M. Brown, W.B. Dunn, P. Dobson, Y. Patel, C.L. Winder, S. Francis-McIntyre, P. Begley, K. Carroll, D. Broadhurst, A. Tseng, N. Swainston, I. Spasic, R. Goodacre, and D.B. Kell. Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134(7):1322–1332, 2009.
[7] R. Caspi, T. Altman, J.M. Dale, K. Dreher, C.A. Fulcher, F. Gilham, P. Kaipa, A.S. Karthikeyan, A. Kothari, M. Krummenacker, M. Latendresse, L.A. Mueller, S. Paley, L. Popescu, A. Pujar, A.G. Shearer, P. Zhang, and P.D. Karp. The metacyc database of metabolic pathways and enzymes and the biocyc collection of pathway/genome databases. Nucleic Acids Res, 38(Database issue):D473–D479, 2010.
[8] J. Draper, D. Enot, D. Parker, M. Beckmann, S. Snowdon, W. Lin, and H. Zubair. Metabolite signal identification in accurate mass metabolomics data with mzeddb, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics, 10(1):227, 2009.
[9] M.A. Freitas, E. King, and S.D.H. Shi. Tool command language automation of the modular ion cyclotron data acquisition system (MIDAS) for data-dependent tandem Fourier transform ion cyclotron resonance mass spectrometry. Rapid Communications in Mass Spectrometry, 17(4):363–370, 2003.
[10] G. Gipson, K. Tatsuoka, B. Sokhansanj, R. Ball, and S. Connor. Assignment of MS-based metabolomic datasets via compound interaction pair mapping. Metabolomics, 4(1):94–103, 2008.
[11] C. Junot, G. Madalinski, J.-C. Tabet, and E. Ezan. Fourier transform mass spectrometry for metabolome analysis. Analyst, 135(9):2203–2219, 2010.
[12] M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. Kawashima, S. Okuda, T. Tokimatsu, and Y. Yamanishi. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36(Database issue):D480–D484, 2008.
[13] I.M. Keseler, C. Bonavides-Martínez, J. Collado-Vides, S. Gama-Castro, R.P. Gunsalus, D.A. Johnson, M. Krummenacker, L.M. Nolan, S. Paley, I.T. Paulsen, M. Peralta-Gil, A. Santos-Zavaleta, A.G. Shearer, and P.D. Karp. Ecocyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res, 37(Database issue):D464–D470, 2009.
[14] T. Kind and O. Fiehn. Seven golden rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. BMC Bioinformatics, 8:105, 2007.
[15] S.M. Lin, L. Zhu, A.Q. Winter, M. Sasinowski, and W.A. Kibbe. What is mzxml good for?Expert Rev Proteomics, 2(6):839–845, 2005.
[16] F. Matsuda, Y. Shinbo, A. Oikawa, M.Y. Hirai, O. Fiehn, S. Kanaya, and K. Saito. Assessment of metabolome annotation quality: a method for evaluating the false discovery rate of elemental composition searches. PLoS One, 4(10):e7490, 2009.
[17] T.G. Payne, A.D. Southam, T.N. Arvanitis, and M.R. Viant. A signal filtering method for improved quantification and noise discrimination in Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics data. J Am Soc Mass Spectrom, 20(6):1087–1095, 2009.
[18] T. Pluskal, S. Castillo, A. Villar-Briones, and M. Oresic. Mzmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11:395, 2010.
[19] S. Rogers, R.A. Scheltema, M. Girolami, and R. Breitling. Probabilistic assignment of formulas to mass peaks in metabolomics experiments. Bioinformatics, 25(4):512–518, 2009.
[20] C.A. Smith, E.J. Want, G. O’Maille, R. Abagyan, and G. Siuzdak. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem, 78(3):779–787, 2006.
[21] A.D. Southam, T.G. Payne, H.J. Cooper, T.N. Arvanitis, and M.R. Viant. Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray Fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Anal Chem, 79(12):4595–4602, 2007.
[22] L. Sumner, A. Amberg, D. Barrett, M. Beale, R. Beger, C. Daykin, T. Fan, O. Fiehn, R. Goodacre, J. Griffin, T. Hankemeier, N. Hardy, J. Harnly, R. Higashi, J. Kopka, A. Lane, J. Lindon, P. Marriott, A. Nicholls, M. Reily, J. Thaden, and M. Viant. Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3):211–221, 2007.
[23] R.J. Weber, A.D. Southam, U. Sommer, and M.R. Viant. Characterization of isotopic abundance measurements in high resolution FT-ICR and orbitrap mass spectra for improved confidence of metabolite identification. Anal Chem, 83:3737–3743, 2011.
[24] R.J.M. Weber and M.R. Viant. MI-pack: increased confidence of metabolite identification in mass spectra by integrating accurate masses and metabolic pathways. Chemometrics and Intelligent Laboratory Systems, 104(1):75–82, 2010.
[25] D.S. Wishart, C. Knox, A.C. Guo, R. Eisner, N. Young, B. Gautam, D.D. Hau, N. Psychogios, E. Dong, S. Bouatra, R. Mandal, I. Sinelnikov, J. Xia, L. Jia, J.A. Cruz, E. Lim, C.A. Sobsey, S. Shrivastava, P. Huang, P. Liu, L. Fang, J. Peng, R. Fradette, D. Cheng, D. Tzur, M. Clements, A. Lewis, A. De Souza, A. Zuniga, M. Dawe, Y. Xiong, D. Clive, R. Greiner, A. Nazyrova, R. Shaykhutdinov, L. Li, H.J. Vogel, and I. Forsythe. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res, 37:D603–D610, 2009.
[26] Y. Xu, J.-F. Heilier, G. Madalinski, E. Genin, E. Ezan, J.-C. Tabet, and C. Junot. Evaluation of accurate mass and relative isotopic abundance measurements in the LTQ-orbitrap mass spectrometer for further metabolomics database building. Anal Chem, 82(13):5490–5501, 2010.
[27] W. Zhang, F. Li, and L. Nie. Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology, 156(Pt 2):287–301, 2010.